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Abstract

Let gzs(m,2k) (g-s(m, 2k + 1)) be the minimal integer such that any
coloring A of the integers from 1, ..., g.s(m, 2k) by Lﬂle Z,, (the integers
from 1,...,9g.s(m, 2k + 1) by J¥_, Z¢, U {o0}) there exist integers

1 < < Tm <Y1 << Ym
such that

1. there exists j, such that A(z;) € Z7= for each i and >rixe =0
mod m (or A(z;) = oo for each 7);

2. there exists j, such that A(y;) € fo;’ for each ¢ and Y /", i = 0
mod m (or A(y;) = oo for each i); and

3. 2(xm —x1) < Yym — T1.

In this note we show g.s(m,2) = 5bm — 4 for m > 2, g.s(m,3) = Tm +
| 2| —6 for m > 4, g.s(m,4) = 10m—9 for m > 3, and g..(m,5) = 13m—2
for m > 2.

1 Introduction

Denote by [a,b] the set of integers x such that a < 2 < b. For a set S, an
S-coloring of [a,b] is a mapping A : [a,b] — S. If S = {1,...,7}, we say A is
an r-coloring. The following is the Erdds-Ginzburg-Ziv Theorem, [9] [8].

Proposition 1.1. Any sequence of at least 2m — 1 elements of Z,, contains a

subsequence of m elements whose sum is zero modulo m.

Several theorems of Ramsey-type have been generalized by considering Z,,-
colorings and zero-sum configurations rather than 2-colorings and monochro-

matic configurations. Such theorems are called generalizations in the sense of
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EGZ. Best known of these results is the zero-sum-tree theorem [4] [19], and
other results concerning graphs and hypergraphs can be found in [10] and [1].

Ramsey-type problems dealing with colorings of the natural numbers can be
classified as one-set problems initiated in [7] and further explored in [3] [6] [15]
[16] [17] [18] and two-set problems initiated in [5] and further investigated in [13]
[20] [21]. We introduce some definitions towards generalizing two-set problems
in the sense of EGZ.

Let the set Lﬂle Zt, denote the pairwise disjoint union of k copies of the set
of elements Z,, and let co denote a symbol such that co ¢ L—ﬂle ZE,. Just as the
EGZ Theorem generalizes the pigeonhole principle for 2 boxes and m pigeons,

the following observation generalizes to an arbitrary number of boxes.

Observation 1.2. Let m > 2 and r = 2k (r = 2k +1) be positive integers. Any
sequence of at least r(m —1)+1 elements from Lﬂle Z, (from L+Jf:1 Zi U{oo})
contains a subsequence of m elements from some Z, whose sum is zero modulo

m (or a subsequence of m oo elements).

For a positive integer r and a system of inequalities L in 2m variables,
let R(L;r) denote the minimal integer N such that every r-coloring of [1, N]
contains two sets S; and S3, each being monochromatic and of cardinality m,
such that S7 U Sy forms a solution to L. In a similar way, if r = 2k (r = 2k + 1)
let R,s(L;r) denote the minimum integer N such that every L—ﬂle Z! -coloring
(Lﬂle Z, U {oo}-coloring) of [1, N] contains two sets S; and Ss, each being
zero-sum in Z%, (or co-monochromatic) and of cardinality m, such that S; U Sy
forms a solution to L.

It is easy to see that R(L;r) < R,s(L;r). If equality holds for a given r, we
say the system L admits an EGZ generalization for r colors. Using the definitions
above, it was proved in [5] that R(L;2) = 5m — 3 and R(L;3) = 9m — 7 where

Li=21 <2< <Xy <Y1 <Yz <-- < Ym;
Tm — 21 < Ym — Y1-

Furthermore, they proved L admits an EGZ generalization for 2 and 3 colors.
Recently in a sequence of three papers [13], [12], [11] the first author showed
R(L;4) = 12m — 9 and that L admits an EGZ generalization for 4 colors. In
achieving this result, a new tool was developed in [11]. We state in Proposition
2.1 a particular case equivalent to a result from [14]. It seems that the deter-
mination of R(L;5) would not be easy or short. At present the authors are not

aware of any nontrivial two set EGZ generalizations for 5 colors.



