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Abstract

The cohomology groups associated to the absolute Galois group of a field E encode a

great deal of information about E, with the groups Hm(GE, µp) being of classical in-

terest. These groups are linked to the reduced Milnor K-groups KmE/pKmE = kmE

by the Bloch-Kato conjecture. Using this conjecture when E/F is a Galois exten-

sion of fields with Gal(E/F ) ' Z/pnZ for some odd prime p, and additionally as-

suming ξp ∈ E, we study the groups Hm(GE, µp) as modules over the group ring

Fp[Gal(E/F )]. When E/F embeds in an extension E ′/F with Gal(E ′/F ) ' Z/pn+1Z,

we are able to give a highly stratified decomposition of Hm(GE, µp). This allows us

to give a decomposition of the cohomology groups of a p-adic extension of fields.

In general we are able to give a coarse decomposition of Hm(GE, µp), showing that

many indecomposable types do not appear in Hm(GE, µp). With an additional as-

sumption about the norm map Nn
n−1 : kmEn → kmEn−1, we strengthen this coarse

decomposition to a highly stratified one.
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Chapter 1

Galois Modules

1.1 Motivation

When a group G acts on an object X, there is typically an induced action of G

on invariants associated to X. This action often provides insight into the objects

parametrized by these invariants. We give a classical example here.

Let E be a field, and denote a separable algebraic closure of E by Ē. We will also

assume a primitive pth root of unity ξp is in E (so that, in particular, char(E) 6= p).

We have an exact sequence of GE = Gal(Ē/E)-modules

1 → µp → Ē× p→ Ē× → 1

which group cohomology converts into a long exact sequence, including the 4-term

sequence

H0(GE, Ē×)
p→ H0(GE, Ē×) → H1(GE, µp) → H1(GE, Ē×).

By definition H0(GE, Ē×) = (Ē×)GE (the submodule of Ē× fixed by GE), which

is E× by Galois theory. Since ξp ∈ E, the action of GE on µp is trivial, and so

H1(GE, µp) = Hom(GE, µp). Using µp ' Z/pZ and the properties of the absolute

Galois group of E, we know that Hom(GE, µp) classifies extensions of L/E that

1



CHAPTER 1. GALOIS MODULES 2

satisfy Gal(L/E) ↪→ Z/pZ. Finally, the cohomological version of Hilbert’s Theorem

90 gives H1(GE, Ē×) = {1}. Hence the exact sequence above becomes

E×/E×p '
{

extensions L of E with

Gal(L/E) ↪→ Z/pZ

}
.

One can chase the connecting homomorphism and find that the extension of E

corresponding to a power class represented by γ ∈ E× is given by E( p
√

γ). This

correspondence is known as Kummer Theory.

To strengthen bijections such as this, one often attempts to put a more refined

structure on either side of the correspondence. The game is to then interpret how

this additional structure on one side is manifested on the other.

For instance, the collection E×/E×p is obviously an Fp-vector space, and in fact

we have a correspondence

{
Fp-subspaces of E×/E×p

}
↔

{
elementary p-abelian

extensions of E

}
,

where an elementary p-abelian extension of E is a Galois field extension L/E with

Gal(L/E) ' ⊕kZ/pZ for some k.

We now ask the following question: suppose that E is itself an extension of a field

F , with Gal(E/F ) = G. Then E×/E×p becomes a module over the group ring Fp[G].

How is this additional structure translated into a property of the corresponding field

extension L? The answer is the following

Proposition 1.1. There is a correspondence

{
Fp[G]-submodules

of E×/E×p

}
↔

{
elementary p-abelian extensions L/E

which are also Galois over F

}
.

In particular cases, one can say more. Toward this end, we restrict ourselves to

the case G = Gal(E/F ) = Z/pnZ and also fix a generator σ ∈ G. We write Ei for

the intermediate field of E/F which is degree pi over F , and write Gi for the group

Gal(Ei/F ).
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Definition 1.2. For γ ∈ E×/E×p, if either NE/F γ ∈ F×p or NE/F γ /∈ E×p, then we

say γ is of trivial index. If NE/F γ ∈ E×p \ F×p, then we say γ is of non-trivial index.

One can show that the triviality (or non-triviality) of a generator for a cyclic sub-

module M is invariant (i.e., if one generator for M is trivial index then all generators

for M are trivial index).

With this (admittedly mysterious) notion of index, we have the following result

of Waterhouse:

Proposition 1.3 ([15]). Suppose that G = Gal(E/F ) = Z/pnZ, and let M be a

cyclic Fp[G]-submodule of E×/E×p. Let L be the extension of E corresponding to M .

Then Gal(L/F ) can be computed knowing only dimFp M and the index of a generator

of M . If a generator for M is trivial index, then Gal(L/F ) = M oG.

Suppose that an Fp[G]-module M can be written as a direct sum of Fp[G]-

submodules, say M = M1⊕M2. If L,L1 and L2 are the corresponding field extensions

of E, then one can show Gal(L/F ) = Gal(L1/F ) × Gal(L2/F ). Since every Fp[G]-

submodule can be written as a direct sum of cyclic submodules (Theorem 2.9), the

previous proposition implies we can determine the Galois group of a field extension

corresponding to an arbitrary Fp[G]-submodule M .

With this result in mind, it is natural to ask for the Fp[G]-structure of E×/E×p.

One would especially like this decomposition to keep track of the index of elements

in E×/E×p, or possibly even contain in some obvious way a maximal trivial index

submodule (that is, a submodule T whose elements are all trivial index, and so that

any other module S properly containing T contains an element of non-trivial index).

We shall describe such a result in the next section.

1.2 H1(GE, µp) as a Galois Module

The investigation of the Fp[G]-module structure of E×/E×p was started by Faddeev

in [3], where F was assumed to be a local field of finite degree over Qp. More recently

Mináč and Swallow calculated in [11] the module structure whenever G = Z/pZ (i.e.,

when n = 1). The question was resolved for general p-power cyclic extensions E/F
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by Mináč, Swallow and the author in [10]. Even in this general case, E×/E×p has a

highly stratified module structure, with all but one summand ‘free’ (i.e., isomorphic

to Fp[Gal(Ei/F )] for some i).

We state the decomposition in the case p > 2 and ξp ∈ E, although analogous

results without these restrictions exist.

Theorem 1.4 ([10, Theorem 2]). Let E/F be an extension of fields such that

Gal(E/F )simeqZ/pnZ, where p > 2 is prime and ξp ∈ E. Then as an Fp[G]-module

E×/E×p ' X ⊕
n⊕

i=0

Yi,

where

• X is cyclic of dimension pi(E/F ) + 1 for some i(E/F ) ∈ {−∞, 0, · · · , n − 1},
and

• for each i, Yi ⊆ Ei/E
×p is a direct sum of free Fp[Gal(Ei/F )]-modules.

Moreover, the submodule (σ − 1)X ⊕⊕n
i=0 Yi is a maximal trivial index submodule.

Given Kummer theory and Waterhouse’s result, it is not surprising that this theo-

rem contains a great deal of information about certain embedding problems involving

E/F . For instance, the isomorphism class of the exceptional summand (i.e., X)

is determined by an invariant i(E/F ) ∈ {−∞, 0, · · · , n − 1} which can be defined

as follows: if E/F embeds in a cyclic extension E ′/F which is Galois with group

Z/pn+1Z, then i(E/F ) = −∞; otherwise, if j is chosen as small as possible so that

E/Ej embeds in a cyclic extension E ′/Ej which is Galois with group Z/pn−j+1Z, then

i(E/F ) = j − 1. Since ξp ∈ E we know that E embeds in a cyclic extension (here

we’re using the assumption that p > 2), and hence i(E/F ) ≤ n − 1 as stated. This

characterization of i(E/F ) (and several others) are found in [10].

There are other connections with embedding results. Note that the last statement

of Theorem 1.4 gives

Corollary 1.5. A maximal trivial index submodule is a direct sum of ‘free’ submodules

(i.e., submodules free over appropriate quotients Fp[Gi] of Fp[G]).
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This result is used in the joint work of Mináč, Swallow and the author [8] as follows.

Suppose that there exists a trivial-index, cyclic submodule M which is dimension

pi + 1. Then the corollary above gives the existence of some trivial-index submodule

N of dimension pi+1. In terms of Galois groups à la Waterhouse, this translates

to an automatic realization result: if there exists some field extension L of E with

Gal(L/F ) ' Fp[G]/(σ − 1)pi+1 o Gal(E/F ) then there exists a field extension L′ of

E with

Gal(L′/E) ' Fp[G]/(σ − 1)pi+1 oGal(E/F ) ' Fp[Gi+1]oGal(E/F ).

One could also use this result to give specific obstructions to certain embedding

problems, and just such an analysis was carried out in the case n = 1 by Mináč and

Swallow [12].

1.3 Generalizations

One can attempt to generalize the results above in a number of ways. Again fixing

an extension E/F with Gal(E/F ) = Z/pnZ, one natural problem is to determine the

Z/psZ[G]-module structure of E×/E×ps
. This question adds a new challenge because

the isomorphism classes of indecomposable Z/psZ[G]-modules are more complex than

those for Fp[G]-modules: the former is of infinite representation type, while the lat-

ter is of finite representation type. In characteristic p one finds that all summands

of E×/E×ps
are ‘free,’ as shown by Mináč, Swallow and the author [9]. Prelimi-

nary work of these authors suggests that there will be more exotic summands in the

decomposition of E×/E×ps
when char(E) 6= p.

One might also attempt to allow for more general Galois groups, perhaps moving

away from cyclic groups of the form Z/pnZ to elementary p-abelian groups or even

abelian p-groups. The group rings Fp[⊕kZ/pZ] are of infinite representation type when

k > 1, and so studying these modules will be difficult. This project was initiated by

Chemotti, Mináč and Swallow in [2], where they study the Galois module structure

of E×/E×2 when E/F is Galois with Gal(E/F ) = Z/2Z ⊕ Z/2Z. They show that
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the module structure of E×/E×2 contains only finitely many isomorphism classes of

indecomposables.

Another direction of generalization was pursued in [7] by Lemire, Mináč, and

Swallow, where they used the Bloch-Kato conjecture and recent work of Voevodsky

to determine the module structure of Hm(GE, µp) under the assumptions ξp ∈ E and

Gal(E/F ) = Z/pZ. In this case the only indecomposable types which appear in a

decomposition are cyclic of dimension either 1, 2 or p, though — contrary to the

results of [11] — the decomposition can have more than one ‘exceptional’ summand.

These results have been used to study Sylow-p subgroups of absolute Galois groups

of fields (see, for instance, [1] and [6]).

This thesis generalizes the investigation of H1(GE, µp) by studying the Galois

module structure of Hm(GE, µp) for extensions E/F with ξp ∈ E and whose Galois

group is a cyclic p-group, where p is an odd prime. Our approach mirrors that in

[7]: we use the Bloch-Kato conjecture and several results of Voevodsky to inductively

study the groups Hm(GE, µp). The result requires studying maps induced by inclusion

and norm maps for intermediate extensions within E/F , as well as understanding the

subgroups of norms from these intermediate fields.

In Chapter 2 we give some basic facts about Fp[G]-modules, including a full de-

scription of all indecomposable Fp[G]-modules as well as a result which guarantees

a unique decomposition of any Fp[G]-module W into indecomposables. The basic

module-theoretic language for the rest of the thesis is established in this chapter.

In Chapter 3 we begin the investigation of the groups Hm(GE, µp) by introducing

Milnor K-theory and its connection to our cohomology groups. Our main results

are developed for the so-called reduced Milnor K-groups of E, which themselves

are conjecturally isomorphic to our Galois cohomology groups via the Bloch-Kato

conjecture. Hence after we develop our results for the reduced Milnor K-groups of

E, we translate them back to the language of group cohomology for the reader’s

convenience. We state an exact sequence of Voevodsky that is the engine that drives

our results. We also develop machinery for understanding Hm(GE, µp) in our context,
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particularly for determining those elements in

im
(
Nn

n−1 : kmEn → kmEn−1

) ∩ ker
(
ιnn−1 : kmEn−1 → kmEn

)
,

and also for computing

kmEG
n ∩ ιn0 (N j

0 (kmEj))

for 0 ≤ j ≤ n − 1. The conclusion of Chapter 3 gives the structure of Hm(GE, µp)

when i(E/F ) = −∞.

In Chapter 4 we use results from Chapter 3 to give the Galois module structure

of the cohomology groups of a p-adic extension containing appropriate roots of unity.

Again, results are developed in the language of K-theory and then translated back

to Galois cohomology.

In the final chapter, we use the machinery developed in Chapter 3 and an addi-

tional assumption on the properties of the norm map Nn
n−1 : kmEn → kmEn−1 to give

a decomposition of Hm(GE, µp) when i(E/F ) ≥ 0; as always, it is first developed in

the language of K-groups and then translated to Galois Cohomology via Bloch-Kato.

In the case i(E/F ) = 0 we show that this assumption on Nn
n−1 holds.



Chapter 2

Properties of Fp[Z/pnZ]-modules

In order to prepare for the results which follow, we first remind the reader of some

Fp[Z/pnZ]-module properties. Throughout this section we write G = Z/pnZ and

denote by σ a fixed generator of G. Although we restrict ourselves to the case p > 2

in the sequel, we shall allow p = 2 in this section. We note that σ − 1 generates a

maximal ideal of the commutative ring Fp[G], since the quotient of Fp[G] by this ideal

is the field Fp. Soon we will see that it is the only maximal ideal.

We start with the following polynomial identity, a result which will be important

not only in showing that Fp[G] is a local ring, but also in understanding the norm

operators which later play a key role in our results.

Lemma 2.1. As elements of Fp[G],

pn−1∑
i=0

σi = (σ − 1)pn−1.

