An EGZ generalization for 5 colors

David Grynkiewicz * and Andrew Schultz [†]

July 26, 2002

Abstract

Let $g_{zs}(m, 2k)$ $(g_{zs}(m, 2k+1))$ be the minimal integer such that any coloring Δ of the integers from $1, \ldots, g_{zs}(m, 2k)$ by $\biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i}$ (the integers from $1, \ldots, g_{zs}(m, 2k+1)$ by $\biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i} \cup \{\infty\}$) there exist integers

$$x_1 < \dots < x_m < y_1 < \dots < y_m$$

such that

- 1. there exists j_x such that $\Delta(x_i) \in \mathbb{Z}_m^{j_x}$ for each i and $\sum_{i=1}^m x_i = 0$ mod m (or $\Delta(x_i) = \infty$ for each i);
- 2. there exists j_y such that $\Delta(y_i) \in \mathbb{Z}_m^{j_y}$ for each i and $\sum_{i=1}^m y_i = 0$ mod m (or $\Delta(y_i) = \infty$ for each i); and
- 3. $2(x_m x_1) \le y_m x_1$.

In this note we show $g_{zs}(m,2) = 5m - 4$ for $m \ge 2$, $g_{zs}(m,3) = 7m + \lfloor \frac{m}{2} \rfloor - 6$ for $m \ge 4$, $g_{zs}(m,4) = 10m - 9$ for $m \ge 3$, and $g_{zs}(m,5) = 13m - 2$ for $m \ge 2$.

1 Introduction

Denote by [a, b] the set of integers x such that $a \leq x \leq b$. For a set S, an S-coloring of [a, b] is a mapping $\Delta : [a, b] \to S$. If $S = \{1, \ldots, r\}$, we say Δ is an r-coloring. The following is the Erdős-Ginzburg-Ziv Theorem, [9] [8].

Proposition 1.1. Any sequence of at least 2m - 1 elements of \mathbb{Z}_m contains a subsequence of m elements whose sum is zero modulo m.

Several theorems of Ramsey-type have been generalized by considering Z_m colorings and zero-sum configurations rather than 2-colorings and monochromatic configurations. Such theorems are called generalizations in the sense of

^{*}Department of Mathematics, Caltech, Pasadena, CA, 91125

[†]Supported by NSF grant DMS 0097317

EGZ. Best known of these results is the zero-sum-tree theorem [4] [19], and other results concerning graphs and hypergraphs can be found in [10] and [1].

Ramsey-type problems dealing with colorings of the natural numbers can be classified as one-set problems initiated in [7] and further explored in [3] [6] [15] [16] [17] [18] and two-set problems initiated in [5] and further investigated in [13] [20] [21]. We introduce some definitions towards generalizing two-set problems in the sense of EGZ.

Let the set $\biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i}$ denote the pairwise disjoint union of k copies of the set of elements \mathbb{Z}_{m} and let ∞ denote a symbol such that $\infty \notin \biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i}$. Just as the EGZ Theorem generalizes the pigeonhole principle for 2 boxes and m pigeons, the following observation generalizes to an arbitrary number of boxes.

Observation 1.2. Let $m \ge 2$ and r = 2k (r = 2k + 1) be positive integers. Any sequence of at least r(m-1)+1 elements from $\bigcup_{i=1}^{k} \mathbb{Z}_{m}^{i}$ (from $\bigcup_{i=1}^{k} \mathbb{Z}_{m}^{i} \cup \{\infty\}$) contains a subsequence of m elements from some \mathbb{Z}_{m}^{i} whose sum is zero modulo m (or a subsequence of $m \infty$ elements).

