An EGZ generalization for 5 colors

David Grynkiewicz * and Andrew Schultz ${ }^{\dagger}$

July 26, 2002

Abstract

Let $g_{z s}(m, 2 k)\left(g_{z s}(m, 2 k+1)\right)$ be the minimal integer such that any coloring Δ of the integers from $1, \ldots, g_{z s}(m, 2 k)$ by $\biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i}$ (the integers from $1, \ldots, g_{z s}(m, 2 k+1)$ by $\left.\biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i} \cup\{\infty\}\right)$ there exist integers $$
x_{1}<\cdots<x_{m}<y_{1}<\cdots<y_{m}
$$ such that 1. there exists j_{x} such that $\Delta\left(x_{i}\right) \in \mathbb{Z}_{m}^{j_{x}}$ for each i and $\sum_{i=1}^{m} x_{i}=0$ $\bmod m\left(\right.$ or $\Delta\left(x_{i}\right)=\infty$ for each $\left.i\right)$; 2. there exists j_{y} such that $\Delta\left(y_{i}\right) \in \mathbb{Z}_{m}^{j_{y}}$ for each i and $\sum_{i=1}^{m} y_{i}=0$ $\bmod m\left(\right.$ or $\Delta\left(y_{i}\right)=\infty$ for each $\left.i\right)$; and 3. $2\left(x_{m}-x_{1}\right) \leq y_{m}-x_{1}$.

In this note we show $g_{z s}(m, 2)=5 m-4$ for $m \geq 2, g_{z s}(m, 3)=7 m+$ $\left\lfloor\frac{m}{2}\right\rfloor-6$ for $m \geq 4, g_{z s}(m, 4)=10 m-9$ for $m \geq 3$, and $g_{z s}(m, 5)=13 m-2$ for $m \geq 2$.

1 Introduction

Denote by $[a, b]$ the set of integers x such that $a \leq x \leq b$. For a set S, an S-coloring of $[a, b]$ is a mapping $\Delta:[a, b] \rightarrow S$. If $S=\{1, \ldots, r\}$, we say Δ is an r-coloring. The following is the Erdős-Ginzburg-Ziv Theorem, [9] [8].

Proposition 1.1. Any sequence of at least $2 m-1$ elements of \mathbb{Z}_{m} contains a subsequence of m elements whose sum is zero modulo m.

Several theorems of Ramsey-type have been generalized by considering $Z_{m^{-}}$ colorings and zero-sum configurations rather than 2-colorings and monochromatic configurations. Such theorems are called generalizations in the sense of

[^0]EGZ. Best known of these results is the zero-sum-tree theorem [4] [19], and other results concerning graphs and hypergraphs can be found in [10] and [1].

Ramsey-type problems dealing with colorings of the natural numbers can be classified as one-set problems initiated in [7] and further explored in [3] [6] [15] [16] [17] [18] and two-set problems initiated in [5] and further investigated in [13] [20] [21]. We introduce some definitions towards generalizing two-set problems in the sense of EGZ.

Let the set $\biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i}$ denote the pairwise disjoint union of k copies of the set of elements \mathbb{Z}_{m} and let ∞ denote a symbol such that $\infty \notin \biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i}$. Just as the EGZ Theorem generalizes the pigeonhole principle for 2 boxes and m pigeons, the following observation generalizes to an arbitrary number of boxes.

Observation 1.2. Let $m \geq 2$ and $r=2 k(r=2 k+1)$ be positive integers. Any sequence of at least $r(m-1)+1$ elements from $\biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i}\left(\right.$ from $\left.\biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i} \cup\{\infty\}\right)$ contains a subsequence of m elements from some \mathbb{Z}_{m}^{i} whose sum is zero modulo m (or a subsequence of $m \infty$ elements).

For a positive integer r and a system of inequalities L in $2 m$ variables, let $R(L ; r)$ denote the minimal integer N such that every r-coloring of $[1, N]$ contains two sets S_{1} and S_{2}, each being monochromatic and of cardinality m, such that $S_{1} \cup S_{2}$ forms a solution to L. In a similar way, if $r=2 k(r=2 k+1)$ let $R_{z s}(L ; r)$ denote the minimum integer N such that every $\biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i}$-coloring $\left(\biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i} \cup\{\infty\}\right.$-coloring) of $[1, N]$ contains two sets S_{1} and S_{2}, each being zero-sum in \mathbb{Z}_{m}^{i} (or ∞-monochromatic) and of cardinality m, such that $S_{1} \cup S_{2}$ forms a solution to L.