The motivation for this paper is twofold. First, we wished to find a system
L that admits an EGZ generalization for 5 colors. Second, we wanted to test
the conjecture below from [2].
Conjecture 1.3 Let k and m be positive integers. If L1 and Ly are two systems
of inequalities in 2m variables such that every positive integer solution of Ly is
a solution of La, and if Lo admits an EGZ generalization in r colors, then L,
admits an EGZ generalization in r colors.

Toward these ends we have chosen to look at the system L first investigated
by the second author in [20] defined by

L=x1 <To< < Ty <Y1 <Yo2 <+ < Ym;
Ym — T1 2 2(Tm — 21).
In Section 2 we state some preliminary definitions and tools, and in Section 3

we determine R,,(L;r) for r € [2,5]. In conjunction with the results from [20],

these results show £ admits EGZ generalizations for these values of r.

2 Preliminaries

Along with the EGZ theorem we shall need the following result, an easy conse-
quence of the EGZ Theorem and [11] or [14].

Proposition 2.1. If H = (hy,...,hy) is a sequence of at least 2m — 1 elements
from Z.,, then one of the following holds:

1. any sequence of L%mJ elements from H contains a subsequence of m ele-

ments whose sum is zero modulo m

2. there exists a partition {A; Y™ of H\ {hx} with |Zk Al =m; oor
3. there exists j € Zy, such that h; = j for all but m — 2 elements h; € H.

An m-set, denoted Z = (z1,...,2m), is a sequence of m distinct positive
integers such that z; < --- < z,,. For a pair of m-sets X and Y, we write
X <Y ifx, <yi1. For Z = (z1,...,2,) we also adopt the following notation:
(i) int;(Z) = z; for i < m;

(i) firstx(Z) = {21, .., Zmin{k,m} |

(iii) first(Z) = z;

(iv) lasty(Z) = {zmax{1,n—k}s - - - » Tm}; and
(v) last(Z) = zm.



For matters of notation and consistency with [20], we shall denote R.s(L,r)
by g.s(m,r). To facilitate our evaluation of g.s(m,r), we make the following

observation.

Observation 2.2. Let positive integer r = 2k (integer r = 2k+1) be given, and
let A:[1,n] — Lﬂle Zi (A [1,n] — L+Jf:1 Zi, U{oo}) be given. If there exists
a zero-sum (zero-sum or monochromatic) m-set Y C [r(m — 1)+ 1,n] such that
Ym > 2r(m — 1) + 1, then the system L is satisfied.

Proof. By Observation 1.2 there is some zero-sum or monochromatic m-set X C
[1,7(m — 1) 4+ 1]. If a zero-sum or monochromatic m-set ¥ C [r(m — 1) + 1,n]
exists, then X < Y. If y,,, > 2r(m—1)41 we have y,,, —x1 > 2r(m—1)+1—21 >
2(rtm = 1)+ 1—x1) > 2(xp — x1). O

3 Evaluation of g,,(m,r) for r € [2,5]

The determination of g.s(m,2) is a simple application of the EGZ Theorem.
Theorem 3.1. If m > 2 is an integer, then g,s(m,2) = 5m — 4.

Proof. That g,s(m,2) > 5m — 4 follows from g(m,2) = bm — 4 as found in [20]
and the trivial fact that g,s(m,2) > g(m,2).

By Observation 2.2 it is sufficient to find a zero-sum m-set Y C [2m, 5m — 4]
with ¢, > 4m — 3. Let P = [3m — 2,5m — 4]. Since |P| = 2m — 1 there exists
some zero-sum m-set Y C P. Since |P N [3m — 2,4m — 4]] = m — 1 it follows
that y,,, > 4m — 3. O

The determination of g.s(m,3) will require the use of Proposition 2.1 and

the following two lemmas, proofs for which can be found in [20].

Lemma 3.2. Let m > 4 be an integer, and let A : [1,3m —4] — Z,, U{oc} be a

coloring. If |[A=1(c0)| > 3m — [2] — 2, then there exist monochromatic m-sets

X <Y such that Yy, — x1 > 2(xp, — x1).