For a positive integer r and a system of inequalities L in 2m variables, let R(L;r) denote the minimal integer N such that every r-coloring of [1, N]contains two sets S_1 and S_2 , each being monochromatic and of cardinality m, such that $S_1 \cup S_2$ forms a solution to L. In a similar way, if r = 2k (r = 2k + 1) let $R_{zs}(L;r)$ denote the minimum integer N such that every $\biguplus_{i=1}^k \mathbb{Z}_m^i$ -coloring $(\biguplus_{i=1}^k \mathbb{Z}_m^i \cup \{\infty\}$ -coloring) of [1, N] contains two sets S_1 and S_2 , each being zero-sum in \mathbb{Z}_m^i (or ∞ -monochromatic) and of cardinality m, such that $S_1 \cup S_2$ forms a solution to L.

It is easy to see that $R(L;r) \leq R_{zs}(L;r)$. If equality holds for a given r, we say the system L admits an EGZ generalization for r colors. Using the definitions above, it was proved in [5] that $R(\bar{L};2) = 5m - 3$ and $R(\bar{L};3) = 9m - 7$ where

$$\bar{L} := x_1 < x_2 < \dots < x_m < y_1 < y_2 < \dots < y_m;$$
$$x_m - x_1 \le y_m - y_1.$$

Furthermore, they proved \overline{L} admits an EGZ generalization for 2 and 3 colors.

Recently in a sequence of three papers [13], [12], [11] the first author showed $R(\bar{L}; 4) = 12m - 9$ and that \bar{L} admits an EGZ generalization for 4 colors. In achieving this result, a new tool was developed in [11]. We state in Proposition 2.1 a particular case equivalent to a result from [14]. It seems that the determination of $R(\bar{L}; 5)$ would not be easy or short. At present the authors are not aware of any nontrivial two set EGZ generalizations for 5 colors.

The motivation for this paper is twofold. First, we wished to find a system \mathcal{L} that admits an EGZ generalization for 5 colors. Second, we wanted to test the conjecture below from [2].

Conjecture 1.3 Let k and m be positive integers. If L_1 and L_2 are two systems of inequalities in 2m variables such that every positive integer solution of L_1 is a solution of L_2 , and if L_2 admits an EGZ generalization in r colors, then L_1 admits an EGZ generalization in r colors.

Toward these ends we have chosen to look at the system \mathcal{L} first investigated by the second author in [20] defined by

$$\mathcal{L} := x_1 < x_2 < \dots < x_m < y_1 < y_2 < \dots < y_m;$$
$$y_m - x_1 \ge 2(x_m - x_1).$$

In Section 2 we state some preliminary definitions and tools, and in Section 3 we determine $R_{zs}(\mathcal{L}; r)$ for $r \in [2, 5]$. In conjunction with the results from [20], these results show \mathcal{L} admits EGZ generalizations for these values of r.

2 Preliminaries

Along with the EGZ theorem we shall need the following result, an easy consequence of the EGZ Theorem and [11] or [14].

Proposition 2.1. If $H = (h_1, \ldots, h_k)$ is a sequence of at least 2m - 1 elements from \mathbb{Z}_m , then one of the following holds:

- 1. any sequence of $\lfloor \frac{3}{2}m \rfloor$ elements from H contains a subsequence of m elements whose sum is zero modulo m
- 2. there exists a partition $\{A_i\}_{i=1}^{k-m}$ of $H \setminus \{h_k\}$ with $|\sum_{i=1}^{k-m} A_i| = m$; or
- 3. there exists $j \in \mathbb{Z}_m$ such that $h_i = j$ for all but m 2 elements $h_i \in H$.

An *m*-set, denoted $Z = (z_1, \ldots, z_m)$, is a sequence of *m* distinct positive integers such that $z_1 < \cdots < z_m$. For a pair of *m*-sets *X* and *Y*, we write $X \prec Y$ if $x_m < y_1$. For $Z = (z_1, \ldots, z_m)$ we also adopt the following notation: (i) $int_i(Z) = z_i$ for $i \le m$; (ii) $first_k(Z) = \{z_1, \ldots, z_{\min\{k,m\}}\}$; (iii) $first(Z) = z_1$; (iv) $last_k(Z) = \{z_{\max\{1,n-k\}}, \ldots, x_m\}$; and (v) $last(Z) = z_m$. For matters of notation and consistency with [20], we shall denote $R_{zs}(\mathcal{L}, r)$ by $g_{zs}(m, r)$. To facilitate our evaluation of $g_{zs}(m, r)$, we make the following observation.