It is easy to see that $R(L ; r) \leq R_{z s}(L ; r)$. If equality holds for a given r, we say the system L admits an EGZ generalization for r colors. Using the definitions above, it was proved in [5] that $R(\bar{L} ; 2)=5 m-3$ and $R(\bar{L} ; 3)=9 m-7$ where

$$
\begin{aligned}
\bar{L}:= & x_{1}<x_{2}<\cdots<x_{m}<y_{1}<y_{2}<\cdots<y_{m} \\
& x_{m}-x_{1} \leq y_{m}-y_{1}
\end{aligned}
$$

Furthermore, they proved \bar{L} admits an EGZ generalization for 2 and 3 colors.
Recently in a sequence of three papers [13], [12], [11] the first author showed $R(\bar{L} ; 4)=12 m-9$ and that \bar{L} admits an EGZ generalization for 4 colors. In achieving this result, a new tool was developed in [11]. We state in Proposition 2.1 a particular case equivalent to a result from [14]. It seems that the determination of $R(\bar{L} ; 5)$ would not be easy or short. At present the authors are not aware of any nontrivial two set EGZ generalizations for 5 colors.

The motivation for this paper is twofold. First, we wished to find a system \mathcal{L} that admits an EGZ generalization for 5 colors. Second, we wanted to test the conjecture below from [2].
Conjecture 1.3 Let k and m be positive integers. If L_{1} and L_{2} are two systems of inequalities in $2 m$ variables such that every positive integer solution of L_{1} is a solution of L_{2}, and if L_{2} admits an $E G Z$ generalization in r colors, then L_{1} admits an $E G Z$ generalization in r colors.

Toward these ends we have chosen to look at the system \mathcal{L} first investigated by the second author in [20] defined by

$$
\begin{aligned}
\mathcal{L}:= & x_{1}<x_{2}<\cdots<x_{m}<y_{1}<y_{2}<\cdots<y_{m} \\
& y_{m}-x_{1} \geq 2\left(x_{m}-x_{1}\right)
\end{aligned}
$$

In Section 2 we state some preliminary definitions and tools, and in Section 3 we determine $R_{z s}(\mathcal{L} ; r)$ for $r \in[2,5]$. In conjunction with the results from [20], these results show \mathcal{L} admits EGZ generalizations for these values of r.

2 Preliminaries

Along with the EGZ theorem we shall need the following result, an easy consequence of the EGZ Theorem and [11] or [14].

Proposition 2.1. If $H=\left(h_{1}, \ldots, h_{k}\right)$ is a sequence of at least $2 m-1$ elements from \mathbb{Z}_{m}, then one of the following holds:

1. any sequence of $\left\lfloor\frac{3}{2} m\right\rfloor$ elements from H contains a subsequence of m elements whose sum is zero modulo m
2. there exists a partition $\left\{A_{i}\right\}_{i=1}^{k-m}$ of $H \backslash\left\{h_{k}\right\}$ with $\left|\sum_{i=1}^{k-m} A_{i}\right|=m$; or
3. there exists $j \in \mathbb{Z}_{m}$ such that $h_{i}=j$ for all but $m-2$ elements $h_{i} \in H$.

An m-set, denoted $Z=\left(z_{1}, \ldots, z_{m}\right)$, is a sequence of m distinct positive integers such that $z_{1}<\cdots<z_{m}$. For a pair of m-sets X and Y, we write $X \prec Y$ if $x_{m}<y_{1}$. For $Z=\left(z_{1}, \ldots, z_{m}\right)$ we also adopt the following notation:
(i) $i n t_{i}(Z)=z_{i}$ for $i \leq m$;
(ii) $\operatorname{first}_{k}(Z)=\left\{z_{1}, \ldots, z_{\min \{k, m\}}\right\}$;
(iii) $\operatorname{first}(Z)=z_{1}$;
(iv) $\operatorname{last}_{k}(Z)=\left\{z_{\max \{1, n-k\}}, \ldots, x_{m}\right\}$; and
(v) $\operatorname{last}(Z)=z_{m}$.