Proof. The coefficient of σk in (σ − 1)pn−1 is (−1)pn−1−k

(
pn − 1

k

)
. When k = 0

this coefficient is clearly 1 mod p (in fact, if p 6= 2, it actually is 1). Now when 0 < k

we have (
pn − 1

k − 1

)
+

(
pn − 1

k

)
=

(
pn

k

)
,

8
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where the latter binomial coefficient is congruent to 0 modulo p. Hence

(
pn − 1

k

)
≡ −

(
pn − 1

k − 1

)
mod p,

and by induction we have that

(
pn − 1

k

)
is congruent to (−1)k. Hence we conclude

(−1)pn−1−k

(
pm − 1

k

)
≡ 1 mod p

as desired. (Notice that this argument works when p = 2 since 1 ≡ −1.)

The element
∑pn−1

i=0 σi defines the norm operator for the field extension E/F ,

and our theorem says that one can calculate the norm (modulo p) with the operator

(σ − 1)pn−1. The following corollary records a generalization of this result to an

intermediate extension Ei/Ej. Note that we abuse notation by writing σpj
for a

generator of Gal(Ei/Ej) instead of the more traditional σ̄pj
(this particular abuse of

notation will happen frequently).

Corollary 2.2. As elements of Fp[Gal(Ei/Ej)],

pi−j−1∑

k=0

(
σpj

)k

= (σpj − 1)pi−j−1 = (σ − 1)pi−pj

.

Proof. The first equivalence holds by the previous lemma (after replacing G by

Gal(Ei/Ej)). For the second equivalence, notice that the coefficient of σk in (σ− 1)p

is (−1)p−k

(
p

k

)
, which is zero modulo p whenever k 6= 0 or p. Hence we have

(σ − 1)p = σp − 1 in Fp[G]. Repeating this argument j times gives the desired

equivalence.

Corollary 2.3. The ideal

ann((σ − 1)pn−1) := {r ∈ Fp[G] : (σ − 1)pn−1r = 0}
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is the ideal generated by σ − 1.

Proof. Since (σ−1)pn−1 6= 0 from the previous lemma, we know that the annihilating

ideal is not all of Fp[G]. However we can see that

(σ − 1)pn

= (σ − 1)pn−1(σ − 1) =
(∑

σi
)

(σ − 1) = 0, (2.4)

and hence σ − 1 is in the annihilating ideal. Since σ − 1 generates a maximal ideal,

we have the desired result.

Lemma 2.5. Fp[G] is a local ring with maximal ideal (σ − 1).

Proof. Suppose that I is an ideal and σ − 1 /∈ I. Then we have 1 = (σ − 1)f + ig

for some f, g ∈ Fp[G] and i ∈ I. Using the Fp-basis {1, σ − 1, · · · , (σ − 1)pn−1} of

Fp[G], we write g =
∑pn−1

j=0 cj(σ − 1)j. We also note that c0 6= 0, since otherwise 1 is

an element of the ideal generated by σ − 1. Multiplying this equation by (σ − 1)pn−1

and recalling Equation 2.4, we have

(σ − 1)pn−1 = c0(σ − 1)pn−1i,

and hence by the previous corollary we have i = c−1
0 + (σ − 1)h for some h ∈ Fp[G].

Since the non-units of Fp[G] form an ideal, the element i = c−1
0 + (σ − 1)h ∈ I must

be a unit in Fp[G]. Therefore I = Fp[G], contrary to our hypothesis.

Our next goal is to determine the isomorphism classes of indecomposable Fp[G]-

modules. As a start we show the following

Lemma 2.6. For 0 ≤ i ≤ pn, a cyclic submodule M of dimension i over Fp is

indecomposable and isomorphic to the Fp[G]-module Ai := Fp[G]/(σ − 1)i.

Proof. If M is a cyclic submodule generated by m, then we have a short exact sequence

of Fp[G]-modules

0 → ann(m) → Fp[G] → M → 0.

Since Fp[G] is local with maximal ideal (σ − 1), any ideal of Fp[G] is isomorphic to

(σ − 1)k for some 0 ≤ k ≤ pn − 1. In particular ann(m) = (σ − 1)k for some k.
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It is easy to verify dimFp

(
Fp[G]/(σ − 1)k

)
= k, and so we have k = i since M is i

dimensional. Hence M ' Ai as an Fp[G]-module by the map

(
pn−1∑
j=0

aj(σ − 1)j

)
m 7→

i−1∑
j=0

aj(σ̄ − 1)j.

To see that this module is indecomposable, suppose we could write M = M1⊕M2,

where both M1 and M2 are Fp[G]-submodules of M . Let m = m1 ⊕ m2. Since

(σ − 1)i−1m 6= 0, without loss of generality we may assume (σ − 1)i−1m1 6= 0. Hence

M1 is a submodule of M with dimFp M ≤ dimFp〈m1〉 ≤ dimFp M1 < ∞. Since

dimFp M1 + dimFp M2 = dimFp M we have dimFp(M2) = 0, and hence M2 = {0}.

It will be convenient for us to have a simple notation for this defining quality of

a cyclic submodule.

Definition 2.7. If M is a cyclic Fp[G]-module generated by an element m, we write

`G(m) := dimFp M.

By the previous result, this is the same as

`G(m) = min{i ≥ 1 : (σ − 1)im = 0}.

When there is no risk of confusion we will frequently abbreviate this notation by

writing `(γ) for `G(γ). Since (σ − 1)pn
= 0 in Fp[G] (Equation (2.4)), we have

`G(m) ≤ pn = |G| for any m.

Since we are ultimately interested in giving decompositions of Fp[G]-modules, we

show below that every Fp[G]-module W can be written as a direct sum of indecom-

posable Fp[G]-modules. Then we show that all expressions of W as a direct sum

of indecomposables are equivalent, in the sense that if ⊕α∈AWα and ⊕β∈BWβ are

two decompositions of W into indecomposable submodules, then there is a bijection

j : A → B and, for each α ∈ A, an Fp[G]-isomorphism Wα ' Wj(α). There is certainly
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machinery already in the literature that gives us this result, but in our context the

result is fairly elementary and illuminates a technique we use frequently in the sequel.

First is a result that allows us to easily check when two submodules have trivial

intersection.

Lemma 2.8 (Exclusion Lemma). Suppose U, V are Fp[G]-submodules of an Fp[G]-

module W. Then U ∩ V 6= {0} if and only if UG ∩ V G 6= {0}.

Proof. That UG ∩V G 6= {0} implies U ∩V 6= {0} is trivial, so we show that U ∩V 6=
{0} implies UG ∩ V G 6= {0}. Suppose that w ∈ U ∩ V for some w 6= 0. Since

ann(w) = (σ−1)`(w), the element (σ−1)`(w)−1w is nontrivial and fixed by G. Since U

and V are both Fp[G]-submodules, we therefore have (σ − 1)`(w)−1w ∈ UG ∩ V G.

Theorem 2.9. If W is an Fp[G]-module, then there exists an Fp[G]-isomorphism

W '
pn⊕
i=1

⊕di
Ai,

where di is the codimension of im ((σ − 1)i) ∩WG within im ((σ − 1)i−1) ∩WG.

Proof. For 1 ≤ i ≤ pn we define Vi as the Fp-subspace of elements in WG which are

in the image of (σ − 1)i−1, and for each i we choose an Fp-basis Ii for a complement

to Vi+1 in Vi. Hence di = |Ii| is the codimension of im ((σ − 1)i) ∩ WG within

im ((σ − 1)i−1) ∩WG. Our construction also implies that 〈Ii, Ii+1, · · · , Ipn〉 = Vi.

For each x ∈ Ii, let wx ∈ W be chosen so that (σ − 1)i−1wx = x. Since `(wx) = i

we have 〈wx〉Fp[G] ' Ai as an Fp[G]-module. We define Wi =
∑

x∈Ii
〈wx〉Fp[G]; to show

that Wi ' ⊕di
Ai, it will be enough to show that

∑
x∈Ii

〈wx〉Fp[G] = ⊕x∈Ii
〈wx〉Fp[G].

Now the Exclusion Lemma 2.8 implies that a non-trivial dependence among 〈wx〉Fp[G]

must appear as a non-trivial dependence among 〈wx〉GFp[G] = 〈x〉Fp . But the x are

chosen to be independent, and so Wi = ⊕x∈Ii
〈wx〉Fp[G] as desired.

We now show that
∑

i Wi = ⊕iWi. Again, any dependence among the modules

must appear as a dependence among the various WG
i by the Exclusion Lemma 2.8.

Recall that

WG
i = ⊕x∈Ii

〈wx〉GFp[G] = ⊕x∈Ii
〈x〉Fp = 〈Ii〉,
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and that 〈Ii〉 is selected as a complement to Vi+1 = 〈Ii+1, · · · , Ipn〉 = 〈WG
i+1, · · · ,WG

pn〉
in Vi. Hence WG

i has trivial intersection with 〈WG
i+1, · · · ,WG

pn〉, and so
∑

j≥i Wj =

⊕j≥iWj. Running this argument inductively gives
∑

i Wi = ⊕iWi.

Finally we argue that ⊕pn

i=1Wi = W . By construction we have {I1, · · · , Ipn} is

an Fp-basis for WG = V1. Since WG
i = 〈Ii〉 we have V1 = ⊕pn

i=1W
G
i , and hence all

elements of length 1 are contained in ⊕pn

i=1Wi.

Suppose, then, that ⊕Wi contains all vectors of length at most `−1, and let w be

an element of length `. Then we have (σ − 1)`−1w ∈ V`, and hence by construction

(σ − 1)`−1w ∈ ⊕i≥`W
G
i . We may therefore write

(σ − 1)`−1w =
∑

i≥`

∑
x∈Ii

cxx =
∑

i≥`

∑
x∈Ii

cx(σ − 1)i−1wx.

Hence

(σ − 1)`−1

(
w −

∑

i≥`

∑
x∈Ii

cx(σ − 1)i−`wx

)
= 0,

and so w − ∑
i

∑
x cx(σ − 1)i−`wx is an element of length at most ` − 1. Hence it

is contained in ⊕Wi by induction. Since each wx ∈ ⊕Wi, we also have w ∈ ⊕Wi as

desired.

Corollary 2.10. Every indecomposable Fp[G]-module is cyclic.

Proof. Suppose W is not cyclic. We argue that

dimFp WG > 1. (2.11)

Once we have this inequality the previous theorem implies W is decomposable.

First, choose an element w1 of maximal length in W . Since W is not cyclic we

have 〈w1〉Fp[G] 6= W . Hence choose an element w2 /∈ 〈w1〉Fp[G] which has minimal

length among elements with this property. We claim that 〈w1〉GFp[G] ∩ 〈w2〉GFp[G] = {0},
from which our desired inequality (2.11) follows.

If 〈w1〉GFp[G] ∩ 〈w2〉GFp[G] 6= {0} then for some c ∈ F×p we have (σ − 1)`(w1)−1w1 =

c(σ − 1)`(w2)−1w2. This implies that (σ − 1)`(w2)−1
(
cw2 − (σ − 1)`(w1)−`(w2)w1

)
= 0.
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But then cw2−(σ−1)`(w1)−`(w2)w1 has length at most `(w2)−1 and is outside 〈w1〉Fp[G],

contradicting the minimality of w2.

Corollary 2.12. Let ⊕α∈AWα be a decomposition of W into indecomposable Fp[G]-

modules. Then A is a disjoint union of subsets A1,A2, · · · ,Apn where

• |Ai| is the codimension of im ((σ − 1)i)∩WG within im ((σ − 1)i−1)∩WG, and

• for each α ∈ Ai there is an Fp[G]-isomorphism Ai ' Wα.

Proof. The previous corollary gives that any indecomposable Fp[G]-module is iso-

morphic to Ai := Fp[G]/(σ − 1)i for some 1 ≤ i ≤ pn. Hence we define Ai to be the

collection of α ∈ A so that Wα ' Ai as Fp[G]-modules. Our goal is therefore to show

that |Ai| is the codimension of Vi+1 in Vi.

Our result will follow if we can show

Vi = ⊕j≥i ⊕α∈Aj
WG

α ,

since then we have dimFp Vi =
∑

j≥i |Aj| for any i. For the “⊇” containment, note

that AG
j ∈ im ((σ − 1)j−1) ⊆ im ((σ − 1)i−1) for any j ≥ i, so ⊕j≥i ⊕α∈Aj

WG
α ⊆ Vi.

For the reverse containment, note that (σ − 1)i−1 annihilates every module Ak for

k < i. Hence im ((σ − 1)i−1)∩⊕k<i⊕α∈Ak
Wα = {0}. The independence of the various

Wα allows us to conclude Vi = ⊕j≥i ⊕α∈Aj
WG

α as desired.



Chapter 3

Galois Cohomology for Z/pnZ
Extensions

In this chapter we again consider a cyclic extension of fields E/F with Galois group

Z/pnZ, where p > 2 is a prime. We further require ξp ∈ E. Since Gal(E/F ) = Z/pnZ,

this is equivalent to the assumption that ξp ∈ F . Via the Bloch-Kato Conjecture,

we shall investigate the structure of the cohomology groups Hm(GE,Fp) as modules

over Fp[Gal(E/F )]. In particular, results are stated as theorems about the reduced

Milnor K-groups of E, then translated back to statements about Galois Cohomology

via Bloch-Kato.

3.1 Notation and Preliminary Results

We shall use the following notation. The intermediate field of E/F of degree pi over

F is written Ei, and hence we shall frequently write En for E and E0 for F . The

group Gal(E/F ) will be written G, and we write Gi for the groups Gal(Ei/F ). We

shall write Hi for the subgroup of G whose quotient is Gi, and so Hi = Gal(E/Ei).

As in Chapter 2 we write σ for a generator of G, though we will often abuse notation

and also write σ as a generator of Gi.