Observation 2.2. Let positive integer r = 2k (integer r = 2k+1) be given, and let $\Delta : [1,n] \to \biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i}$ ($\Delta : [1,n] \to \biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i} \cup \{\infty\}$) be given. If there exists a zero-sum (zero-sum or monochromatic) m-set $Y \subset [r(m-1)+1,n]$ such that $y_{m} \geq 2r(m-1)+1$, then the system \mathcal{L} is satisfied.

Proof. By Observation 1.2 there is some zero-sum or monochromatic m-set $X \subset [1, r(m-1)+1]$. If a zero-sum or monochromatic m-set $Y \subset [r(m-1)+1, n]$ exists, then $X \prec Y$. If $y_m \ge 2r(m-1)+1$ we have $y_m - x_1 \ge 2r(m-1)+1 - x_1 \ge 2(r(m-1)+1-x_1) \ge 2(x_m - x_1)$.

3 Evaluation of $g_{zs}(m,r)$ for $r \in [2,5]$

The determination of $g_{zs}(m, 2)$ is a simple application of the EGZ Theorem.

Theorem 3.1. If $m \ge 2$ is an integer, then $g_{zs}(m, 2) = 5m - 4$.

Proof. That $g_{zs}(m,2) \ge 5m-4$ follows from g(m,2) = 5m-4 as found in [20] and the trivial fact that $g_{zs}(m,2) \ge g(m,2)$.

By Observation 2.2 it is sufficient to find a zero-sum m-set $Y \subset [2m, 5m-4]$ with $y_m \ge 4m-3$. Let P = [3m-2, 5m-4]. Since |P| = 2m-1 there exists some zero-sum m-set $Y \subset P$. Since $|P \cap [3m-2, 4m-4]| = m-1$ it follows that $y_m \ge 4m-3$.

The determination of $g_{zs}(m,3)$ will require the use of Proposition 2.1 and the following two lemmas, proofs for which can be found in [20].

Lemma 3.2. Let $m \ge 4$ be an integer, and let $\Delta : [1, 3m - 4] \to \mathbb{Z}_m \cup \{\infty\}$ be a coloring. If $|\Delta^{-1}(\infty)| \ge 3m - \lceil \frac{m}{2} \rceil - 2$, then there exist monochromatic *m*-sets $X \prec Y$ such that $y_m - x_1 \ge 2(x_m - x_1)$.

Lemma 3.3. Let $m \ge 4$ be an integer. If $\Delta : [3m - 1, 7m + \lfloor \frac{m}{2} \rfloor - 6] \rightarrow [1, 3]$ is a given coloring, then either

- 1. there exists a monochromatic m-set Y such that $y_m \ge 6m 5$ or
- 2. there exist monochromatic m-sets $W \prec Y$ such that $y_m w_1 \ge 2(w_m w_1)$.

Theorem 3.4. If $m \ge 4$ is an integer, then $g_{zs}(m,3) = 7m + \left|\frac{m}{2}\right| - 6$.

Proof. That $g_{zs}(m,3) \ge 7m + \lfloor \frac{m}{2} \rfloor - 6$ follows from $g(m,3) = 7m + \lfloor \frac{m}{2} \rfloor - 6$ as found in [20] and the trivial fact that $g_{zs}(m,3) \ge g(m,3)$.

Next we show that $g_{zs}(m,3) \leq 7m + \lfloor \frac{m}{2} \rfloor - 6$. Let $\Delta : [1, 7m + \lfloor \frac{m}{2} \rfloor - 6] \rightarrow \mathbb{Z}_m \cup \{\infty\}$ be an arbitrary coloring. By Observation 2.2 it is sufficient to find a zero-sum or monochromatic *m*-set $Y \subset [3m-1, 7m + \lfloor \frac{m}{2} \rfloor - 6]$ with $y_m \geq 6m-5$.