For matters of notation and consistency with [20], we shall denote $R_{z s}(\mathcal{L}, r)$ by $g_{z s}(m, r)$. To facilitate our evaluation of $g_{z s}(m, r)$, we make the following observation.

Observation 2.2. Let positive integer $r=2 k$ (integer $r=2 k+1$) be given, and let $\Delta:[1, n] \rightarrow \biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i}\left(\Delta:[1, n] \rightarrow \biguplus_{i=1}^{k} \mathbb{Z}_{m}^{i} \cup\{\infty\}\right)$ be given. If there exists a zero-sum (zero-sum or monochromatic) m-set $Y \subset[r(m-1)+1, n]$ such that $y_{m} \geq 2 r(m-1)+1$, then the system \mathcal{L} is satisfied.

Proof. By Observation 1.2 there is some zero-sum or monochromatic m-set $X \subset$ $[1, r(m-1)+1]$. If a zero-sum or monochromatic m-set $Y \subset[r(m-1)+1, n]$ exists, then $X \prec Y$. If $y_{m} \geq 2 r(m-1)+1$ we have $y_{m}-x_{1} \geq 2 r(m-1)+1-x_{1} \geq$ $2\left(r(m-1)+1-x_{1}\right) \geq 2\left(x_{m}-x_{1}\right)$.

3 Evaluation of $g_{z s}(m, r)$ for $r \in[2,5]$

The determination of $g_{z s}(m, 2)$ is a simple application of the EGZ Theorem.
Theorem 3.1. If $m \geq 2$ is an integer, then $g_{z s}(m, 2)=5 m-4$.
Proof. That $g_{z s}(m, 2) \geq 5 m-4$ follows from $g(m, 2)=5 m-4$ as found in [20] and the trivial fact that $g_{z s}(m, 2) \geq g(m, 2)$.

By Observation 2.2 it is sufficient to find a zero-sum m-set $Y \subset[2 m, 5 m-4]$ with $y_{m} \geq 4 m-3$. Let $P=[3 m-2,5 m-4]$. Since $|P|=2 m-1$ there exists some zero-sum m-set $Y \subset P$. Since $|P \cap[3 m-2,4 m-4]|=m-1$ it follows that $y_{m} \geq 4 m-3$.

The determination of $g_{z s}(m, 3)$ will require the use of Proposition 2.1 and the following two lemmas, proofs for which can be found in [20].

Lemma 3.2. Let $m \geq 4$ be an integer, and let $\Delta:[1,3 m-4] \rightarrow \mathbb{Z}_{m} \cup\{\infty\}$ be a coloring. If $\left|\Delta^{-1}(\infty)\right| \geq 3 m-\left\lceil\frac{m}{2}\right\rceil-2$, then there exist monochromatic m-sets $X \prec Y$ such that $y_{m}-x_{1} \geq 2\left(x_{m}-x_{1}\right)$.

Lemma 3.3. Let $m \geq 4$ be an integer. If $\Delta:\left[3 m-1,7 m+\left\lfloor\frac{m}{2}\right\rfloor-6\right] \rightarrow[1,3]$ is a given coloring, then either

1. there exists a monochromatic m-set Y such that $y_{m} \geq 6 m-5$ or
2. there exist monochromatic m-sets $W \prec Y$ such that $y_{m}-w_{1} \geq 2\left(w_{m}-w_{1}\right)$.

Theorem 3.4. If $m \geq 4$ is an integer, then $g_{z s}(m, 3)=7 m+\left\lfloor\frac{m}{2}\right\rfloor-6$.

Proof. That $g_{z s}(m, 3) \geq 7 m+\left\lfloor\frac{m}{2}\right\rfloor-6$ follows from $g(m, 3)=7 m+\left\lfloor\frac{m}{2}\right\rfloor-6$ as found in [20] and the trivial fact that $g_{z s}(m, 3) \geq g(m, 3)$.