Lemma 3.3. Let m > 4 be an integer. If A: [3m —1,7m + | 2| — 6] — [1,3]

s a giwen coloring, then either
1. there exists a monochromatic m-set Y such that y,, > 6m — 5 or
2. there exist monochromatic m-sets W <Y such that y, —wi > 2(w;, —wy).

Theorem 3.4. If m > 4 is an integer, then g.s(m,3) = Tm + | 2| — 6.



Proof. That g.5(m,3) > Tm+ | 2| — 6 follows from g(m,3) = Tm+ [%| — 6 as
found in [20] and the trivial fact that g.s(m,3) > g(m, 3).

Next we show that g.,(m,3) < Tm+ % | —6. Let A: [1,7m+ [ %] — 6] —
Zy, U {oo} be an arbitrary coloring. By Observation 2.2 it is sufficient to find a
zero-sum or monochromatic m-set Y C [3m—1, 7m+ | % | —6] with y,, > 6m—5.

For convenience we let
1 m
P=AYZn)N[3m—1,Tm + bJ 4.

To complete the proof we consider three cases based on k = |A~1(c0) N [6m —
5,7m+ [ 2] —6]].

Case 1. Suppose k = 0. If |P| > 2m — 1, one may find a zero-sum m set
Y C [3Bm—1,7m+ | 2] — 6] with y,, > 6m — 5. Otherwise |P| < 2m — 1, so
that [A=*(c0) N [3m —1,6m — 6]| > 3m — [ 2| — 2. Shifting [3m — 1,6m — 6] to
the interval [1,3m — 4] and applying Lemma 3.2 completes the proof.

Case 2. Suppose 0 < k < L%L so that

\P O [6m — 5, Tm + gJ — 6] =m+ [%J —k>m

. If |[A7Y(00) N [3m — 1,6m — 6]| > m — 1, then we are done. Hence we may
assume otherwise, so that |A™1(Z,,) N [3m — 1,6m — 6]| > 2m — 2. Selecting
P’ C P such that |P'| =2m—1and |[PN[6m—7,7m+ | 2| —6]| = m completes
the case.

Case 3. Suppose |Z| < k < m. We may assume that |[A~!(c0) N [3m —
1,6m — 6]] < m — k, since otherwise the proof is complete by taking ¥ =
lasty, (A7 (c0) N [3m — 1,7m + | % | — 6]. Hence, |P| > 2m — 1. We complete
this case by considering three subcases.

Subcase 3a. Suppose any L%m] elements of P contain a zero-sum m-set.
Since |[PN[6m —5,7Tm+ [ 2] —6]| > | 2| +1 we may select P’ C P with [3m]
elements such that |P'N[6m —5,7m+ |2 | —6]| > | 2| + 1. By assumption P’
contains a zero-sum m-set Y. Since |P' N [3m — 1,6m — 6]| < m it follows that
Ym = 6m — 5.

Subcase 3b. Suppose there exists a partition {A,;}Lill_m+1 of P where Ajp|_y41 =

{last(P)} with
|P|—m

| Y Ail=m.
=1

Hence there exists a zero-sum m-set Y with y,,, = last(P) > 6m — 5.

Subcase 3c. If neither Subcase 3a nor 3b apply, then by Proposition 2.1 it



follows that A(p) = j € Z,, for all but at most m — 2 elements p € P; for
convenience, let H = {p € P|A(p) # j}. Induce a coloring A, : [3m — 1,7m +
| 2] — 6] — [1,3] defined by

1, foro e P\ H
Ac(z)=4¢ 2, forzec H
3, for A(z) = 0

Note that any monochromatic m-set W in A, is either a zero-sum or monochro-
matic m-set in A since |[A71(2)] < m — 2. Hence, the result follows by Lemma
3.3.

Case 4. If k > m the result follows trivially. O

We consider the evaluation of g,s(m,4). Towards that end we use the fol-

lowing lemma, the proof for which may be found in [20].