For convenience we let

$$P = \Delta^{-1}(\mathbb{Z}_m) \cap [3m - 1, 7m + \left\lfloor \frac{m}{2} \right\rfloor - 6].$$

To complete the proof we consider three cases based on $k = |\Delta^{-1}(\infty) \cap [6m - 5, 7m + \lfloor \frac{m}{2} \rfloor - 6]|.$

Case 1. Suppose k = 0. If $|P| \ge 2m - 1$, one may find a zero-sum m set $Y \subset [3m - 1, 7m + \lfloor \frac{m}{2} \rfloor - 6]$ with $y_m \ge 6m - 5$. Otherwise |P| < 2m - 1, so that $|\Delta^{-1}(\infty) \cap [3m - 1, 6m - 6]| \ge 3m - \lceil \frac{m}{2} \rceil - 2$. Shifting [3m - 1, 6m - 6] to the interval [1, 3m - 4] and applying Lemma 3.2 completes the proof.

Case 2. Suppose $0 < k \leq \lfloor \frac{m}{2} \rfloor$, so that

$$|P \cap [6m - 5, 7m + \left\lfloor \frac{m}{2} \right\rfloor - 6]| = m + \left\lfloor \frac{m}{2} \right\rfloor - k \ge m$$

. If $|\Delta^{-1}(\infty) \cap [3m-1, 6m-6]| \ge m-1$, then we are done. Hence we may assume otherwise, so that $|\Delta^{-1}(\mathbb{Z}_m) \cap [3m-1, 6m-6]| \ge 2m-2$. Selecting $P' \subset P$ such that |P'| = 2m-1 and $|P \cap [6m-7, 7m + \lfloor \frac{m}{2} \rfloor - 6]| = m$ completes the case.

Case 3. Suppose $\lfloor \frac{m}{2} \rfloor < k < m$. We may assume that $|\Delta^{-1}(\infty) \cap [3m - 1, 6m - 6]| < m - k$, since otherwise the proof is complete by taking $Y = last_m(\Delta^{-1}(\infty) \cap [3m - 1, 7m + \lfloor \frac{m}{2} \rfloor - 6]$. Hence, |P| > 2m - 1. We complete this case by considering three subcases.

Subcase 3a. Suppose any $\lfloor \frac{3}{2}m \rfloor$ elements of P contain a zero-sum m-set. Since $|P \cap [6m - 5, 7m + \lfloor \frac{m}{2} \rfloor - 6]| \ge \lfloor \frac{m}{2} \rfloor + 1$ we may select $P' \subset P$ with $\lfloor \frac{3}{2}m \rfloor$ elements such that $|P' \cap [6m - 5, 7m + \lfloor \frac{m}{2} \rfloor - 6]| \ge \lfloor \frac{m}{2} \rfloor + 1$. By assumption P' contains a zero-sum m-set Y. Since $|P' \cap [3m - 1, 6m - 6]| < m$ it follows that $y_m \ge 6m - 5$.

Subcase 3b. Suppose there exists a partition $\{A_i\}_{i=1}^{|P|-m+1}$ of P where $A_{|P|-m+1} = \{last(P)\}$ with

$$\left|\sum_{i=1}^{|P|-m} A_i\right| = m.$$

Hence there exists a zero-sum *m*-set *Y* with $y_m = last(P) \ge 6m - 5$.