Next we show that $g_{z s}(m, 3) \leq 7 m+\left\lfloor\frac{m}{2}\right\rfloor-6$. Let $\Delta:\left[1,7 m+\left\lfloor\frac{m}{2}\right\rfloor-6\right] \rightarrow$ $\mathbb{Z}_{m} \cup\{\infty\}$ be an arbitrary coloring. By Observation 2.2 it is sufficient to find a zero-sum or monochromatic m-set $Y \subset\left[3 m-1,7 m+\left\lfloor\frac{m}{2}\right\rfloor-6\right]$ with $y_{m} \geq 6 m-5$.

For convenience we let

$$
P=\Delta^{-1}\left(\mathbb{Z}_{m}\right) \cap\left[3 m-1,7 m+\left\lfloor\frac{m}{2}\right\rfloor-6\right]
$$

To complete the proof we consider three cases based on $k=\mid \Delta^{-1}(\infty) \cap[6 m-$ $\left.5,7 m+\left\lfloor\frac{m}{2}\right\rfloor-6\right\rfloor \mid$.

Case 1. Suppose $k=0$. If $|P| \geq 2 m-1$, one may find a zero-sum m set $Y \subset\left[3 m-1,7 m+\left\lfloor\frac{m}{2}\right\rfloor-6\right]$ with $y_{m} \geq 6 m-5$. Otherwise $|P|<2 m-1$, so that $\left|\Delta^{-1}(\infty) \cap[3 m-1,6 m-6]\right| \geq 3 m-\left\lceil\frac{m}{2}\right\rceil-2$. Shifting $[3 m-1,6 m-6]$ to the interval $[1,3 m-4]$ and applying Lemma 3.2 completes the proof.

Case 2. Suppose $0<k \leq\left\lfloor\frac{m}{2}\right\rfloor$, so that

$$
\left|P \cap\left[6 m-5,7 m+\left\lfloor\frac{m}{2}\right\rfloor-6\right]\right|=m+\left\lfloor\frac{m}{2}\right\rfloor-k \geq m
$$

. If $\left|\Delta^{-1}(\infty) \cap[3 m-1,6 m-6]\right| \geq m-1$, then we are done. Hence we may assume otherwise, so that $\left|\Delta^{-1}\left(\mathbb{Z}_{m}\right) \cap[3 m-1,6 m-6]\right| \geq 2 m-2$. Selecting $P^{\prime} \subset P$ such that $\left|P^{\prime}\right|=2 m-1$ and $\left|P \cap\left[6 m-7,7 m+\left\lfloor\frac{m}{2}\right\rfloor-6\right]\right|=m$ completes the case.

Case 3. Suppose $\left\lfloor\frac{m}{2}\right\rfloor<k<m$. We may assume that $\mid \Delta^{-1}(\infty) \cap[3 m-$ $1,6 m-6] \mid<m-k$, since otherwise the proof is complete by taking $Y=$ last $_{m}\left(\Delta^{-1}(\infty) \cap\left[3 m-1,7 m+\left\lfloor\frac{m}{2}\right\rfloor-6\right]\right.$. Hence, $|P|>2 m-1$. We complete this case by considering three subcases.

Subcase 3a. Suppose any $\left\lfloor\frac{3}{2} m\right\rfloor$ elements of P contain a zero-sum m-set. Since $\left|P \cap\left[6 m-5,7 m+\left\lfloor\frac{m}{2}\right\rfloor-6\right\rfloor\right| \geq\left\lfloor\frac{m}{2}\right\rfloor+1$ we may select $P^{\prime} \subset P$ with $\left\lfloor\frac{3}{2} m\right\rfloor$ elements such that $\left|P^{\prime} \cap\left[6 m-5,7 m+\left\lfloor\frac{m}{2}\right\rfloor-6\right]\right| \geq\left\lfloor\frac{m}{2}\right\rfloor+1$. By assumption P^{\prime} contains a zero-sum m-set Y. Since $\left|P^{\prime} \cap[3 m-1,6 m-6]\right|<m$ it follows that $y_{m} \geq 6 m-5$.