Kummer Theory tells us that Ei+1 = Ei( p
√

ai) for some ai ∈ E×
i , and keeping

careful control of when these elements appear as norms in E×/E×p was important in

15
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determining Theorem 1.4. It was also important that these elements themselves be

compatible with the norm operators, and so it was shown ([10, Proposition 1]) that

one may choose these elements with the following norm compatibility property:

NEi/Ej
ai = aj for any i ≥ j. (3.1)

It is also shown that, up to pth powers in E×
i , the ai are fixed by the action of Gi:

aσ
i = aik

p
i (3.2)

for some ki ∈ E×
i . Hence for i > j, each ai is an element of minimal length in E×

i

whose norm to Ej is aj.

We make a few comments regarding the submodule X from Theorem 1.4 (the

so-called ‘exceptional’ submodule). A generator for this submodule is the power class

of an element χ ∈ E× which attempts to play the role of what we might call an, in

the sense that Nn
n−1(χ) = an−1 à la the norm compatibility condition (3.1), and that

the power class of χ has minimal length among all elements whose norm to En−1 is

an−1. The length of the power class of χ is precisely pi(E/F ) + 1, where we recall that

i(E/F ) has an explicit interpretation in terms of embedding properties.

It is useful to note that for an intermediate extension Ei/F with i < n, the power

class of ai in E×
i /E×p

i plays the role of χ for the extension Ei/F : we have N i
i−1(ai) =

ai−1 from our norm compatibility condition (3.1), and from Equation (3.2) we see

that the length of the power class of ai is 1 = pi(Ei/F ) +1 = p−∞+1 as expected. This

means that the submodule 〈aiE
×p
i 〉Fp can be chosen to be the exceptional summand

of E×
i /E×p

i in Theorem 1.4. These observations will be important both in running

the induction we use to prove the main results and in determining the structure of

Galois cohomology for p-adic extensions in the next chapter.
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3.2 Milnor k-theory and Galois Cohomology

For a field L, the m-th Milnor K-group of L is defined as

KmL :=

(
m⊗

i=1

L×
)

/Im

where Im is the subgroup of ⊗m
i=1L

× generated by elements a1 ⊗ · · · ⊗ am with

ai + aj = 1 for some i 6= j. We denote the equivalence class of a1 ⊗ · · · ⊗ am in

KmL by {a1, · · · , am} and use additive notation: {a1a
′
1, a2, · · · , am} = {a1, · · · , am}+

{a′1, · · · , am}. It is not difficult to see that the map KmL×Km′L → Km+m′L defined

by

({a1, · · · , am}, {b1, · · · , bm′}) 7→ {a1, · · · , am, b1, · · · , bm′}

puts the structure of a graded ring on the Milnor K-groups. When G acts on elements

of L× we have an induced action on KmL by τ{a1, · · · , am} = {τ(a1), · · · , τ(am)};
notice we write the action additively. The exception to this is the natural Z-action

which acts by n{a1, · · · , am} = {an
1 , a2, · · · , am}(= {a1, · · · , an

i , · · · , am}) by virtue of

the tensor product.

Although Milnor K-groups encode a great deal of information about a field, we

shall be interested only in the quotients of these groups by the ideal (p). These

so-called reduced Milnor K-groups are written kmL := KmL/pKmL, which we call

k-groups. Notice that when m = 1 we have k1L = L×/L×p, and hence

k1L
∼→ H1(GL, µp).

One can then attempt to extend this map to higher k- and cohomology groups via

the cup product in cohomology:

{a1, · · · , am} 7→ (a1) ∪ · · · ∪ (am) ∈ Hm(GL, µ⊗m
p ).

This does produce a morphism kmL → Hm(GL, µ⊗m
p ) because cohomology satisfies

the relation (ai) ∪ (aj) = 0 whenever ai + aj = 1 (see, for instance, [13, Chp. VI]). In
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our context (i.e., when L = Ei) it is important to note that this morphism respects

the action of Gi on both groups.

That this induced map is an equivariant isomorphism for m > 1 is the Bloch-

Kato conjecture. In certain cases the Bloch-Kato conjecture has already been verified.

Merkurev and Suslin showed the conjecture is true for m = 2 and all p; Merkurev and

Suslin, and independently Rost, have verified the conjecture in the case p = 2 and

m = 3, 4. A huge step forward was Voevodsky’s verification of the result for p = 2 and

m arbitrary in 1996. Voevodsky, Suslin, and Rost have worked to extend Voevodsky’s

attack on p = 2 to settle the Bloch-Kato conjecture when p is an arbitrary prime,

and at writing it seems that the final details for a proof of the conjecture have been

presented by Chuck Weibel in a seminar at Rutgers (in the fall of 2006).

We assume the Bloch-Kato conjecture for all m and p in developing our results,

and we state all results in the language of reduced Milnor K-groups. We translate

these results back to Galois Cohomology for the reader’s convenience.

In order to proceed we shall need properties of two classes of maps on k-groups

associated to an extension of fields L/K. The first is the collection of maps ιL/K :

kmK → kmL induced by the inclusion K ↪→ L, and the second is the collection of

norm homomorphisms NL/K : kmL → kmK. In our context (where we are interested

in the extensions Ei/Ej for various i ≥ j), we shall write ιEi/Ej
as ιij, and we shall

write NEi/Ej
as N i

j . The history of the norm map is particularly interesting, and the

reader is encouraged to consult [4, Chp. 9].

In addition to the exact sequence below, we shall use the fact that the morphism

ιij ◦N i
j is given by the polynomial function

∑pi−j−1
k=0

(
σpj

)k

, which is equivalent (over

Fp[G]) to (σ − 1)pi−pj
= (σpj − 1)pi−j−1 by Lemma 2.2.

We shall also use the so-called Projection formula, which allows one to compute the

norm NL/K of an element {a1, · · · , am} in terms of the ‘usual’ norm operator NL/K :

L → K when all but one of the terms in the symbol is in the field K. Specifically,

for an extension L/K of fields, and for elements l ∈ L and k1, · · · , km−1 ∈ K, the

Projection Formula [5, p. 81] is

NL/K{l, ιL/K(k1), · · · , ιL/K(km−1)} = {NL/K(l), k1, · · · , km−1}. (3.3)
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We now give an exact sequence that drives much of the machinery we use. In his

work on the Bloch-Kato conjecture [14], Voevodsky proves that for a field F with

ξp ∈ F and which has no extensions of degree prime to p, and for any a ∈ F× \ F×p,

there is an exact sequence

km−1F ( p
√

a)
NF ( p√a)/F // km−1F

{a}·− // kmF
ιF ( p√a)/F // kmF ( p

√
a) .

In [7] Lemire, Mináč and Swallow show that the assumption on extensions of degree

prime to p can be dropped. Hence for our ai ∈ E×
i (which satisfy Ei+1 = Ei( p

√
ai))

we have the exact sequences

km−1Ei+1

N i+1
i // km−1Ei

{ai}·−// kmEi

ιi+1
i // kmEi+1 . (3.4)

We cannot overstate the important role these exact sequences play in the development

of our results.

3.3 Main Results

In the case of cyclic field extensions E/F of degree p, the structure of the module kmE

was determined in [7], where it was shown that the kmE consists of indecomposables

of dimensions 1 and p if i(E/F ) = −∞, or dimensions 1, 2 and p if i(E/F ) = 0.

In trying to extend this result to cyclic, prime-power extensions, we remark that the

principle difficulty is in using the ‘coarse’ knowledge of the action of Gal(En/En−1) to

determine the ‘refined’ action of Gal(En/E0), particularly with respect to the norm

map Nn
n−1. Here and elsewhere we say that the action of Gal(En/En−1) is coarse

because it is given by the action of (σpn−1 − 1) = (σ − 1)pn−1
, whereas the action of

Gal(E/F ) is more refined because it is given by the action of (σ − 1).

One can still formulate results with only knowledge of this coarse action. As an

example, the following theorem concerning the structure of kmE as an Fp[G]-module

is developed using only an understanding of the operator (σpn−1 − 1) from [7], and so

we call it a coarse decomposition. It will be important in running our induction.
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Theorem 3.5. Let E/F be an extension of fields with Gal(E/F ) = Z/pnZ, where

ξp ∈ E and p > 2. Let χ ∈ E× be an element selected according to the paragraph

following Equation (3.2). Then as an Fp[G]-module, kmE = U ⊕ V , where U is a

direct sum of cyclic Fp[G]-submodules of dimension at most 2pn−1 and V is a a free

Fp[G]-submodule.

Remark 3.6. Under the assumptions above and using the Bloch-Kato conjecture, this

result says that

Hm(GE, µp) = U ⊕ V

as an Fp[G]-module, with U and V having the given module structures.

This theorem implies that as either p or n tends to infinity, the collection of iso-

morphism classes of indecomposable Fp[G]-modules which can appear as summands

in kmEn has zero density within the collection of all isomorphism classes of inde-

composable Fp[G]-modules. It does not, however, provide much information on the

submodule U , as it does not use the additional structure of E as a Z/pnZ extension.

A remedy for this situation is available when i(E/F ) = −∞, as the following

theorem shows. It is the main result of the chapter.

Theorem 3.7. Let E/F be an extension of fields with Gal(E/F ) = Z/pnZ, where

ξp ∈ E and p > 2 is a prime. Assume additionally that i(E/F ) = −∞. Let χ ∈ E×

be an element selected according to the paragraph following Equation (3.2). Then as

Fp[G]-modules,

kmE ' X0 ⊕X1 ⊕ · · · ⊕Xn−1 ⊕ Y0 ⊕ · · · ⊕ Yn,

where

(i) each Xi and Yi is a direct sum of cyclic submodules of dimension pi, with Yi ⊆
ιni (kmEi) and each Xi ⊆ {χ} · ιni (km−1Ei); and

(ii) for every i ≥ 0, ιn0 (N i
0(kmEi)) = (Yi ⊕ · · · ⊕ Yn)G.

Remark 3.8. Using the Bloch-Kato conjecture, this results says that

Hm(GE, µp) = X1 ⊕ · · · ⊕Xn−1 ⊕ Y0 ⊕ · · · ⊕ Yn
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where the Xi and Yi have the stated Fp[G]-module structure. In this language condi-

tion (i) says Xi ⊆ (χ)∪resn
i (Hm−1(GEi

, µp)) and (ii) says resn
0 (cori

0 (Hm(GEi
, µp))) =

(Yi⊕· · ·⊕Yn)G. Here resi
j is the map induced on cohomology by the inclusion Ej ↪→ Ei,

and cori
j is induced by the norm map NEi/Ej

: Ej → Ei.

This result is important for a number of reasons. First, since i(En/E0) = −∞
whenever En/E0 embeds in a cyclic extension En+1/E0 with group Z/pn+1Z, this

result will give us the module structure of kmEi for any i ≤ n − 1. If an inductive

technique is to be used to resolve the general case (i.e., without regard of i(E/F )),

this will certainly be important. Second, this result will allow us to give the module

structure of kmE when E/F is an extension with group Zp, again because any finite

intermediate extension En/F will have i(En/F ) = −∞.

This theorem has many of the features of Theorem 1.4. First, it restricts the

possible isomorphism types that appear in the structure of kmE. It also shows the

important role norm subgroups play in the decomposition of these modules. In the

case i(E/F ) = −∞, the main difference in this decomposition as compared to the

structure of E×/E×p from Theorem 1.4 is that that there are more ‘exceptional sum-

mands’ when considering higher cohomology. In this case, the exceptional summands

are the submodules Xi.

We shall prove our result by a multiple induction, assuming the structure of km′Ei

is known for all m′ < m and i < n. We shall also need the ‘coarse’ decomposition of

km−1En provided by Theorem 3.5. Our base cases are given by the known structures

of k1En (Theorem 1.4) and of kmE1 ([7, Theorem 1]).

Our induction will rely on a submodule Γ(m,n) ⊆ km−1En−1 whose properties we

detail in the next section. With this submodule in hand, we show in the subsequent

section that elements in the kernel of the map Nn
n−1 which are fixed by the subgroup Hi

actually lie in the image of ιni , and moreover that the fixed parts of such submodules

are norms from larger-than-expected intermediate fields. To control those elements

which lie outside of Nn
n−1 we shall also need the module Γ(m,n), and we address this

problem in the case i(E/F ) = −∞ in Section 3.6 (and the case i(E/F ) > −∞ in

Chapter 5). In the final section of this chapter we bring prove Theorem 3.7 using the

developed machinery.
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3.4 The Submodule Γ(m,n) ⊆ km−1En−1

We shall see that understanding ker(ιnn−1) and its intersection with im(Nn
n−1) will be

essential in developing our results. Exact Sequence (3.4) tells us that

ker(ιnn−1) = {an−1} · km−1En−1,

so in this section we describe the structure of this module. Although we shall later

focus on the case i(E/F ) = −∞, the structure of {an−1}·km−1En−1 will be determined

here without condition on i(E/F ). We shall see that this module carries many of the

important features of the Fp[G]-module structure from [10], namely that it is ‘free’ as

an Fp[G]-module and stratified according to norm subgroups (Property 1 below).

To investigate {an−1} · km−1En−1 we find a complement Γ(m,n) of Nn
n−1(km−1En)

in km−1En−1 (Property 2 below). Since Exact Sequence (3.4) gives

Nn
n−1(km−1En) = ker

(
km−1En−1

{an−1·−} // kmEn−1

)
,

our submodule Γ(m,n) will satisfy {an−1} · km−1En−1 = {an−1} · Γ(m,n) (Property

3 below). Finally, since aσ
n−1 = an−1k

p for some k ∈ E×
n−1 (Equation (3.2)), we have

Γ(m,n) ' {an−1} ·Γ(m,n) (Property 4 below), and so we have an Fp[G]-isomorphism

Γ(m,n) ' {an−1} · km−1En−1

as desired.