Subcase 3c. If neither Subcase 3a nor 3b apply, then by Proposition 2.1 it

follows that $\Delta(p) = j \in \mathbb{Z}_m$ for all but at most m-2 elements $p \in P$; for convenience, let $H = \{p \in P | \Delta(p) \neq j\}$. Induce a coloring $\Delta_e : [3m-1, 7m + \frac{m}{2} - 6] \rightarrow [1, 3]$ defined by

$$\Delta_e(x) = \begin{cases} 1, \text{ for } x \in P \setminus H \\ 2, \text{ for } x \in H \\ 3, \text{ for } \Delta(x) = \infty \end{cases}$$

Note that any monochromatic *m*-set *W* in Δ_e is either a zero-sum or monochromatic *m*-set in Δ since $|\Delta^{-1}(2)| \leq m - 2$. Hence, the result follows by Lemma 3.3.

Case 4. If $k \ge m$ the result follows trivially.

We consider the evaluation of $g_{zs}(m, 4)$. Towards that end we use the following lemma, the proof for which may be found in [20].

Lemma 3.5. Let $m \ge 3$ be an integer. If $\Delta : [4m - 2, 10m - 9] \rightarrow [1, 4]$ is a given coloring, then either

- 1. there exists a monochromatic m-set Y such that $y_m \ge 8m 7$ or
- 2. there exist monochromatic m-sets $W \prec Y$ such that $y_m w_1 \ge 2(w_m w_1)$.

Theorem 3.6. If $m \ge 3$ is an integer, then $g_{zs}(m, 4) = 10m - 9$.

Proof. That $g_{zs}(m,4) \ge 10m - 9$ follows from g(m,4) = 10m - 9 as found in [] and the trivial fact that $g_{zs}(m,4) \ge g(m,4)$.

Next we show that $g_{zs}(m,4) \leq 10m-9$. Let $\Delta : [1,10m-9] \to \mathbb{Z}_m^1 \uplus \mathbb{Z}_m^2$ be an arbitrary coloring. By Observation 2.2 it is sufficient to find a zero-sum *m*-set $Y \subset [4m-2,10m-9]$ with $y_m \geq 8m-7$.

Since |[8m-7, 10m-9]| = 2m-1, without loss of generality we may assume $|\Delta^{-1}(\mathbb{Z}_m^2) \cap [8m-7, 10m-9]| = m+k$ where $k \ge 0$. If $|\Delta^{-1}(\mathbb{Z}_m^2) \cap [4m-2, 8m-8]| \ge m-1-k$, then by the EGZ theorem there exists a zero-sum *m*-set $Y \subset [4m-2, 10m-9]$ with $y_m \ge 8m-7$. Hence we may assume

$$|\Delta^{-1}(\mathbb{Z}_m^2) \cap [4m-2, 8m-8]| \le m-2-k.$$
(1)

Letting $P = \Delta^{-1}(\mathbb{Z}_m^1) \cap [4m-2, 10m-9]$, we thus have $|P \cap [4m-2, 8m-8]| \ge 3m-3+k$. We finish the proof by considering three cases.

Case 1. Suppose any $\lfloor \frac{3}{2}m \rfloor$ elements of P contain a zero-sum m-set. If such an m-set Y satisfies $y_m \ge 8m - 7$ we are done; hence we assume that any $\lfloor \frac{3}{2}m \rfloor - (m-1-k) = \lfloor \frac{m}{2} \rfloor + k+1$ elements from $\Delta^{-1}(\mathbb{Z}_m^1) \cap [4m-2, 8m-8]$ contain

a zero-sum *m*-set. Hence, for $W' = first_{\lfloor \frac{m}{2} \rfloor + k+1} (\Delta^{-1}(\mathbb{Z}_m^1) \cap [4m-2, 8m-8])$ there exists some *m*-set $W \subset W'$ that is zero-sum.