Subcase 3b. Suppose there exists a partition $\left\{A_{i}\right\}_{i=1}^{|P|-m+1}$ of P where $A_{|P|-m+1}=$ $\{\operatorname{last}(P)\}$ with

$$
\left|\sum_{i=1}^{|P|-m} A_{i}\right|=m
$$

Hence there exists a zero-sum m-set Y with $y_{m}=\operatorname{last}(P) \geq 6 m-5$.
Subcase 3c. If neither Subcase 3a nor 3b apply, then by Proposition 2.1 it
follows that $\Delta(p)=j \in \mathbb{Z}_{m}$ for all but at most $m-2$ elements $p \in P$; for convenience, let $H=\{p \in P \mid \Delta(p) \neq j\}$. Induce a coloring $\Delta_{e}:[3 m-1,7 m+$ $\left.\left\lfloor\frac{m}{2}\right\rfloor-6\right] \rightarrow[1,3]$ defined by

$$
\Delta_{e}(x)=\left\{\begin{array}{l}
1, \text { for } x \in P \backslash H \\
2, \text { for } x \in H \\
3, \text { for } \Delta(x)=\infty
\end{array}\right.
$$

Note that any monochromatic m-set W in Δ_{e} is either a zero-sum or monochromatic m-set in Δ since $\left|\Delta^{-1}(2)\right| \leq m-2$. Hence, the result follows by Lemma 3.3.

Case 4. If $k \geq m$ the result follows trivially.
We consider the evaluation of $g_{z s}(m, 4)$. Towards that end we use the following lemma, the proof for which may be found in [20].

Lemma 3.5. Let $m \geq 3$ be an integer. If $\Delta:[4 m-2,10 m-9] \rightarrow[1,4]$ is a given coloring, then either

1. there exists a monochromatic m-set Y such that $y_{m} \geq 8 m-7$ or
2. there exist monochromatic m-sets $W \prec Y$ such that $y_{m}-w_{1} \geq 2\left(w_{m}-w_{1}\right)$.

Theorem 3.6. If $m \geq 3$ is an integer, then $g_{z s}(m, 4)=10 m-9$.
Proof. That $g_{z s}(m, 4) \geq 10 m-9$ follows from $g(m, 4)=10 m-9$ as found in [] and the trivial fact that $g_{z s}(m, 4) \geq g(m, 4)$.

Next we show that $g_{z s}(m, 4) \leq 10 m-9$. Let $\Delta:[1,10 m-9] \rightarrow \mathbb{Z}_{m}^{1} \uplus \mathbb{Z}_{m}^{2}$ be an arbitrary coloring. By Observation 2.2 it is sufficient to find a zero-sum m-set $Y \subset[4 m-2,10 m-9]$ with $y_{m} \geq 8 m-7$.

Since $|[8 m-7,10 m-9]|=2 m-1$, without loss of generality we may assume $\left|\Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right) \cap[8 m-7,10 m-9]\right|=m+k$ where $k \geq 0$. If $\mid \Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right) \cap[4 m-$ $2,8 m-8] \mid \geq m-1-k$, then by the EGZ theorem there exists a zero-sum m-set $Y \subset[4 m-2,10 m-9]$ with $y_{m} \geq 8 m-7$. Hence we may assume

$$
\begin{equation*}
\left|\Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right) \cap[4 m-2,8 m-8]\right| \leq m-2-k \tag{1}
\end{equation*}
$$

Letting $P=\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cap[4 m-2,10 m-9]$, we thus have $|P \cap[4 m-2,8 m-8]| \geq$ $3 m-3+k$. We finish the proof by considering three cases.

Case 1. Suppose any $\left\lfloor\frac{3}{2} m\right\rfloor$ elements of P contain a zero-sum m-set. If such an m-set Y satisfies $y_{m} \geq 8 m-7$ we are done; hence we assume that any $\left\lfloor\frac{3}{2} m\right\rfloor-(m-1-k)=\left\lfloor\frac{m}{2}\right\rfloor+k+1$ elements from $\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cap[4 m-2,8 m-8]$ contain
a zero-sum m-set. Hence, for $W^{\prime}=$ first $\left\lfloor\frac{m}{2}\right\rfloor+k+1 ~\left(\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cap[4 m-2,8 m-8]\right)$ there exists some m-set $W \subset W^{\prime}$ that is zero-sum.