These results are summarized in the following

Lemma 3.9. There exists a submodule Γ(m,n) ⊂ km−1En−1 such that

1. Γ(m,n) = ⊕n−1
i=0 Zi where each Zi ⊂ ιn−1

i (km−1Ei) is a direct sum of free Fp[Gi]

modules, and ZG
i ⊂ ιn−1

0 (N i
0 (km−1Ei));

2. Γ(m,n)⊕Nn
n−1(km−1En) = km−1En−1;

3. {an−1} · km−1En−1 = {an−1} · Γ(m,n); and
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4. as Fp[G]-modules, Γ(m,n) ' {an−1} · Γ(m,n) under the map γ 7→ {an−1} · γ.

Notice that we have already verified Properties 3 and 4 using only Property 2.

Hence in proving the result we need only prove that there exists a complement of

Nn
n−1(km−1En) which is ‘free.’

To prove this result, we shall use induction. Once we settle the base case, we

resolve the inductive step in several steps. We begin by analyzing elements in

ker ιnn−1 ∩ ιn−1
0 (km−1E0), a result which allows us to give a ‘nice’ decomposition of

km−1En−1 (in particular, we show that ker ιnn−1 is a free submodule of km−1En−1,

and is captured as a summand in our ‘nice’ decomposition). Then we show that

Nn
n−1(km−1En) is a free submodule of km−1En−1, and again a summand of our ‘nice’

decomposition. This allows us to find a complement Γ(m,n) of Nn
n−1(km−1En) within

km−1En−1 as the remaining summands in our ‘nice’ decomposition.

We proceed with the proof. For the base case we must verify that there exists

a submodule Γ(1, n) ⊆ k0En−1 = Fp which is a complement of Nn
n−1(k0En−1) = {0}

and appropriately free. Naturally, Γ(1, n) = Fp will be our choice. Those who prefer

a non-vacuous base case can rest assured that the arguments we give below can be

adjusted to prove the existence of a submodule Γ(2, n) ⊂ k1En−1 with the desired

properties.

We now assume by induction the existence of a submodule Γ(m−1, n) ⊆ km−2En−1

which verifies the properties of Lemma 3.9.

Lemma 3.10. For γ ∈ ιn−1
0 (km−1E0) with ιnn−1(γ) = 0, there exists α ∈ km−1En−1 so

that ιn−1
0 (Nn−1

0 (α)) = γ and ιnn−1(α) = 0.

Proof. Since γ ∈ ker ιnn−1 we have γ = {an−1} · g for some g ∈ km−2En−1 by Exact

Sequence (3.4). By induction we may take g ∈ Γ(m − 1, n) by Lemma 3.9(3). Since

γ ∈ (km−1En−1)
Gn−1 , Lemma 3.9(4) gives g ∈ Γ(m− 1, n)Gn−1 , and by Lemma 3.9(1)

we have g ∈ ιn−1
0 (km−2E0) ⊆ ιn−1

n−2 (km−2En−2). (Here we’ve used n ≥ 2.)

Since γ ∈ ιn−1
0 (km−1E0) we know Nn−1

n−2 γ = 0, and because g = ιn−1
n−2(ĝ) for some

ĝ ∈ km−2En−2 the Projection Formula (3.3) gives

0 = Nn−1
n−2 (γ) = Nn−1

n−2 ({an−1} · g) = {an−2} · ĝ.
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This means ĝ ∈ Nn−1
n−2 (km−2En−1) by Exact Sequence (3.4), and therefore ĝ is in the

image of (σ − 1)pn−1−pn−2
. This shows g is the fixed part of a submodule of length at

least pn−1−pn−2+1 > pn−2. Since Γ(m−1, n) is a direct sum of free Fp[Gi]-submodules

for 0 ≤ i ≤ n− 1 by induction, g = ιn−1
0

(
Nn−1

0 (α′)
)

for some α′ ∈ km−2En−1. Letting

α = {an−1} · α′ we have ιnn−1(α) = 0 and

ιn−1
0 (Nn−1

0 (α)) = (σ − 1)pn−1−1(α) = (σ − 1)pn−1−1({an−1} · α′)) = {an−1} · g = γ

as desired.

Lemma 3.11. There exists a module decomposition

km−1En−1 = X0 ⊕ · · · ⊕ Xn−2 ⊕ Y0 ⊕ · · · ⊕ Yn−1

satisfying the conditions of Theorem 3.7, and with the properties

• Xi ⊆ {an−1} · km−2En−1 for each i, and

• Yn−1 = K ⊕ N ⊕ Ŷn−1, where each of these submodules is free over Fp[Gn−1],

and so that

1. K ⊆ ker ιnn−1 and

2. N ⊆ Nn
n−1(km−1En).

Proof. We shall let our decomposition come from an ‘arbitrary’ decomposition X0 ⊕
· · · ⊕ Xn−2 ⊕ Y0 ⊕ · · · ⊕ Yn−1 of km−1En−1 provided by induction, subject to a few

conditions on X and Y we are free to impose.

First, since an−1 plays the role of χ for the extension En−1/F , Theorem 3.7 tells

us that Xi ⊆ {an−1} · ιn−1
i (km−1Ei) ⊆ {an−1} · km−2En−1.

Second, Corollary 3.24 gives us a great deal of freedom in choosing the submodule

Yn−1. Specifically we may choose any Fp-basis I of ιn−1
0 (Nn−1

0 (km−1En−1)) and —

for every x ∈ I — an element αx ∈ km−1En−1 so that ιn−1
0 (Nn−1

0 (αx)) = x. Then

Corollary 3.24 says that Yn−1 can be taken to be ⊕x∈I〈αx〉Fp[Gn−1].

We choose our basis I as the disjoint union of IK , IN and Î, where
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1. IK is a basis for ker ιnn−1 ∩ ιn−1
0 (Nn−1

0 (km−1En−1));

2. IN is a basis for a complement to

ker ιnn−1 ∩ ιn−1
0 (Nn

0 (km−1En)) in ιn−1
0 (Nn

0 (km−1En));

3. and Î is a basis for a complement to 〈IK , IN〉Fp in ιn−1
0 (Nn−1

0 (km−1En−1)).

Lemma 3.10 says that for every x ∈ IK there exists αx so that ιn−1
0 (Nn−1(αx)) = x

and αx ∈ ker ιnn−1. Hence K := ⊕x∈IK
〈αx〉Fp[Gn−1] will be a free submodule of Yn−1

which is contained in ker ιnn−1.

For each x ∈ IN , there exists β ∈ km−1En so that ιn−1
0 (Nn

0 (β)) = x, and therefore

ιn−1
0 (Nn−1

0 (Nn
n−1(β))) = x. Hence N := ⊕x∈IN

〈Nn
n−1(β)〉Fp[Gn−1] ⊆ Nn

n−1(km−1En)

is a free submodule of Yn−1, and independent from K because KGn−1 ∩ NGn−1 =

〈IK〉 ∩ 〈IN〉 = ∅ by construction.

For each x ∈ Î we choose arbitrary αx ∈ km−1En−1 so that ιn−1
0 (Nn−1

0 (αx)) = x,

and we let Ŷn−1 = ⊕x∈Î〈αx〉Fp[Gn−1]. By construction ŶGn−1

n−1 is independent from

〈NGn−1 ,KGn−1〉Fp = 〈IN , IK〉, and so the Exclusion Lemma 2.8 gives K+N + Ŷn−1 =

K ⊕N ⊕ Ŷn−1.

We will show that the submodule Γ(m,n) of Lemma 3.9 is Y0⊕· · ·⊕Yn−2⊕Ŷn−1.

We proceed by determining a complement for Nn
n−1(km−1En) in km−1En−1.

Lemma 3.12. Using the notation above,

ker

(
km−1En−1

ιnn−1 // km−1En

)
= X0 ⊕ · · · ⊕ Xn−2 ⊕K.

Proof. We have Xi ⊆ {an−1} · km−2En−1 by Lemma 3.11, and hence Xi ⊆ ker ιnn−1 for

each i by Exact Sequence (3.4). Lemma 3.11 also gives K ⊆ ker ιnn−1. We complete

the proof by showing that

ker(ιnn−1) ∩
(
Y0 ⊕ Yn−2 ⊕N ⊕ Ŷn−1

)
= ∅.
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To do this we show that the fixed submodule has trivial intersection with ker ιnn−1

(after which we can appeal to the Exclusion Lemma 2.8).

First, by construction we have

ker ιnn−1 ∩
(
N ⊕ Ŷn−1

)Gn−1

= ker ιnn−1 ∩
(
〈IN , Î〉Fp

)
= ∅.

So suppose

γ ∈ ker ιnn−1 ∩ (Y0 ⊕ · · · ⊕ Yn−2)
Gn−1 .

Since (Y0 ⊕ · · · ⊕ Yn−2)
Gn−1 ⊆ ιn−1

0 (km−1E0), we may apply Lemma 3.10 to find an

element α ∈ km−1En−1 with γ = ιn−1
0 (Nn−1

0 (km−1En−1)). This implies γ ∈ Yn−1 by

Theorem 3.7(ii), a contradiction.

Lemma 3.13. Using the notation above,

Nn
n−1(km−1En) = X0 ⊕ · · · ⊕ Xn−2 ⊕K ⊕N .

Proof. An element γ ∈ ker ιnn−1 takes the form γ = {an−1} · g by Exact Sequence

(3.4), and so Nn
n−1({χ} · ιnn−1(g)) = {an−1} · g by the Projection Formula (3.3). This

implies

ker ιnn−1 = X0 ⊕ · · · ⊕ Xn−2 ⊕K ⊆ Nn
n−1(km−1En).

Of course N is constructed so that N ⊆ Nn
n−1(km−1En), and so we have

Nn
n−1(km−1En) ⊇ X0 ⊕ · · · ⊕ Xn−2 ⊕K ⊕N .

For the containment Nn
n−1(km−1En) ⊆ X0 ⊕ · · · ⊕ Xn−2 ⊕K ⊕N , we show that

Nn
n−1(km−1En)Gn−1 ⊆ X0 ⊕ · · · ⊕ Xn−2 ⊕K ⊕N

after which we can apply the Exclusion Lemma 2.8 to complete the proof.

Let γ be an element in Nn
n−1(km−1En)Gn−1 , say γ = Nn

n−1(α) for some α ∈ km−1En.

If ιnn−1(γ) = 0 then γ ∈ ker ιnn−1 = X0 ⊕ · · · ⊕ Xn−2 ⊕K, and we are done. Otherwise

γ /∈ ker ιnn−1, and so ιnn−1(γ) = ιnn−1(N
n
n−1(α)) 6= 0. Since ιnn−1 ◦ Nn

n−1 is represented
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by the polynomial

σpn−1

+ · · ·+ σpn−1(p−1) ≡ (σ − 1)pn−pn−1

,

this implies that `(α) > pn − pn−1 ≥ 2pn−1. (Here we’ve used p > 2.) Now our

coarse decomposition of km−1En in Theorem 3.5 implies ιnn−1(γ) is the fixed part of a

submodule of dimension pn; i.e., ιnn−1(γ) = ιn0 (Nn
0 (β)) for some β ∈ km−1En.

This last equation is an equation within km−1En, and so we translate to an equa-

tion in km−1En−1. To do this, notice that as elements in Km−1En the previous equation

becomes

ιnn−1(γ) = ιn0 (Nn
0 (β)) + f for some f ∈ pKm−1En.

After solving the equation for f , we see that f = ιnn−1(f̂) for some f̂ ∈ Km−1En.

Furthermore, since f is 0 in km−1En, this implies f̂ ∈ ker ιnn−1. Hence we have

γ ∈ ιn−1
0 (Nn

0 (km−1En)) + ker ιnn−1.

Recall, however, that NGn−1 = 〈IN〉Fp was chosen as a complement to ker ιnn−1 ∩
ιn−1
0 (Nn

0 (km−1En)) ⊆ 〈IK〉Fp in ιn−1
0 (Nn

0 (km−1En)). Hence we have 〈IK , IN〉Fp ⊇
ιn−1
0 (Nn

0 (km−1En)), and so

γ ∈ 〈IK , IN〉Fp + ker ιnn−1 ⊆ X0 ⊕ · · · ⊕ Xn−2 ⊕K ⊕N .

Proof of Lemma 3.9. For each 0 ≤ i < n−1 define Zi := Yi, and define Zn−1 := Ŷn−1.

We define Γ(m, n) := Z0 ⊕ · · · ⊕ Zn−1. The previous lemmas show that Γ(m,n)

satisfies (1) and (2), and we have already verified that Properties (3) and (4) follow

from (2).

We record the following corollary, since it will be useful later.

Corollary 3.14. If g ∈ Γ(m,n)Gn−1 and Nn−1
n−2 ({an−1} · g) = 0, then for some α ∈

Γ(m,n) we have g = ιn−1
0 (Nn−1

0 (α)).
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Proof. Since Γ(m, n)Gn−1 ⊆ ιn−1
0 (km−1E0), it follows that g = ιn−1

n−2(ĝ) for some ĝ in

km−1En−2. (Here we have used n ≥ 2.) Hence Nn−1
n−2 ({an−1} · g) = {an−2} · ĝ by

the Projection Formula (3.3), which — by Exact Sequence (3.4) — is 0 only if ĝ ∈
Nn−1

n−2 (km−1En−1), say ĝ = Nn−1
n−2 (α′). But then `Gn−1(α

′) > pn−1 − pn−2 ≥ pn−2, and

since Γ(m,n) is a direct sum of cyclic submodules of dimensions pi for 0 ≤ i ≤ n− 1,

we must have ĝ ∈ im(σ − 1)pn−1−1. Hence g ∈ ZGn−1

n−1 . The result now follows from

Lemma 3.9(1).