By Equation 1 we have

$$t = |\Delta^{-1}(\mathbb{Z}_m^2) \cap [4m - 2, w_m]| \le m - 2 - k,$$
(2)

so that $w_m - w_1 \leq \lfloor \frac{m}{2} \rfloor + k + 1 + t - 1$. Hence, if there exists a zero-sum *m*-set Y such that $W \prec Y$ and

$$y_m \ge 2(w_m - w_1) + w_1 \ge 2(\left\lfloor \frac{m}{2} \right\rfloor + k + t) + 4m - 2$$
 (3)

we shall be done. Taking $Y' = last_{\lfloor \frac{m}{2} \rfloor + k+1} (\Delta^{-1}(\mathbb{Z}_m^1) \cap [4m-2, 8m-8])$, we see that there exists an *m*-set $Y \subset Y'$ which satisfies these requirements as follows. First, it is quickly verified that there are at least $2(\lfloor \frac{m}{2} \rfloor + k + 1)$ many elements from $\Delta^{-1}(\mathbb{Z}_m^1)$ in [4m-2, 8m-8] for every $m \geq 3$. Hence, we have $W' \prec Y'$, from which it follows that $W \prec Y$. Second, we note that

$$y_m \ge 8m - 8 - |Y' \setminus Y| - (|\Delta^{-1}(\mathbb{Z}_m^2) \cap [4m - 2, 8m - 8]| - t).$$

By using Equations 1 and 2, one may easily verify that this implies $y_m \ge 2(\left|\frac{m}{2}\right| + k + t) + 4m - 2$, so that Equation 3 is satisfied.

Case 2. Suppose there exists a partition $\{A_i\}_{i=1}^{|P|-m+1}$ of P where where $A_{|P|-m+1} = \{last(P)\}$ such that

$$|\sum_{i=1}^{|P|-m+1} A_i| = m.$$

Hence there exists a zero-sum *m*-set $Y \subset [4m-2, 10m-9]$ with $y_m = last(P) \ge 8m-7$.

Case 3.If neither Case 1 nor Case 2 apply, then by Proposition 2.1 it follows that $\Delta(p) = j \in \mathbb{Z}_m^1$ for all but at most m-1 elements $p \in P$; for convenience, define $H = \{p \in P | \Delta(p) \neq j\}$. Induce a coloring $\Delta_e : [4m-2, 10m-9] \rightarrow [1, 4]$ defined by

$$\Delta_e(x) = \begin{cases} 1, \text{ for } x \in P \setminus H \\ 2, \text{ for } x \in H \\ 3, \text{ for } x \in first_{m-1}(\Delta^{-1}(\mathbb{Z}_m^1) \cap [4m-2, 10m-9]) \\ 4, \text{ for } x = int_i(\Delta^{-1}(\mathbb{Z}_m^1) \cap [4m-2, 10m-9]), m \le i \le 2m-2 \end{cases}$$

Note that any monochromatic *m*-set X in Δ_e is either a zero-sum *m*-set in Δ since $|\Delta^{-1}(j)| \leq m-2$ for each $j \neq 1$. Hence, by Lemma 3.5 the proof is complete.

The evaluation of $g_{zs}(m, 5)$ requires two results from the evaluation of g(m, 2)and g(m, 5) found in [20].

Lemma 3.7. Let $m \ge 2$ be an integer. If $\Delta : [5m - 3, 13m - 12] \rightarrow [1, 5]$ is a given coloring, then either

- 1. there exists a monochromatic m-set Y such that $y_m \ge 10m 9$ or
- 2. there exist monochromatic m-sets $W \prec Y$ such that $y_m w_1 \ge 2(w_m w_1)$.

Lemma 3.8. Let $m \ge 2$ be an integer. If $\Delta : [5m-3, 10m-10] \rightarrow [1, 2]$ is a coloring with $|\Delta^{-1}(c)| \le m-2$ for some $c \in [1, 2]$, then there exist monochromatic m-sets $X' \prec Y'$ such that $y'_m - x'_1 \ge 2(x'_m - x'_1)$.

Theorem 3.9. If $m \ge 2$ is an integer, then $g_{zs}(m, 5) = 13m - 12$.

Proof. That $g_{zs}(m,5) \ge 13m - 12$ follows from g(m,5) = 13m - 12 as found in [20] and the trivial fact that $g_{zs}(m,5) \ge g(m,5)$.