By Equation 1 we have

$$
\begin{equation*}
t=\left|\Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right) \cap\left[4 m-2, w_{m}\right]\right| \leq m-2-k \tag{2}
\end{equation*}
$$

so that $w_{m}-w_{1} \leq\left\lfloor\frac{m}{2}\right\rfloor+k+1+t-1$. Hence, if there exists a zero-sum m-set Y such that $W \prec Y$ and

$$
\begin{equation*}
y_{m} \geq 2\left(w_{m}-w_{1}\right)+w_{1} \geq 2\left(\left\lfloor\frac{m}{2}\right\rfloor+k+t\right)+4 m-2 \tag{3}
\end{equation*}
$$

we shall be done. Taking $Y^{\prime}=$ last $_{\left\lfloor\frac{m}{2}\right\rfloor+k+1}\left(\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cap[4 m-2,8 m-8]\right)$, we see that there exists an m-set $Y \subset Y^{\prime}$ which satisfies these requirements as follows. First, it is quickly verified that there are at least $2\left(\left\lfloor\frac{m}{2}\right\rfloor+k+1\right)$ many elements from $\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right)$ in $[4 m-2,8 m-8]$ for every $m \geq 3$. Hence, we have $W^{\prime} \prec Y^{\prime}$, from which it follows that $W \prec Y$. Second, we note that

$$
y_{m} \geq 8 m-8-\left|Y^{\prime} \backslash Y\right|-\left(\left|\Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right) \cap[4 m-2,8 m-8]\right|-t\right)
$$

By using Equations 1 and 2, one may easily verify that this implies $y_{m} \geq$ $2\left(\left\lfloor\frac{m}{2}\right\rfloor+k+t\right)+4 m-2$, so that Equation 3 is satified.

Case 2. Suppose there exists a partition $\left\{A_{i}\right\}_{i=1}^{|P|-m+1}$ of P where where $A_{|P|-m+1}=\{\operatorname{last}(P)\}$ such that

$$
\left|\sum_{i=1}^{|P|-m+1} A_{i}\right|=m
$$

Hence there exists a zero-sum m-set $Y \subset[4 m-2,10 m-9]$ with $y_{m}=\operatorname{last}(P) \geq$ $8 m-7$.

Case 3.If neither Case 1 nor Case 2 apply, then by Proposition 2.1 it follows that $\Delta(p)=j \in \mathbb{Z}_{m}^{1}$ for all but at most $m-1$ elements $p \in P$; for convenience, define $H=\{p \in P \mid \Delta(p) \neq j\}$. Induce a coloring $\Delta_{e}:[4 m-2,10 m-9] \rightarrow[1,4]$ defined by

$$
\Delta_{e}(x)=\left\{\begin{array}{l}
1, \text { for } x \in P \backslash H \\
2, \text { for } x \in H \\
3, \text { for } x \in \operatorname{first}_{m-1}\left(\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cap[4 m-2,10 m-9]\right) \\
4, \text { for } x=\operatorname{int}_{i}\left(\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cap[4 m-2,10 m-9]\right), m \leq i \leq 2 m-2
\end{array}\right.
$$

Note that any monochromatic m-set X in Δ_{e} is either a zero-sum m-set in Δ since $\left|\Delta^{-1}(j)\right| \leq m-2$ for each $j \neq 1$. Hence, by Lemma 3.5 the proof is
complete.
The evaluation of $g_{z s}(m, 5)$ requires two results from the evaluation of $g(m, 2)$ and $g(m, 5)$ found in [20].

Lemma 3.7. Let $m \geq 2$ be an integer. If $\Delta:[5 m-3,13 m-12] \rightarrow[1,5]$ is a given coloring, then either

1. there exists a monochromatic m-set Y such that $y_{m} \geq 10 m-9$ or
2. there exist monochromatic m-sets $W \prec Y$ such that $y_{m}-w_{1} \geq 2\left(w_{m}-w_{1}\right)$.

Lemma 3.8. Let $m \geq 2$ be an integer. If $\Delta:[5 m-3,10 m-10] \rightarrow[1,2]$ is a coloring with $\left|\Delta^{-1}(c)\right| \leq m-2$ for some $c \in[1,2]$, then there exist monochromatic m-sets $X^{\prime} \prec Y^{\prime}$ such that $y_{m}^{\prime}-x_{1}^{\prime} \geq 2\left(x_{m}^{\prime}-x_{1}^{\prime}\right)$.