3.5 Fixed Elements are Norms

The key result of this section is Corollary 3.20. This result uses Hilbert 90-like results

and facts about abstract Fp[G]-modules, though in our setting we need to be careful

about the possible difference in length between the Fp[Gi]-submodule generated by

an element γ ∈ kmEi and the Fp[Gn]-submodule generated by ιni (γ).

Towards this end, we give results for determining when an element lies in the

submodule im(ιnj ) and — when it does — for controlling the Fp[Gj]-lengths of repre-

sentatives from kmEj for this element.

Lemma 3.15. If Nn
n−1γ = 0 and γ ∈ (kmEn)Hn−1, then there exists γ̂ ∈ kmEn−1 such

that ιnn−1(γ̂) = γ and `Gn−1(γ̂) = `G(γ). Additionally, if `G(γ) ≤ pn−1 − pn−2 we may

insist Nn−1
n−2 γ̂ = 0.

Proof. We know that γ = ιnn−1γ̂ for some γ̂ ∈ kmEn−1 by Theorem 1 and Remarks 1

and 2 (page 6) of [7]. We now argue that γ̂ may be taken so that `Gn−1(γ̂) = `G(γ).

We cannot have `Gn−1(γ̂) < `G(γ), since if (σ − 1)xγ̂ = 0 ∈ kmEn−1 then

(σ − 1)xγ = (σ − 1)xιnn−1(γ̂) = ιnn−1 ((σ − 1)x(γ̂)) = 0.

So suppose that ` := `Gn−1(γ̂) > `G(γ). Our goal is to use Corollary 3.14 to adjust

γ̂ by an element {an−1}·α ∈ kmEn−1 in order to produce an element of smaller length

whose image under inclusion is γ. For this we shall study f := (σ − 1)`−1γ̂.

First, by induction we know kmEn−1 = X0 ⊕ · · · ⊕ Xn−2 ⊕Y0 ⊕ · · · ⊕ Yn−1, where

by Theorem 3.7 we have Xi ⊆ {an−1} · ιn−1
i (km−1Ei) ⊆ ker ιnn−1. Hence we may take
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γ̂ ∈ Y0⊕· · ·⊕Yn−1. Since f := (σ−1)`−1γ̂ ∈ (Y0 ⊕ · · · ⊕ Yn−1)
Gn−1 , Theorem 5.2(iii)

gives f ∈ ιn−1
0 (kmE0). Since n ≥ 2, we have

Nn−1
n−2 (f) = 0. (3.16)

On the other hand, Exact Sequence (3.4) and Lemma 3.9(3) give f = {an−1} ·
ιnn−1(g) for some g ∈ Γ(m, n). Lemma 3.9(4) gives g ∈ Γ(m,n)Gn−1 , so by Lemma

3.9(1) we have g = ιn−1
0 (ĝ) for some ĝ ∈ kmE0. Using Equation 3.16, n ≥ 2, and the

Projection Formula (3.3), we have

0 = Nn−1
n−2 f = Nn−1

n−2

({an−1} · ιn−1
0 (ĝ)

)
= {an−2} · ιn−2

0 (ĝ).

Corollary 3.14 gives g = ιn−1
0 (Nn−1

0 (α)) for some α ∈ Γ(m,n). Since {an−1} · α
satisfies `Gn−1({an−1}·α) = pn−1 by Lemma 3.9(4), and since additionally ιnn−1({an−1}·
α) = 0, we see that γ̂′ := γ̂ − (σ − 1)pn−1−`Gn−1

(γ̂)({an−1} · α) satisfies ιnn−1(γ̂
′) = γ

and `Gn−1(γ̂
′) < `Gn−1(γ̂). Using induction, we continue this process until we have

constructed an element γ̂ so that ιnn−1(γ̂) = γ and `Gn−1(γ̂) = `G(γ).

All we have left is to show that if `G(γ) ≤ pn−1 − pn−2, then we may insist

Nn−1
n−2 γ̂ = 0. For this, since `Gn−1(γ̂) ≤ pn−1 − pn−2 we have ιn−1

n−2(N
n−1
n−2 (γ̂)) = 0,

so Nn−1
n−2 γ̂ = {an−2} · g for some g ∈ Γ(m,n − 1) ⊆ km−1En−2. We claim that

γ̂′ := γ̂ − {an−1} · ιn−1
n−2(g) has the desired properties: ιnn−1γ̂

′ = γ, `Gn−1(γ̂
′) = `G(γ),

and Nn−1
n−2 γ̂′ = 0.

To prove the claim, notice first that ιnn−1

({an−1} · ιn−1
n−2(g)

)
= 0 by Exact Sequence

(3.4), and hence ιnn−1(γ̂
′) = γ. It is also obvious that Nn−1

n−2

({an−1} · ιn−1
n−2(g)

)
=

{an−2} · g by the Projection Formula (3.3) and n ≥ 2, and hence Nn−1
n−2 (γ̂′) = 0.

For the length condition, notice first that `Gn−1({an−1} · ιn−1
n−2(g)) = `Gn−2(g) by

Lemma 3.9(4) applied to Γ(m,n− 1). Hence if x < `Gn−2(g), then

Nn
n−1 ((σ − 1)x(γ̂)) = (σ − 1)x

({an−1} · ιn−1
n−2(g)

) 6= 0,
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and in particular we have (σ − 1)xγ̂ 6= 0. This gives

`(γ̂) ≥ `Gn−2(g) = `Gn−1({an−1} · ιn−1
n−2(g)),

and so γ̂ − {an−1} · ιn−1
n−2(g) satisfies `Gn−1(γ̂) = `G(γ) as desired.

Lemma 3.17. If Nn
n−1γ = 0 and γ ∈ (kmEn)Hi, then there exists γ̂ ∈ kmEi such

that ιni (γ̂) = γ and `Gi
(γ̂) = `G(γ). Additionally, if `G(γ) ≤ pi − pi−1 we may insist

N i
i−1γ̂ = 0.

Proof. The base case of this result is the previous lemma.

For the inductive step, let γ ∈ (kmEn)Hi with Nn
n−1γ = 0, and suppose we have

the result for i + 1. Since (kmEn)Hi ⊂ (kmEn)Hi+1 , there exists γ̃ ∈ kmEi+1 such

that ιni+1γ̃ = γ and `Gi+1
(γ̃) = `G(γ). Furthermore, since `G(γ) ≤ pi ≤ pi+1 − pi

we may insist Ni+1,iγ̃ = 0. Hence by induction there exists γ̂ ∈ kmEi such that

`Gi
(γ̂) = `Gi+1

(γ̃), ιi+1
i γ̂ = γ̃, and so that if `Gi

(γ̂) ≤ pi − pi−1 then we may assume

N i
i−1γ̂ = 0. But then we also have `Gi

(γ̂) = `G(γ) and ini γ̂ = γ as desired.

We are now ready for the main theorem of the section. We shall state it in some

generality and then restrict ourselves to a special case in the subsequent corollary.

Lemma 3.18. For γ ∈ kmEn, if

• Nn
n−1(γ) = 0, and `Hj

(γ) > pn−j−1;

• i(En/Ej) = −∞ and `Hj
(γ) > pn−j−1; or

• `Hj
(γ) > 2pn−j−1,

then (σpj − 1)`Hj
(γ)−1γ ∈ ιnj (Nn

j (kmEn)).

Proof. To prove the claim we proceed by induction on j. The base case is j = n− 1

which follows from the decomposition provided by [7], together with the observation

that there are no X summands of dimension 2 when i(En/E0) = −∞.

So suppose the result holds for j + 1, and we show it also holds for j. For

simplicity we let ε = 1 if either i(En/E0) = −∞ or Nn
n−1(γ) = 0, and let ε = 2
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if both Nn
n−1(γ) 6= 0 and i(En/E0) 6= −∞. Since `Hj

(γ) > εpn−1−j, without loss

we may assume `Hj
(γ) = εpn−1−j + 1. This means (σpj − 1)εpn−1−j+1γ = 0 and

(σpj − 1)εpn−1−j
γ 6= 0. This gives

(σpj+1 − 1)εpn−1−j−1+1γ = (σpj − 1)εpn−j−1+pγ = 0 and

(σpj+1 − 1)εpn−1−j−1

γ = (σpj − 1)εpn−j−1

γ 6= 0.

Hence we have `Hj+1
(γ) = εpn−1−j−1 + 1, and so by induction it follows that

(σpj+1 − 1)εpn−1−j−1

γ = ιnj+1(N
n
j+1(α))

for some α ∈ kmEn, or equivalently

(σpj − 1)εpn−1−j

γ = (σpj − 1)pn−j−pα. (3.19)

Unfortunately, α does not generate a submodule long enough to provide our de-

sired equality. Instead of being length pn−j − 1 we have `Hj
(α) = pn−j − p + 1:

(σpj − 1)pn−j−pα = (σpj+1 − 1)pn−j−1−1α = ιnj (Nn
j α) = (σpj − 1)εpn−1−j

γ 6= 0 and

(σpj − 1)pn−j−p+1α = (σpj − 1)(σpj − 1)pn−j−pα = (σpj − 1)ιnj (Nn
j (α)) = 0.

We use induction to show that the Hj+1-fixed submodule of (σpj−1)α is generated

by some ιnj+1(N
n
j+1(β)), which will ultimately provide the desired result. With this

goal in mind, we compute `Hj+1

(
(σpj − 1)α

)
= pn−j−1 − 1. First, we have

(σpj+1 − 1)pn−j−1−2(σpj − 1)α = (σpj − 1)pn−j−2p+1α 6= 0,

where the inequality follows from the fact that `Hj
(α) = pn−j − p+1 > pn−j − 2p+1.

We also have

(σpj+1 − 1)pn−j−1−1(σpj − 1)α = (σpj − 1)pn−j−p+1α = 0
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(again using `Hj
(α) = pn−j − p + 1). Hence we have `Hj+1

(
(σpj − 1)α

)
= pn−j−1− 1.

Now pn−j−1 − 1 > 2pn−1−j−1 since p > 2, so by induction we have

(σpj+1 − 1)pn−j−1−2(σpj − 1)α = ιnj+1(N
n
j+1(β)) = (σpj+1 − 1)pn−j−1−1β

for some β ∈ kmEj+1. Equivalently, this means

(σpj − 1)pn−j−2p(σpj − 1)α = (σpj − 1)pn−j−pβ.

Hence, recalling Equation (3.19) for equality ? below, we have the desired result:

ιnj (Nn
j (β)) = (σpj − 1)pn−j−1β

= (σpj − 1)p−1(σpj − 1)pn−j−pβ

= (σpj − 1)p−1(σpj − 1)pn−j−2p(σpj − 1)α

= (σpj − 1)pn−j−pα

?
= (σpj − 1)εpn−1−j

γ.

Corollary 3.20. For γ ∈ kmEn, let i be minimal such that γ ∈ ιni (kmEi). If

Nn
n−1(γ) = 0 and `G(γ) > pi−1, then (σ − 1)`G(γ)−1 ∈ ιn0 (N i

0(kmEi(γ))).

Note: When i < n, the condition Nn
n−1(γ) = 0 is trivial.

Proof. In the case i = n, the result follows by taking j = 0 in the previous lemma.

For i < n, choose γ̂ ∈ kmEi with ιni (γ̂) = γ; by Lemma 3.17 we can (and do) insist

`Gi
(γ̂) = `G(γ). Then `Gi

(γ̂) > pi−1, and since i(Ei/F ) = −∞ the previous lemma

(applied to the extension Ei/F ) gives

(σ − 1)`Gi
(γ̂)−1γ̂ ∈ ιi0(N

i
0(kmEi))
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(again by taking j = 0). Therefore

(σ − 1)`G(γ)−1γ = ιni
(
(σ − 1)`Gi

(γ̂)−1γ̂
) ⊂ ιni

(
ιi0

(
N i

0 (kmEi)
))

⊂ ιn0 (N i
0(kmEi))

as desired.

We are now ready to give a proof that the module structure of [7] can be used to

give a ‘coarse’ understanding of the Fp[G]-structure of kmE.

Proof of Theorem 3.5. Using the notation and results from the proof of Theorem 2.9,

we only need to verify that Vi+1 = Vpn for every i satisfying 2pn−1 + 1 ≤ i ≤ pn − 1.

This means that we must show that for any x ∈ im(σ − 1)i−1, we also have

x ∈ im(σ − 1)pn−1. Choose an αx with (σ − 1)i−1αx = x. Then `G(αx) = i, and since

i > 2pn−1 we may apply Lemma 3.18 (with j = 0) to conclude that

x = (σ − 1)i−1αx = ιn0 (Nn
0 (α)) = (σ − 1)pn−1α

for some α ∈ kmE. But this means that x ∈ Vpn as desired.

3.6 The Exceptional Summand

In the previous section we saw that elements in ker Nn
n−1 are particularly well-behaved:

they have representatives from ‘expected’ intermediate fields, and their fixed sub-

modules are generated by elements that lie in a priori unexpected norm subgroups

(because within ker Nn
n−1 we have im(σ − 1)pi+k = im(σ − 1)pi+1

= im(ιn0 ◦ N i
0) for

k ≥ 1). We also saw that elements outside of ker Nn
n−1 which are sufficiently long also

share these characteristics. Hence we have left to understand those elements of small

length which are outside ker Nn
n−1, which in practice will mean that we need to have

control over the elements in ker(ιnn−1 ◦Nn
n−1) \ ker Nn

n−1.

We make this notion more precise. Exact Sequence (3.4) gives ker ιnn−1 = {an−1} ·
km−1En, which by the results of Section 3.4 is the same as {an−1} · Γ(m,n). If
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α ∈ ker ιnn−1 ◦ Nn
n−1 is given, then Nn

n−1(α) = {an−1} · γ for some γ ∈ Γ(m,n). Our

goal is to find an element g so that `(g) ≤ `(α) and Nn
n−1(g) = {an−1} · γ. If we

can do this, then the element α − g is trivial under the map Nn
n−1 (so we are then

free to use the results from the previous section) and does not increase in length (so

that induction arguments are not disturbed). In the case that i(E/F ) = −∞, this is

particularly easy to do.