We now show $g_{zs}(m,5) \leq 13m-12$. Let $\Delta : [1, 13m-12] \to \mathbb{Z}_m^1 \uplus \mathbb{Z}_m^2 \cup \{\infty\}$ be an arbitrary coloring. By Observation 2.2 it is sufficient to find a zero-sum m-set $Y \subset [5m-3, 13m-12]$ with $y_m \geq 10m-9$.

The case of $|\Delta^{-1}(\infty) \cap [10m-9, 13m-12]| \ge m$ is trivial, so we may assume otherwise. Hence, it follows that $|\Delta^{-1}(\mathbb{Z}_m^i) \cap [10m-9, 13m-2]| \ge m$ for some $i \in [1,2]$, say i = 2. Furthermore, if $|\Delta^{-1}(\infty) \cap [10m-9, 13m-12]| = 0$, then either $|\Delta^{-1}(\mathbb{Z}_m^2) \cap [10m-9, 13m-12]| \ge 2m-1$ or $|\Delta^{-1}(\mathbb{Z}_m^1) \cap [10m-9, 13m-12]| \ge m$. In the former case the proof is complete by the EGZ Theorem; in the latter case, we must have $|(\Delta^{-1}(\mathbb{Z}_m^1) \cup \Delta^{-1}(\mathbb{Z}_m^2)) \cap [5m-3, 10m-10]| \le m-2$. Hence we may induce a coloring $\Delta_e : [5m-3, 10m-10] \to [1, 2]$ defined by

$$\Delta_e(x) = \begin{cases} 1, \text{ for } \Delta(x) = \infty \\ 2, \text{ for } x \in (\Delta^{-1}(\mathbb{Z}_m^1) \cup \Delta^{-1}(\mathbb{Z}_m^2)) \cap [5m - 3, 10m - 10]. \end{cases}$$

Since any monochromatic *m*-set in Δ_e is also monochromatic in Δ , the result follows from by Lemma 3.8. Hence $|\Delta^{-1}(\infty) \cap [10m - 9, 13m - 12]| > 0$

Let $k = |(\Delta^{-1}(\infty) \cup \Delta^{-1}(\mathbb{Z}_m^2)) \cap [10m - 9, 13m - 12]|$. Clearly k < 3m - 2. We also have

$$|(\Delta^{-1}(\infty) \cup \Delta^{-1}(\mathbb{Z}_m^2)) \cap [5m - 3, 10m - 10]| < 3m - 2 - k,$$
(4)

since otherwise there exists either a zero-sum or monochromatic *m*-set Y with $y_m \in [10m - 9, 13m - 12]$. Likewise we may assume that any

$$2m - 1 - |\Delta^{-1}(\mathbb{Z}_m^1) \cap [10m - 9, 13m - 12]| = 2m - 1 - (3m - 2 - k)$$
$$= k + 1 - m$$

elements from $\Delta^{-1}(\mathbb{Z}_m^1) \cap [5m-3, 10m-10]$ contain a zero-sum *m*-set.

Let $W' = first_{k+1-m}(\Delta^{-1}(\mathbb{Z}_m^1) \cap [5m-3, 10m-10])$, so that by assumption there exists a zero-sum *m*-set $W \subset W'$. From Equation 4 we see that

$$t = |(\Delta^{-1}(\infty) \cup \Delta^{-1}(\mathbb{Z}_m^2)) \cap [5m - 3, w_m]| \le 3m - 3 - k$$
(5)

so that $w_m - w_1 \leq k + 1 - m + t - 1$. Hence, if there exists a zero-sum *m*-set Y such that $W \prec Y$ and