Theorem 3.9. If $m \geq 2$ is an integer, then $g_{z s}(m, 5)=13 m-12$.
Proof. That $g_{z s}(m, 5) \geq 13 m-12$ follows from $g(m, 5)=13 m-12$ as found in [20] and the trivial fact that $g_{z s}(m, 5) \geq g(m, 5)$.

We now show $g_{z s}(m, 5) \leq 13 m-12$. Let $\Delta:[1,13 m-12] \rightarrow \mathbb{Z}_{m}^{1} \uplus \mathbb{Z}_{m}^{2} \cup\{\infty\}$ be an arbitrary coloring. By Observation 2.2 it is sufficient to find a zero-sum m-set $Y \subset[5 m-3,13 m-12]$ with $y_{m} \geq 10 m-9$.

The case of $\left|\Delta^{-1}(\infty) \cap[10 m-9,13 m-12]\right| \geq m$ is trivial, so we may assume otherwise. Hence, it follows that $\left|\Delta^{-1}\left(\mathbb{Z}_{m}^{i}\right) \cap[10 m-9,13 m-2]\right| \geq m$ for some $i \in$ $[1,2]$, say $i=2$. Furthermore, if $\left|\Delta^{-1}(\infty) \cap[10 m-9,13 m-12]\right|=0$, then either $\left|\Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right) \cap[10 m-9,13 m-12]\right| \geq 2 m-1$ or $\left|\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cap[10 m-9,13 m-12]\right| \geq m$. In the former case the proof is complete by the EGZ Theorem; in the latter case, we must have $\left|\left(\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cup \Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right)\right) \cap[5 m-3,10 m-10]\right| \leq m-2$. Hence we may induce a coloring $\Delta_{e}:[5 m-3,10 m-10] \rightarrow[1,2]$ defined by

$$
\Delta_{e}(x)=\left\{\begin{array}{l}
1, \text { for } \Delta(x)=\infty \\
2, \text { for } x \in\left(\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cup \Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right)\right) \cap[5 m-3,10 m-10]
\end{array}\right.
$$

Since any monochromatic m-set in Δ_{e} is also monochromatic in Δ, the result follows from by Lemma 3.8. Hence $\left|\Delta^{-1}(\infty) \cap[10 m-9,13 m-12]\right|>0$

Let $k=\left|\left(\Delta^{-1}(\infty) \cup \Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right)\right) \cap[10 m-9,13 m-12]\right|$. Clearly $k<3 m-2$.
We also have

$$
\begin{equation*}
\left|\left(\Delta^{-1}(\infty) \cup \Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right)\right) \cap[5 m-3,10 m-10]\right|<3 m-2-k \tag{4}
\end{equation*}
$$

since otherwise there exists either a zero-sum or monochromatic m-set Y with $y_{m} \in[10 m-9,13 m-12]$. Likewise we may assume that any

$$
\begin{aligned}
2 m-1-\left|\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cap[10 m-9,13 m-12]\right| & =2 m-1-(3 m-2-k) \\
& =k+1-m
\end{aligned}
$$

elements from $\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cap[5 m-3,10 m-10]$ contain a zero-sum m-set.
Let $W^{\prime}=\operatorname{first}_{k+1-m}\left(\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cap[5 m-3,10 m-10]\right)$, so that by assumption there exists a zero-sum m-set $W \subset W^{\prime}$. From Equation 4 we see that

$$
\begin{equation*}
t=\left|\left(\Delta^{-1}(\infty) \cup \Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right)\right) \cap\left[5 m-3, w_{m}\right]\right| \leq 3 m-3-k \tag{5}
\end{equation*}
$$

so that $w_{m}-w_{1} \leq k+1-m+t-1$. Hence, if there exists a zero-sum m-set Y such that $W \prec Y$ and

$$
\begin{equation*}
y_{m} \geq 2(k-m+t)+x_{1} \geq 3 m+2 k+2 t-3 \tag{6}
\end{equation*}
$$