Lemma 3.21. Suppose i(E/F ) = −∞. Then

X := {χ} · ιnn−1(Γ(m, n))
Nn

n−1 // {an−1} · Γ(m,n)

is an isomorphism of Fp[G]-modules. In particular, X is a direct sum of cyclic sub-

modules of dimension pi for 0 ≤ i ≤ n− 1.

Proof. The Projection Formula (3.3) ensures that Nn
n−1(X) = {an−1} · Γ(m,n), and

the construction of Γ(m,n) implies Nn
n−1({χ} · ιnn−1(γ)) = {an−1} · γ = 0 only when

γ = 0. Hence we have left to show that the isomorphism respects the Fp[G]-action

(where the Fp[G]-action on {an−1} · Γ(m,n) ⊆ kmEn−1 is given by reducing to the

natural action of Fp[Gn−1]). The multiplicative properties of Nn
n−1 imply that we only

need to verify that the action of σ is respected. For this, we recall that i(E/F ) = −∞
implies `(χ) = 1, so that σχ ≡ χ in E×/E×p. Hence

σ
({χ} · ιnn−1(γ)

)
= {σχ} · ιnn−1(σ(γ)) = {χ} · ιnn−1(σ(γ)).

The Projection Formula (3.3) gives

Nn
n−1

(
σ

({χ} · ιnn−1(γ)
))

= Nn
n−1

({χ} · ιnn−1(σγ)
)

= {an−1} · (σγ).

Theorem 3.22. Suppose i(E/F ) = −∞. If Nn
n−1(α) = {an−1} · γ for γ ∈ Γ(m, n),

then `(α) ≥ `Gn−1(γ) = `({χ} · ιnn−1(γ)).

Proof. The equality is given by the previous theorem, so we only verify the inequality.
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For this, suppose that x < `Gn−1(γ). Then by Lemma 3.9(4) we have

Nn
n−1 ((σ − 1)xα) = (σ − 1)x ({an−1} · γ) 6= 0,

and hence (σ − 1)xα 6= 0. This gives the desired result.

3.7 Proof of Theorem 3.7

Proof of Theorem 3.7. Let X = {χ} · ιnn−1(Γ(m,n)). Then X = X0 ⊕ · · · ⊕Xn−1 for

Xi = {χ} · ιnn−1(Zi) ⊆ {χ} · ιni (kmEi). We now construct the submodules Yi of the

theorem.

To form Yn, choose an Fp-basis In of the space ιn0 (Nn
0 (kmEn)). For each x ∈ In

there exists αx ∈ kmEn with x = ιn0 (Nn
0 (αx)), and the Fp[G]-submodule generated

by αx is free since `G(αx) = pn. We let Yn =
∑

x∈In
〈αx〉Fp[G], and by the Exclusion

Lemma 2.8 we see Yn =
⊕

x∈In
〈αx〉Fp[G].

Now we define Yi for 0 ≤ i < n. Select a complement of ιn0
(
N i+1

0 (kmEi+1)
)

in

ιn0 (N i
0(kmEi)), and let Ii be an Fp-basis for this complement. For each x ∈ Ii there

exists αx ∈ kmEi with x = ιn0 (N i
0(αx)). The Fp[G]-submodule generated by αx is

isomorphic to Fp[Gi] since `G(αx) = pi and αx ∈ kmEi, and the Exclusion Lemma 2.8

shows
∑

x∈Ii
〈αx〉Fp[G] = ⊕x∈Ii

〈αx〉Fp[G]. We define Yi to be this submodule.

The submodules Yi are independent from each other using an analogous argument:

any dependence among these modules gives rise to a non-trivial dependence in Y G
i ,

but there are no such dependencies by construction of the Yi. Furthermore we have

(Yi ⊕ · · · ⊕ Yn)G = ιn0 (N i
0(kmEi)). (3.23)

This verifies the second condition of Theorem 3.7.

To show that X is independent from ⊕Yi, again the Exclusion Lemma 2.8 implies

that any non-trivial dependence between X and ⊕Yi must appear as a non-trivial

dependence between XG and ⊕iY
G
i . Now any (non-trivial) element in X has non-

trivial image under Nn
n−1, whereas ⊕iY

G
i ⊆ ιn0 (kmE0) ⊆ ker Nn

n−1. Hence X +⊕iYi =

X ⊕⊕iYi.
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For J := X⊕⊕iYi, we now show kmEn = J by induction on submodule length. We

prove first that for any γ ∈ kmEn with `G(γ) ≤ pn−pn−1 there exists γ′ ∈ kmEn with

Nn
n−1γ

′ = 0, `G(γ′) ≤ `G(γ), and such that γ′ ∈ J implies γ ∈ J . To see this, suppose

Nn
n−1γ 6= 0 (since otherwise the result is trivial). Now ιnn−1(N

n
n−1(γ)) = 0 since

`G(γ) ≤ pn − pn−1, so that Nn
n−1(γ) = {an−1} · g for some g ∈ km−1En−1 by Exact

Sequence (3.4); as usual, we take g ∈ Γ(m,n) by Lemma 3.9(3). By construction

{χ} · ιnn−1(g) ∈ X, and this element satisfies Nn
n−1({χ} · ιnn−1(g)) = {an−1} · g by

the Projection Formula (3.3) and has `G({χ} · ιnn−1(g)) ≤ `G(γ) by Lemma 3.22.

Hence γ′ = γ − {χ} · ιnn−1(g) has Nn
n−1γ

′ = 0 and `G(γ′) ≤ `G(γ). Finally, since

{χ} · ιnn−1(g) ∈ J by construction, we have γ′ ∈ J implies γ ∈ J as desired. Hence for

`G(γ) ≤ pn − pn−1, we shall assume that Nn
n−1(γ) = 0.

Now suppose `G(γ) = 1. Since we assume Nn
n−1(γ) = 0, Lemma 3.17 gives γ =

ιn0 (f) for some f ∈ kmF . Equation (3.23) with i = 0 gives γ ∈ (Y0 ⊕ · · · ⊕ Yn)G ⊆ J .

Suppose γ ∈ kmE with `G(γ) ≤ pn − pn−1, and assume J contains all elements

of length at most `G(γ) − 1. Choose i such that pi−1 < `G(γ) ≤ pi. Lemma 3.17

gives γ = ιni (γ̂) for some γ̂ ∈ kmEi, and by Corollary 3.20 we know (σ − 1)`G(γ)−1γ ∈
ιn0 (N i

0(kmEi)). Equation (3.23) provides α ∈ J such that (σ − 1)`G(γ)−1γ = (σ −
1)pi−1α. Hence we have `G

(
γ − (σ − 1)pi−`G(γ)α

)
≤ `G(γ)− 1 since

(σ − 1)`G(γ)−1
(
γ − (σ − 1)pi−`G(γ)α

)
= 0,

and by induction γ − (σ − 1)pi−`G(γ)α ∈ J . Since α ∈ J we have γ ∈ J as desired.

Finally, suppose we have shown J contains all elements of length at most `G(γ)−
1, where now `G(γ) > pn − pn−1. Using Lemma 3.18 (since pn − pn−1 ≥ 2pn−1;

again p > 2 comes to the rescue) we know (σ − 1)`G(γ)−1γ ∈ ιn0 (Nn
0 (kmEn)). Since

Y G
n = ιn0 (Nn

0 (kmEn)), there exists α ∈ J with ιn0 (Nn
0 (α)) = (σ − 1)`G(γ)−1γ. Hence

`G

(
γ − (σ − 1)pn−`G(γ)α

) ≤ `G(γ)− 1 since

(σ − 1)`G(γ)−1
(
γ − (σ − 1)pn−`G(γ)α

)
= 0,

and by induction γ− (σ− 1)pi−`G(γ)α ∈ J . Since α ∈ J we have γ ∈ J as desired.
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There is a great deal of control in the decomposition we have just constructed.

The following corollary records the choices available in constructing the submodule

Yn−1, choices that are important in constructing the module Γ(m,n).

Corollary 3.24. Given any Fp-basis In of ιn0 (Nn
0 (kmEn)) and — for each x ∈ In —

any choices αx ∈ kmEn so that ιn0 (Nn
0 (αx)) = x, there is a decomposition

kmE ' X0 ⊕ · · · ⊕ Xn−1 ⊕ Y0 ⊕ · · · ⊕ Yn

per Theorem 5.2 so that Yn = ⊕x∈In〈αx〉Fp[G].



Chapter 4

Galois Cohomology for p-adic

Extensions

In this chapter we give the module structure of H i(GE, µp) for a field extension E/F

with Gal(E/F ) = Zp and ξp ∈ E, where p is an odd prime. Again we develop our

results in the language of reduced Milnor K-groups, then translate them to Galois

Cohomology via the Bloch-Kato conjecture.

As in the last chapter, we write Ei for the intermediate field extension of E/F

with [Ei : F ] = pi and denote Gal(Ei/F ) by Gi. We also write E∞ for E and G∞ for

Gal(E/F ). The groups Gi arise as quotients of G∞ by its subgroups Hi; i.e., Hi is

the subgroup of G∞ so that G∞/Hi = Gi. Galois theory tells us EHi∞ = Ei. Of course

one has subgroups Hi/Hn ⊆ Gn with E
Hi/Hn
n = Ei, and so Gn/(Hi/Hn) = Gi.

Also as before, there are elements ai ∈ Ei satisfying the norm compatibility prop-

erty of Equation (3.1), and with Ei+1 = Ei( p
√

ai). For a fixed intermediate extension

En/E0, the element χ used in the previous chapter is now chosen to be the element

an.

The main result of this section is

Theorem 4.1. Suppose that Gal(E/F ) = Zp, that ξp ∈ E, and that p > 2. Then as

Fp[Zp]-modules,

kmE ' ⊕∞i=0Yi,

38
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where

• each Yi ⊆ ι∞i (kmEi) is a direct sum of free Fp[Gi]-modules; and

• (⊕∞i=nYi)
G∞ = ι∞0 (Nn

0 (kmEn)).

Remark 4.2. Translated into the language of Galois cohomology, this theorem says

that

Hm(GE, µp) ' ⊕∞i=0Yi,

where now Yi ⊆ res∞i (Hm(GEi
, µp)), and that

(⊕∞i=nYi)
G∞ = res∞0 (corn

0 (Hm(GEn , µp))) .

As we saw in the last chapter, resi
j is the map induced on cohomology by the inclusion

Ej ↪→ Ei and cori
j is the map induced by the norm NEi/Ej

: Ei → Ej.

Just as when E/F was a finite cyclic p-group, lengths of elements in kmE∞ will

be important. The length of an element γ∞ ∈ kmE∞ is defined as `G∞(γ∞) :=

dimFp〈γ∞〉Fp[G]. For an element γn ∈ kmEn we know that `Gn(γn) := dimFp〈γn〉Fp[Gn]

is given as the minimal integer ` ≥ 1 so that

(σ − 1)` (γn) = 0 ∈ kmEn

(where here σ denotes a generator of Gn).

The following lemma shows that for γ ∈ kmE∞ we can choose a representative

γ̂ ∈ kmEi which has the correct length. By working with an element in kmEi instead

of kmE∞, we can appeal to the results proved in the last chapter.

Lemma 4.3. Every nonzero element γ ∈ kmEHi∞ has a representative γ̂ ∈ kmEi. If

γ̂ is chosen with minimal length among all elements of kmEi satisfying this property,

then `Gi
(γ̂) = `G∞(γ).

Proof. An element γ ∈ kmE∞ must have a representative γ′ ∈ kmEj for some j. We

would like to argue that γ′ ∈ kmE
Hi/Hj

j . Now the action of Gal(E∞/Ei) is trivial on
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γ, which means that for σ a generator of Gal(Ej/F ) we have

σpi

(γ′) = γ′ + k for some k ∈ ker ι∞j .

Since there is some n with k ∈ ker ιnj , we can include all elements and equations into

kmEn to show that ιnj (γ′) ∈ kmE
Hi/Hn
n . Abusing notation slightly, we write γ′ for a

representative of γ from kmE
Hi/Hn
n .

We now show the first part of the lemma, which claims that we can find a rep-

resentative for γ from kmEi. We start by assuming n > i, since if n ≤ i there is

nothing to prove. Since γ′ ∈ kmE
Hi/Hn
n we have `Gn(γ′) ≤ pi ≤ pn−1. But since

pn−1 ≤ pn − pn−1, this implies ιnn−1(N
n
n−1(γ

′)) = 0. If Nn
n−1(γ

′) = 0, then because

γ′ ∈ kmE
Hi/Hn
n , Lemma 3.17 implies that γ′ = ιni (γ̄) for some γ̄ ∈ kmEi. Hence in

this case, we have proven our claim.

Otherwise, we have Nn
n−1(γ

′) = {an−1} · g for some g ∈ Γ(m,n). In this case

{an} · ιnn−1(g) has

Nn
n−1({an} · ιnn−1(g)) = {an−1} · g = Nn

n−1(γ
′)

by the Projection Formula (3.3). Additionally, `Gn({an}·ιnn−1(g)) ≤ `Gn(γ′) by Lemma

3.22, so that γ′−{an} · ιnn−1(g) ∈ kmE
Hi/Hn
n . Then since γ′−{an} · ιnn−1(g) has trivial

norm to kmEn−1, Lemma 3.17 again shows there is an element γ̄ ∈ kmEi so that

ιni (γ̄) = γ′ − {an} · ιnn−1(g).

Since ι∞n
(
γ′ − {an} · ιnn−1(g)

)
= ι∞n (γ′), we have shown that γ has a representative

from kmEi in any case.