$$y_m \ge 2(k - m + t) + x_1 \ge 3m + 2k + 2t - 3 \tag{6}$$

we shall be done. Taking $Y' = last_{k+1-m}(\Delta^{-1}(\mathbb{Z}_m^1) \cap [5m-3, 10m-10])$, we see that there exists an *m*-set $Y \subset Y'$ which satisfies these requirements as follows. First, using Equation 4 one may verify that there are at least 2(k+1-m) many elements from $\Delta^{-1}(\mathbb{Z}_m^1)$ in [5m-3, 10m-10] for every $m \geq 2$. Hence, we have $W' \prec Y'$, from which it follows that $W \prec Y$. Second, we note that

$$y_m \ge 10m - 10 - |Y' \setminus Y| - (|(\Delta^{-1}(\infty) \cup \Delta^{-1}(\mathbb{Z}_m^2)) \cap [5m - 3, 10m - 10]| - t)$$

By using Equations 4 and 5, one may verify that this implies $y_m \ge 3m + 2k + 2t - 3$, so that Equation 6 is satisfied.

Acknowledgment: The authors would like to thank Professor A. Bialostocki for suggesting that we investigate Conjectures 1.3 and for many fruitful discussions.

References

- P. Baginsky, A generalization of a Ramsey-type theorem on hypermatchings. Manuscript, 2002.
- [2] A. Bialostocki, Private Communication, June 2002.
- [3] A. Bialostocki, G. Bialostocki, and D. Schaal, A zero-sum theorem. To appear in J. Combin. Theory, Ser A.

- [4] A. Bialostocki, and P. Dierker, On zero sum Ramsey numbers: multiple copies of a graph. J. Graph Theory 18 (1994), 143-151.
- [5] A. Bialostocki, P. Erdős and H. Lefmann, Monochromatic and zero-sum sets of nondecreasing diameter. Discrete Math. 137 (1995), 19-34.
- [6] A. Bialostocki, R. Sabar, On constrained 2-Partitions of monochromatic sets and generalizations in the sense of Erdős-Ginzburg-Ziv. Manuscript, 2002.
- [7] A. Bialostocki, R. Sabar, and D. Schaal, On a zero-sum generalization of a variation of Schur's equation. Preprint (2002).
- [8] Y. Caro, Zero-Sum problems-a survey. Discrete Math. 152 (1996) 93-113.
- [9] P. Erdős, A. Ginzburg and A. Ziv, *Theorem in additive number theory*, Bull. Research Council Israel 10 F (1961) 41-43.
- [10] Z. Furedi, and D. Kleitman, On zero-trees. J. Graph Theory, 16 (1992), 107-120.
- [11] D. Grynkiewicz, On a partition analog of the Cauchy-Davenport Theorem. Preprint.
- [12] D. Grynkiewicz, On four colored sets with noncecreasing diameter and the Erdős-Ginzburg-Ziv Theorem. To appear in Journal of Combin. Theory, Ser. A.
- [13] D. Grynkiewicz, On four color monochromatic sets with nondecreasing diameter. Manuscript, 2002.
- [14] J. E. Olson, An addition theorem for finite abelian groups, Journal of Number Theorey 9 (1977), 63-70.
- [15] R. Sabar, A note on a generalization in the sense of Erdős-Ginzburg-Ziv. Manuscript, 2002.
- [16] R. Sabar, Monochromatic and zero-sum solutions of a variation of Schur's equation. Manuscript, 2002.
- [17] R. Sabar, Partial-Ascending waves and the Erdő-s-Ginzburg-Ziv Theorem. Manuscript, 2002.

- [18] R. Sabar, On a family of inequalities and the Erdős-Ginzburg-Ziv Theorem. Manuscript, 2002.
- [19] A. Schrijver and P. Seymour, A simpler proof and a generalization of the zero-trees theorem. J. Combin. Theory Ser. A 58 (1991), 301-305.
- [20] A. Schultz, On a modification of a problem of Bialostocki-Erdős-Lefmann. Manuscript, 2002.
- [21] B. Wong, A generalization of the Bialostocki-Erdős-Lefmann theorem. Manuscript, 2002.