Lemma 3.5. Let m > 3 be an integer. If A : [4m —2,10m — 9] — [1,4] is a

given coloring, then either

1. there exists a monochromatic m-set Y such that y,, > 8m — 7 or

2. there exist monochromatic m-sets W <Y such that Y, —w1 > 2(Wy —w1).
Theorem 3.6. If m > 3 is an integer, then g,s(m,4) = 10m — 9.

Proof. That g,s(m,4) > 10m — 9 follows from g(m,4) = 10m — 9 as found in ]
and the trivial fact that g.s(m,4) > g(m,4).

Next we show that g,s(m,4) < 10m — 9. Let A : [1,10m — 9] — ZL & Z2,
be an arbitrary coloring. By Observation 2.2 it is sufficient to find a zero-sum
m-set Y C [4m — 2,10m — 9] with y,,, > 8m — 7.

Since |[8m —7,10m —9]| = 2m — 1, without loss of generality we may assume
|A=1(Z2) N [8m — 7,10m — 9]| = m + k where k > 0. If |A=Y(Z2) N [4m —
2,8m —8]| > m—1—k, then by the EGZ theorem there exists a zero-sum m-set

Y C [4m — 2,10m — 9] with y,,, > 8m — 7. Hence we may assume
IATHZE)N[4m —2,8m — 8]| <m — 2 — k. (1)

Letting P = A=Y(ZL,)N[4m —2,10m — 9], we thus have |PN[4m —2,8m —8]| >
3m — 3 + k. We finish the proof by considering three cases.

Case 1. Suppose any L%mJ elements of P contain a zero-sum m-set. If
such an m-set Y satisfies y,, > 8m — 7 we are done; hence we assume that any
[3m]—(m—1-k) = | 2 |+k+1 elements from A~'(Z},)N[4m—2,8m—8] contain



a zero-sum m-set. Hence, for W' = firstLﬂJ e (ATHZ,) N [4m —2,8m — 8))
2
there exists some m-set W C W' that is zero-sum.

By Equation 1 we have
t=|ANZE)N[dm — 2, wp)| < m —2 -k, (2)

so that w,, —w; < L%J + k4 1+t — 1. Hence, if there exists a zero-sum m-set
Y such that W <Y and

ymz2(wm—w1)+wlzz(gj+k+t)+4m—2 (3)
we shall be done. Taking Y’ = lastL%J+k+1(A_1(Z}n)ﬂ [4m—2,8m —8]), we see

that there exists an m-set Y C Y’ which satisfies these requirements as follows.
First, it is quickly verified that there are at least 2( {%J + k+1) many elements
from A7Y(ZL) in [4m — 2,8m — 8] for every m > 3. Hence, we have W' < Y’,
from which it follows that W < Y. Second, we note that

Ym = 8m =8 — |[Y'\ Y| = (|ATH(Z},) N [4m — 2,8m — 8] - 1).

By using Equations 1 and 2, one may easily verify that this implies y,, >
2(|2] 4+ k+1t) + 4m — 2, so that Equation 3 is satified.

Case 2. Suppose there exists a partition {Ai}y;ll_m“ of P where where
A|p|—m+1 = {last(P)} such that

|P|—m+1

i=1

Hence there exists a zero-sum m-set Y C [4m —2,10m —9] with y,,, = last(P) >
8m — 7.

Case 3.If neither Case 1 nor Case 2 apply, then by Proposition 2.1 it follows
that A(p) = j € ZL, for all but at most m — 1 elements p € P; for convenience,
define H = {p € P|A(p) # j}. Induce a coloring A, : [4m —2,10m — 9] — [1,4]
defined by

1, forx e P\ H

2, forx e H

3, for x € first,_1(A™Y(ZL) N [4m —2,10m — 9])

4, for z = int;(A~Y(ZL,) N [4m —2,10m — 9]),m < i < 2m — 2

Ae(z) =

Note that any monochromatic m-set X in A, is either a zero-sum m-set in A

since |A71(j)] < m — 2 for each j # 1. Hence, by Lemma 3.5 the proof is



complete. O

The evaluation of g, (m, 5) requires two results from the evaluation of g(m, 2)
and g(m,5) found in [20].