Now that we know there is some representative for γ from kmEi, we let γ̂ ∈ kmEi

be an element of minimal length so that ι∞i (γ̂) = γ. We show that `Gi
(γ̂) = `G∞(γ)

by showing that `Gi
(γ̂) = `Gn(ιni (γ̂)) for all n ≥ i. We prove this result by induction,

beginning with the case n = i + 1. We write σ for a generator of Gi+1.
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First, if x ≥ `Gi
(γ̂) then we have

(σ − 1)xιi+1
i (γ̂) = ιi+1

i ((σ − 1)xγ̂) = 0,

and so `Gi
(γ̂) ≥ `Gn(ιni (γ̂)).

We now verify the opposite inequality by contradiction. Suppose that we have

`Gi+1
(ιi+1

i (γ̂)) < `Gi
(γ̂). This implies

(σ − 1)`Gi
(γ̂)−1γ̂ ∈ ker ιi+1

i .

Now if we let k be chosen so that pk−1 < `Gi
(γ̂) ≤ pk, then since Theorem 3.7 shows

that kmEi is a direct sum of ‘free’ submodules, we must have (σ−1)`Gi
(γ̂)−1γ̂ ∈ im(σ−

1)pk−1. But Lemma 3.12 shows ker ιi+1
i is a direct sum of free Fp[Gj]-submodules (for

0 ≤ j ≤ i), so there must be some α ∈ ker ιi+1
i with `Gi

(α) ≥ pk ≥ `Gi
(γ̂) and

(σ− 1)`Gi
(γ̂)−1γ̂ = (σ− 1)`Gi

(α)−1α. Hence we have γ̂− (σ− 1)`Gi
(α)−`Gi

(γ̂)α has length

at most `Gi
(γ̂)− 1, and

ι∞i
(
γ̂ − (σ − 1)`Gi

(α)−`Gi
(γ̂)α

)
= ι∞i (γ̂) = γ.

This is a contradiction to the minimality of γ̂, and hence we conclude `Gi+1
(γ̂) =

`Gi
(γ̂).

For the inductive step, suppose `Gn (ιni (γ̂)) < `Gi
(γ̂), while

`Gn−1(ι
n−1
i (γ̂)) = `Gi

(γ̂). (4.4)

This gives

(σ − 1)`Gn−1
(ιn−1

i (γ̂))−1ιn−1
i (γ̂) ∈ ker ιnn−1.

Again, letting k be chosen so that pk−1 < `Gn−1(ι
n−1
i (γ̂)) ≤ pk, Theorem 3.7 shows

that (σ − 1)`Gn−1
(ιn−1

i (γ̂))−1ιn−1
i (γ̂) ∈ im(σ − 1)pk−1. Since Lemma 3.12 shows that

ker ιnn−1 is a direct sum of ‘free’ submodules, there must be some α ∈ ker ιnn−1 with
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`Gn−1(α) ≥ pk ≥ `Gn−1(γ̂) and

(σ − 1)`Gn−1
(ιn−1

i (γ̂))−1ιn−1
i (γ̂) = (σ − 1)`Gn−1

(α)−1α.

Hence we have γ̂− (σ− 1)`Gn−1
(α)−`Gn−1

(ιn−1
i (γ̂))α has length at most `Gn−1(γ̂)− 1, and

ι∞n−1

(
ιn−1
i (γ̂)− (σ − 1)`Gn−1

(α)−`Gn−1
(ιn−1

i (γ̂))α
)

= ι∞i (γ̂) = γ.

This contradicts Equation 4.4, and we conclude `Gn(ιni (γ̂)) = `Gi
(γ̂) for all n ≥ i.

Proof of Theorem 4.1. Let Ii be a basis for a complement of ι∞0 (N i+1
0 (kmEi+1)) in

ι∞0 (N i
0(kmEi)). For each x ∈ Ii choose αx ∈ ι∞i (kmEi) with ι∞0 (N i

0(αx)). The Exclu-

sion Lemma 2.8 shows that
∑〈αx〉Fp[G∞] = ⊕〈αx〉Fp[G∞], and we denote this set by

Yi. Again,
∑

Yi = ⊕Yi since the Exclusion Lemma 2.8 implies any dependence would

produce a nontrivial dependence in Y G∞
i = 〈Ii〉Fp , contrary to the construction of the

Ii.

That each Yi is a direct sum of free Fp[Gi]-modules is immediate. The fact that

(⊕∞i=nYi)
G∞ = ι∞0 (Nn

0 (kmEn)) comes from the construction of Y G∞
i = 〈Ii〉.

Since ∪n(kmE∞)Hn = kmE∞, we show by induction that for arbitrary n one has

(kmE∞)Hn ⊆ ⊕∞i=0Yi. First, notice that (kmE∞)H0 = ι∞0 (kmE0) by Lemma 4.3. Since

⊕i〈Ii〉Fp = ι∞0 (kmE0) by construction, we have (kmE∞)H0 ⊆ ⊕∞i=0Yi

Now suppose we have shown that all elements of (kmE∞)Hn−1 are in ⊕∞i=0Yi, and

we will show that (kmE∞)Hn ⊆ ⊕∞i=0Yi. We prove this result by induction on the

length of elements of (kmE∞)Hn . So let γ ∈ (kmE∞)Hn be given, and let γ̂ ∈ kmEn

be a representative of γ as per Lemma 4.3. If `Gn(γ̂) ≤ pn−1, then γ̂ ∈ kmE
Hn−1/Hn
n .

Now if X0 ⊕ · · · ⊕Xn−1 ⊕ Y0 ⊕ · · · ⊕ Yn is a decomposition of kmEn as per Theorem

3.7, then γ̂ − projX(γ̂) is an element which is also a preimage of γ, and `Gn(γ̂) =

`Gn(γ̂ − projX(γ̂)) by the minimality of γ̂. But then

γ̂ − projX(γ̂) ∈ (Y0 ⊕ · · · ⊕ Yn)Hn−1/Hn ⊆ ιnn−1(kmEn−1).

Hence γ ∈ kmEHn−1∞ , and by induction γ ∈ ⊕∞i=0Yi.

So we are left with the case `Gn(γ̂) > pn−1. By Corollary 3.20 this implies that
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(σ−1)`Gn(γ̂)−1γ̂ ∈ ιn0 (Nn
0 (kmEn)), where here σ is a generator of Gn. So choose cx ∈ Fp

with

ι∞n
(
(σ − 1)`Gn (γ̂)−1γ̂

)
=

∑
i≥n

∑
x∈Ii

cxx.

Let α̂x ∈ kmEi be a representative so that ι∞i (α̂x) = αx, and we have

(σ − 1)`Gn(γ̂)−1γ̂ ≡ (σ − 1)pn−1
∑
i≥n

∑
x∈Ii

N i
n(cxα̂x) mod ker ι∞n .

Hence

γ′ := γ̂ − (σ − 1)pn−`Gn (γ̂)
∑
i≥n

∑
x∈Ii

N i
n(cxα̂x) ∈ kmEn

is an element so that (σ − 1)`Gn−1γ′ ∈ ker ι∞n . It follows that ι∞n (γ′) is an element of

kmEHn∞ with length at most `G∞(γ)−1, and hence ι∞n (γ′) ∈ ⊕i≥0Yi. Since αx ∈ ⊕i≥0Yi

by assumption, this implies γ ∈ ⊕i≥0Yi as well.



Chapter 5

The Case i(E/F ) > −∞

5.1 The Main Theorem

In this chapter we study the Fp[G]-module structure of the Milnor k-groups kmE for

a general field extension (i.e., without restriction on i(E/F )), but under the following

Assumption 5.1. Suppose γ generates a summand of Γ(m,n) and that g has the

smallest length among all elements whose image under Nn
n−1 is {an−1} · γ. Then

(σ − 1)`Gn−1
(γ)−1g has the smallest length among all elements whose image under

Nn
n−1 is {an−1} · (σ − 1)`Gn−1

(γ)−1γ.

In the course of proving the main theorem of this chapter, we show that this

assumption is equivalent to a seemingly stronger statement where we drop the as-

sumption that γ generates a summand of Γ(m,n) (see Remark 5.28). We have stated

the weaker version here since it is all we need to complete our result. We show that

Assumption 5.1 holds when i(E/F ) = 0 in Corollary 5.11. We do not have evidence

supporting this assumption for i(E/F ) > 0.

Our main result is the following generalization of Theorem 3.7.

Theorem 5.2. Let E/F be an extension of fields with Gal(E/F ) = Z/pnZ and

44
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ξp ∈ E, where p > 2 is a prime. Suppose Assumption 5.1 holds. Then as Fp[G]-

modules,

kmE '
⊕

0≤i≤n

j∈{−∞,0,··· ,n−1}

Xi,j ⊕ Y0 ⊕ · · · ⊕ Yn,

where

(i) each Xi,j is a direct sum of cyclic submodules of dimension pi + pj and Xi,j = ∅
when i > i(E/F ) and j > −∞;

(ii) each Yi ⊆ ιni (kmEi) is a direct sum of free Fp[Gi]-submodules; and

(iii) for every j ≤ n,

(Yj ⊕ · · · ⊕ Yn ⊕
⊕

i′
j′≥j

Xi′,j′)
G = ιn0

(
N j

0 (kmEj)
)
.

Remark 5.3. Using the Bloch-Kato conjecture, this result says that

Hm(GE, µp) '
⊕

0≤i≤n

j∈{−∞,0,··· ,n−1}

Xi,j ⊕ Y0 ⊕ · · · ⊕ Yn.

Condition (ii) translates to Yi ⊆ resn
i (Hm(GEi

, µp)), and condition (iii) says

(Yj ⊕ · · · ⊕ Yn ⊕
⊕

i′
j′≥j

Xi′,j′)
G = resn

0

(
corj

0

(
Hm(GEj

, µp)
))

.

As before, resi
j is the map induced on cohomology by the inclusion Ej ↪→ Ei and cori

j

is the map induced by the norm NEi/Ej
: Ei → Ej.

5.2 Minimal Preimages

As before, it is important to understand those elements which map to {an−1} · γ
for γ ∈ Γ(m,n). In this more general setting, however, one does not have a good
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understanding of how the length of a preimage of an element {an−1} · γ under Nn
n−1

compares to the length of a preimage of {an−1} · ((σ − 1)γ) under Nn
n−1. As such, it

is difficult to construct a sufficiently ‘small’ exceptional submodule. This is the key

complication in generalizing the results we have already determined for extensions

with i(E/F ) = −∞ to extensions without condition on i(E/F ).

With this in mind, we make the following

Definition 5.4. For γ ∈ Γ(m,n), a preimage of γ is an element h satisfying

Nn
n−1(h) = {an−1} · γ.

A minimal preimage of γ is a preimage g of minimal length; i.e., if h is a preimage

for γ and g is a minimal preimage, then `G(g) ≤ `G(h).

In this section we shall explore some of the properties of minimal preimages. Our

first result gives a naive lower bound on the length of a (minimal) preimage of an

element γ ∈ Γ(m,n).

Lemma 5.5. If g ∈ kmEn is a preimage for γ ∈ Γ(m,n), then `G(g) ≥ `Gn−1(γ).

In particular, if g is a preimage of γ with `G(g) ≤ `Gn−1(γ), then g is a minimal

preimage.

Proof. The second statement is a clear corollary of the first, so we just prove the first

statement.

Let x < `Gn−1(γ), so that (σ − 1)xγ 6= 0. Since

Γ(m,n) ∩ ker

(
km−1En−1

{an−1}·− // kmEn−1

)
= {0},

we have {an−1} · ((σ − 1)xγ) 6= 0. Since aσ
n−1 = an−1k

p for some k ∈ E×
n−1 (Equation

(3.2)), we have

(σ − 1) ({an−1} · γ) = {aσ
n−1} · σ(γ)− {an−1} · γ

= {an−1} · σ(γ)− {an−1} · γ = {an−1} · (σ − 1)γ
(5.6)
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Hence

Nn
n−1((σ − 1)xg) = (σ − 1)xNn

n−1(g) = (σ − 1)x{an−1} · γ
= {an−1} · ((σ − 1)xγ) 6= 0.

Therefore (σ − 1)xg 6= 0, and so `Gn−1(γ) ≤ `G(g).

Combined with Assumption 5.1, the next lemma gives us a useful tool for deter-

mining when an element is a minimal preimage.

Lemma 5.7. If g is a preimage of γ ∈ Γ(m, n) which is not minimal, then (σ−1)g is

a preimage of (σ− 1)γ which is not minimal. Hence (σ− 1)`Gn−1
(γ)−1g is a preimage

of (σ − 1)`Gn−1
(γ)−1γ which is not minimal.

Proof. Let h be a minimal preimage of γ. Then

Nn
n−1((σ − 1)g) = (σ − 1)Nn

n−1(g) = (σ − 1) ({an−1} · (γ))

= (σ − 1)Nn
n−1(h) = Nn

n−1((σ − 1)h).

In light of Equation (5.6) this shows (σ− 1)g and (σ− 1)h are preimages of (σ− 1)γ.

However, we have

`((σ − 1)g) = `(g)− 1 > `(h)− 1 = `((σ − 1)h),

and hence (σ − 1)g is not a minimal preimage.

The second statement is a clear corollary of the first.

Now we show a way of constructing a minimal preimage for the sum of two ele-

ments, at least in some limited cases.

Lemma 5.8. Suppose that g1 is a minimal preimage of γ1, that g2 is a preimage of

γ2, and that `(g1) > `(g2). Then g1 + g2 is a minimal preimage of γ1 + γ2.