we shall be done. Taking $Y^{\prime}=\operatorname{last}_{k+1-m}\left(\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right) \cap[5 m-3,10 m-10]\right)$, we see that there exists an m-set $Y \subset Y^{\prime}$ which satisfies these requirements as follows. First, using Equation 4 one may verify that there are at least $2(k+1-m)$ many elements from $\Delta^{-1}\left(\mathbb{Z}_{m}^{1}\right)$ in $[5 m-3,10 m-10]$ for every $m \geq 2$. Hence, we have $W^{\prime} \prec Y^{\prime}$, from which it follows that $W \prec Y$. Second, we note that
$y_{m} \geq 10 m-10-\left|Y^{\prime} \backslash Y\right|-\left(\left|\left(\Delta^{-1}(\infty) \cup \Delta^{-1}\left(\mathbb{Z}_{m}^{2}\right)\right) \cap[5 m-3,10 m-10]\right|-t\right)$.
By using Equations 4 and 5 , one may verify that this implies $y_{m} \geq 3 m+2 k+$ $2 t-3$, so that Equation 6 is satified.

Acknowledgment: The authors would like to thank Professor A. Bialostocki for suggesting that we investigate Conjectures 1.3 and for many fruitful discussions.

References

[1] P. Baginsky, A generalization of a Ramsey-type theorem on hypermatchings. Manuscript, 2002.
[2] A. Bialostocki, Private Communication, June 2002.
[3] A. Bialostocki, G. Bialostocki, and D. Schaal, A zero-sum theorem. To appear in J. Combin. Theory, Ser A.
[4] A. Bialostocki, and P. Dierker, On zero sum Ramsey numbers: multiple copies of a graph. J. Graph Theory 18 (1994), 143-151.
[5] A. Bialostocki, P. Erdős and H. Lefmann, Monochromatic and zero-sum sets of nondecreasing diameter. Discrete Math. 137 (1995), 19-34.
[6] A. Bialostocki, R. Sabar, On constrained 2-Partitions of monochromatic sets and generalizations in the sense of Erdős-Ginzburg-Ziv. Manuscript, 2002.
[7] A. Bialostocki, R. Sabar, and D. Schaal, On a zero-sum generalization of a variation of Schur's equation. Preprint (2002).
[8] Y. Caro, Zero-Sum problems-a survey. Discrete Math. 152 (1996) 93-113.
[9] P. Erdős, A. Ginzburg and A. Ziv, Theorem in additive number theory, Bull. Research Council Israel 10 F (1961) 41-43.
[10] Z. Furedi, and D. Kleitman, On zero-trees. J. Graph Theory, 16 (1992), 107-120.
[11] D. Grynkiewicz, On a partition analog of the Cauchy-Davenport Theorem. Preprint.
[12] D. Grynkiewicz, On four colored sets with noncecreasing diameter and the Erdős-Ginzburg-Ziv Theorem. To appear in Journal of Combin. Theory, Ser. A.
[13] D. Grynkiewicz, On four color monochromatic sets with nondecreasing diameter. Manuscript, 2002.
[14] J. E. Olson, An addition theorem for finite abelian groups, Journal of Number Theorey 9 (1977), 63-70.
[15] R. Sabar, A note on a generalization in the sense of Erdős-Ginzburg-Ziv. Manuscript, 2002.
[16] R. Sabar, Monochromatic and zero-sum solutions of a variation of Schur's equation. Manuscript, 2002.
[17] R. Sabar, Partial-Ascending waves and the Erdö-s-Ginzburg-Ziv Theorem. Manuscript, 2002.
[18] R. Sabar, On a family of inequalities and the Erdős-Ginzburg-Ziv Theorem. Manuscript, 2002.
[19] A. Schrijver and P. Seymour, A simpler proof and a generalization of the zero-trees theorem. J. Combin. Theory Ser. A 58 (1991), 301-305.
[20] A. Schultz, On a modification of a problem of Bialostocki-Erdős-Lefmann. Manuscript, 2002.
[21] B. Wong, A generalization of the Bialostocki-Erdös-Lefmann theorem. Manuscript, 2002.

[^0]: *Department of Mathematics, Caltech, Pasadena, CA, 91125
 †Supported by NSF grant DMS 0097317