Lemma 3.7. Let m > 2 be an integer. If A: [5m —3,13m —12] — [1,5] is a

given coloring, then either
1. there exists a monochromatic m-set Y such that ., > 10m — 9 or
2. there exist monochromatic m-sets W <Y such that y, —wi > 2(w, —wy).

Lemma 3.8. Let m > 2 be an integer. If A : [5m—3,10m—10] — [1,2] is a col-
oring with |A=Y(c)| < m—2 for some ¢ € [1,2], then there exist monochromatic
m-sets X' <Y’ such that y,, — 2} > 2(z), — x}).

Theorem 3.9. If m > 2 is an integer, then g,s(m,5) = 13m — 12.

Proof. That g.s(m,5) > 13m — 12 follows from g(m,5) = 13m — 12 as found in
[20] and the trivial fact that g.s(m,5) > g(m,5).

We now show g.(m,5) < 13m—12. Let A : [1,13m —12] — Z! WZ2 U{oo}
be an arbitrary coloring. By Observation 2.2 it is sufficient to find a zero-sum
m-set Y C [5m — 3,13m — 12] with y,, > 10m — 9.

The case of |[A™!(c0)N[10m —9,13m —12]| > m is trivial, so we may assume
otherwise. Hence, it follows that |A~1(Z! )N[10m—9, 13m—2]| > m for some i €
[1,2], say i = 2. Furthermore, if |A™1(0c0)N[10m —9,13m —12]| = 0, then either
|A=Y(Z2))N[10m—9,13m—12]| > 2m—1or |[A~Y(ZL )N[10m—9,13m—12]| > m.
In the former case the proof is complete by the EGZ Theorem; in the latter case,
we must have |(A™HZL)UATL(Z2))N[5m — 3,10m — 10]| < m — 2. Hence we
may induce a coloring A, : [5m — 3,10m — 10] — [1, 2] defined by

N 1, for A(z) = o0
e\T) =
2, for z € (A=Y(Z}L) U A=Y(Z2)) N [5m — 3,10m — 10].

Since any monochromatic m-set in A, is also monochromatic in A, the result
follows from by Lemma 3.8. Hence |[A~1(c0) N [10m —9,13m — 12]| > 0

Let k = [(A71(c0) UATL(Z2))) N [10m — 9,13m — 12]|. Clearly k < 3m — 2.
We also have

(A7 (o0) UATHZ2)) N [Bm — 3,10m — 10]| < 3m — 2 — k, (4)



since otherwise there exists either a zero-sum or monochromatic m-set Y with

Ym € [10m — 9,13m — 12]. Likewise we may assume that any
o2m —1—|A HZL)N[10m —9,13m — 12]| =2m — 1 — (3m — 2 — k)
=k+1—-m

elements from A~1(Z! )N [5m — 3,10m — 10] contain a zero-sum m-set.
Let W = firstpr1—m(A™HZE )N[5m—3,10m —10]), so that by assumption

there exists a zero-sum m-set W C W’. From Equation 4 we see that
t= (A" (o) UATHZ2 ) N [Bm — 3,w,]| < 3m —3 —k (5)

so that w,, —w; < k+1—m 4+t — 1. Hence, if there exists a zero-sum m-set
Y such that W <Y and

Um =2k —m+t)+ a1 >3m+2k+2t—3 (6)

we shall be done. Taking Y’ = lasty1_m(A™HZL)N[5m—3,10m—10]), we see
that there exists an m-set Y C Y’ which satisfies these requirements as follows.
First, using Equation 4 one may verify that there are at least 2(k+ 1 —m) many
elements from A=YZL ) in [5m — 3,10m — 10] for every m > 2. Hence, we have
W' <Y’ from which it follows that W < Y. Second, we note that

Ym > 10m —10 — Y\ Y| = (J(A" (o0) UATY(Z2 ) N [5m — 3,10m — 10]| — t).

By using Equations 4 and 5, one may verify that this implies y,,, > 3m + 2k +
2t — 3, so that Equation 6 is satified. O
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