Proof. We have

Nn
n−1(g1 + g2) = Nn

n−1(g1) + Nn
n−1(g2) = {an−1} · (γ1 + γ2),
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and hence g1 + g2 is a preimage of γ1 + γ2. We also have `(g1 + g2) = `(g1) since

`(g1) > `(g2). Suppose for the sake of contradiction that there is a preimage g of

γ1 + γ2 so that `(g) < `(g1). Then `(g − g1) ≤ max{`(g), `(g2)} < `(g1). Since

additionally we have

Nn
n−1(g− g2) = Nn

n−1(g)−Nn
n−1(g2) = {an−1} · (γ1 + γ2)− {an−1} · γ2 = {an−1} · γ1,

we see that g−g2 is a preimage of γ1 with length strictly less than `(g1), contradicting

the minimality of g1.

The next result shows that elements in Γ(m,n)Gn−1 have minimal preimages whose

lengths are highly restricted.

Lemma 5.9. A minimal preimage g of γ ∈ Γ(m,n)Gn−1 has dimension pj + 1 for

some j ∈ {−∞, 0, · · · , i(E/F )}. When j = −∞, g ∈ kmEn \ ιnn−1(kmEn−1). When

j ≥ 0,

(σ − 1)`G(g)−1g ∈ ιn0 (N j
0 (kmEj)) \ ιn0 (N j+1

0 (kmEj+1)).

Proof. We know Nn
n−1({χ} · ιnn−1(γ)) = {an−1} · γ, and further `G({χ} · ιnn−1(γ)) ≤

pi(E/F ) + 1 since `G(χ) = pi(E/F ) + 1 and `G(γ) = 1. Hence a minimal preimage of γ

has dimension at most pi(E/F ) + 1.

Now suppose g is a minimal preimage of γ and `G(g) = pj + k ≤ pj+1 for some

k ≥ 2. Since i(E/F ) ≤ n − 1 we may assume j < n − 1. Now Nn
n−1((σ − 1)g) =

{an−1} · (σ − 1)γ = 0, and so Lemma 3.17 gives (σ − 1)g ∈ ιnj+1(kmEj+1). Because

`G((σ − 1)g) = `G(g)− 1 > pj, Corollary 3.20 shows there exists α ∈ kmEj+1 so that

(σ − 1)pj+1−1α = ιn0 (N j+1
0 α) = (σ − 1)`G(g)−1g.

Then g − ιnj+1

(
(σ − 1)pj+1−`G(g)α

)
has length less than `G(g), and since j < n − 1

further satisfies

Nn
n−1

(
g− ιnj+1((σ − 1)pj+1−pj−1α)

)
= Nn

n−1g = {an−1} · γ,

contradicting the minimality of g. Hence for some j ∈ {−∞, 0, · · · , i(E/F )} we have
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`G(g) = pj + 1.

Now we show the second part of the lemma. First, if j = −∞ the statement

that g = (σ − 1)p−∞g /∈ ιnn−1(kmEn−1) is obvious, because Nn
N−1(g) = {an−1} · γ 6= 0

whereas ιnn−1(kmEn−1) ⊆ ker Nn
n−1. Hence we assume j ≥ 0.

Since Nn
n−1((σ − 1)g) = 0 and `G((σ − 1)g) = pj Lemma 3.17 tells us that (σ −

1)g ∈ ιnj (kmEj), and so (σ − 1)pj
g ∈ ιn0 (N j

0 (kmEj)). If additionally (σ − 1)pj
g ∈

ιn0 (N j+1
0 (kmEj+1)) then there exists α ∈ kmEj+1 with ιn0 (N j+1

0 α) = (σ − 1)pj
g. We

will now show that α′ := (σ − 1)pj+1−pj−1α satisfies

1. Nn
n−1(ι

n
j+1(α

′)) = 0,

2. `G(α′) = `G(g), and

3. (σ − 1)`G(α′)−1α′ = (σ − 1)`G(g)−1g.

With these facts we can conclude that g− ιnj+1(α
′) is a preimage of γ with length less

than g, contrary to the minimality of g. Hence we can conclude

(σ − 1)`G(g)−1g = (σ − 1)pj

g ∈ ιn0 (N j
0 (kmEj)) \ ιn0 (N j+1

0 (kmEj+1)).

Property 2 follows from the fact that

`G(α′) = `G((σ − 1)pj+1−pj−1α) = `G(α)− pj+1 + pj + 1 = pj + 1,

and Property 3 follows because

(σ − 1)pj

α′ = (σ − 1)pj+1−1α = ιn0 (N j+1
0 (α)) = (σ − 1)pj

g.

For Property 1, we have Nn
n−1(α

′) = 0 if j + 1 ≤ n− 1, since Nn
n−1 (ιni (kmEi)) = 0 for

i ≤ n−1. When j+1 = n, we note that α′ is in the image of (σ−1)pn−pn−1−1, and that

pn − pn−1 − 1 ≥ pn−1. (Here we’ve used p > 2.) Hence α′ ∈ im(σ − 1)pn−1 ⊆ ker Nn
n−1

as desired.

We now show how to construct minimal preimages for generators of Γ(m, n) which

are sufficiently long (compared to the element χ).
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Lemma 5.10. Suppose γ ∈ Γ(m,n) has `Gn−1(γ) = pi for some i > i(E/F ). Then

{χ} · ιnn−1(γ) is a preimage of γ with length pi, and hence is a minimal preimage.

Proof. The Projection Formula (3.3) gives Nn
n−1({χ} · ιnn−1(γ)) = {an−1} · γ. We will

show that {χ} · ιnn−1(γ) has length at most pi. Lemma 5.5 then implies the desired

result.

Since χ has length pi(E/F ) + 1 ≤ pi as an element of H1(GE, µp), we know that

σpi
(χ) = χf p for some f ∈ E×. We also know that (σ − 1)pi ≡ (σpi − 1) kills γ, so

that σpi
γ = γ in kmEn−1. Hence we have

(σ − 1)pi−1
({χ} · ιnn−1(γ)

)
= {σpi

(χ)} · σpi (
ιnn−1(γ)

)− {χ} · ιnn−1(γ)

= {χ} · ιnn−1(γ)− {χ} · ιnn−1(γ) = 0.

Therefore `G({χ} · ιnn−1(γ)) ≤ pi.

With this result, we can show Assumption 5.1 holds for i(E/F ) ≤ 0.

Corollary 5.11. Suppose that i(E/F ) ≤ 0. If γ generates a summand of Γ(m,n)

and g is a minimal preimage of γ, then (σ − 1)`Gn−1
(γ)−1g is a minimal preimage of

(σ − 1)`Gn−1
(γ)−1g.

Proof. If γ ∈ Γ(m,n)Gn−1 there is nothing to prove. Otherwise `Gn−1(γ) = pi for

some i ≥ 1. By Lemma 5.10, γ has a minimal preimage {χ} · ιnn−1(γ) of dimension pi.

Hence (σ− 1)pi−1{χ} · ιnn−1(γ) is a preimage of (σ− 1)pi−1γ of dimension 1, and so is

minimal.

There is one result in this section which is conspicuously missing. Given the

importance of the operator σ − 1 in all of our computations, one naturally asks: if g

is a minimal preimage of γ, is (σ−1)g a minimal preimage of (σ−1)γ? This question

(and others like it) lead us to Assumption 5.1, and ultimately to the results we have

been able to give.
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5.3 The Exceptional Submodule

Having introduced minimal preimages, we are now ready to give the construction

which will allow us to prove Theorem 5.2.

We know that Γ(m, n) is a direct sum of cyclic submodules of dimensions pi,

i ∈ {0, · · · , n− 1}. We filter Γ(m,n)Gn−1 into submodules

Ii,j :=

{
γ ∈ Γ(m, n)Gn−1 :

γ ∈ im(σ − 1)pi−1 and a minimal

preimage of γ has length at most pj + 1

}
,

where i ∈ {0, · · · , n− 1} and j ∈ {−∞, 0, · · · , i(E/F )}. One can verify that

Ii,j ⊆ Ii′,j′ whenever i ≥ i′ and j ≤ j′, (5.12)

and that I0,i(E/F ) = Γ(m,n)Gn−1 (this is Lemma 5.9). We order the pairs (i, j) by

defining (i′, j′) < (i, j) whenever either j′ < j or j′ = j and i′ > i (a modified

lexicographical ordering).

Choose an Fp-basis In−1,−∞ for In−1,−∞, and inductively (using the lexicographical

ordering) choose an Fp-basis Ii,j for a complement to

〈Ii′,j′ : (i′, j′) < (i, j)〉 ∩ 〈Ii′,j′ : (i′, j′) ≤ (i, j)〉 in 〈Ii′,j′ : (i′, j′) ≤ (i, j)〉.

For each x ∈ Ii,j choose an element γx ∈ Γ(m,n) so that x = (σ− 1)pi−1γx, and then

pick gx ∈ kmEn a minimal preimage of γx. Define Xi,j =
∑

x∈Ii,j
〈gx〉. The submodule

X is defined to be
∑

i,j Xi,j.

Theorem 5.13. Suppose Assumption 5.1 holds. Then the submodule X =
∑

i,j Xi,j

just constructed satisfies

1. X = ⊕i,jXi,j, where 0 ≤ i ≤ n− 1 and j ∈ {−∞, 0, · · · , i(E/F )};

2. Xi,j is a direct sum of cyclic submodules of dimension pi + pj;

3. for i > i(E/F ) and j 6= −∞, Xi,j = ∅;

4. for every γ ∈ Γ(m, n) there exists g ∈ X which is a minimal preimage of γ;
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5. X ∩ ιn0 (N j
0 (kmEj)) = ⊕i′ ⊕j′≥j XG

i′,j′.

The proof of this result is spread across several lemmas which follow. We need

some results concerning the spaces Ii,j and the collections Ii,j. The first is an exercise

in definitions, though it gives important information about elements in 〈Ii,j〉.

Lemma 5.14. Each nontrivial x ∈ 〈Ii,j〉 is an element satisfying

• x ∈ im(σ − 1)pi−1 \ im(σ − 1)pi
and

• a minimal preimage of x has dimension exactly pj + 1.

Proof. For the first, we need only verify x /∈ im(σ − 1)pi
, since an element of 〈Ii,j〉

is an element of Ii,j, which by definition contains elements in the image of (σ −
1)pi−1. Since Γ(m,n) is a direct sum of cyclic submodules of dimension pi, where

i ∈ {−∞, 0, · · · , n−1}, then x ∈ Γ(m,n)Gn−1∩im(σ − 1)pi
implies x ∈ im(σ−1)pi+1−1.

Hence we have x ∈ Ii+1,j contrary to the selection of 〈Ii,j〉.
For the second, we need only verify that a minimal preimage does not have dimen-

sion less than pj + 1, since an element of 〈Ii,j〉 is an element of Ii,j, and hence has a

minimal preimage of dimension at most pj +1. If a minimal preimage had dimension

at most pj, Lemma 5.9 implies that a minimal preimage of x has dimension at most

pj−1 + 1. Hence we have x ∈ I0,j−1, contrary to the selection of 〈Ii,j〉.

Lemma 5.15. If γ ∈ im
(
(σ − 1)pi−1

)
∩ Γ(m, n)Gn−1, then

γ ∈
∑

i′≥i

j′∈{−∞,··· ,i(E/F )}

〈Ii′,j′〉.

Proof. Every element of Γ(m, n)Gn−1 can be written uniquely as a sum of elements

from the various 〈Ii,j〉 (where 0 ≤ i ≤ n − 1 and j ∈ {−∞, · · · , i(E/F )}), and

for a particular (i, j) we write proji,j(x) to denote the projection of an element x

onto the summand corresponding to 〈Ii,j〉 in this decomposition. With this notation,

our lemma says that an element γ ∈ im
(
(σ − 1)pi−1

)
∩ Γ(m,n)Gn−1 should have

proji′,j′(γ) = 0 whenever i′ < i. Our strategy will be as follows: assuming the
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presence of some nonzero proji′,j′(γ) with i′ < i, we remove a certain component

g =
∑

ĩ,j̃ proj̃i,j̃(γ) from γ so that γ − g ∈ Ii,j, yet γ − g contains a summand from

some Ii′,j′ where (i′, j′) > (i, j). This contradicts our construction of the Ii′,j′ .

So suppose that proji′,j′(γ) 6= 0 for some i′ < i, and choose (i′, j′) as large as

possible with i′ < i and so that

proji′,j′(γ) 6= 0. (5.16)

Hence for any (̃i, j̃) > (i′, j′) with proj̃i,j̃(x) 6= 0 we have ĩ ≥ i, and therefore

proj̃i,j̃(x) ∈ im(σ − 1)pi−1. It follows that

g :=
∑

(̃i,j̃)>(i′,j′)

proj̃i,j̃(x) ∈ im(σ − 1)pi−1,

and so γ−g ∈ im(σ−1)pi−1. Notice that γ−g is now expressable as a sum of elements

from 〈Iî,ĵ〉 with (̂i, ĵ) ≤ (i′, j′), and therefore can be written as a sum of elements

whose minimal preimages have dimension pj′ +1 (since (̂i, ĵ) ≤ (i′, j′) implies ĵ ≤ j′).

This shows that γ − g also has a preimage of dimension pj′ + 1, and so — combined

with our previous assertion that γ − g ∈ im(σ − 1)pi−1 — we have γ − g ∈ Ii,j′ . Now

Ii,j′ is spanned by Iĩ,j̃ for pairs (̃i, j̃) ≤ (i, j′) by construction, and since (i′, j′) > (i, j′)

we therefore have

proji′,j′ (γ − g) = 0.

But proji′,j′(γ − g) = proji′,j′(γ) by the construction of g, and so proji′,j′(γ) = 0

contrary to Equation (5.16).

With these lemmas in hand, we can begin to make progress towards proving

Theorem 5.13. We begin by showing that each γx generates a summand of Γ(m,n)

so that we may use Assumption 5.1.

Lemma 5.17.
∑〈γx〉 = ⊕〈γx〉 = Γ(m,n), where the sum is taken over all indices

(i, j) and elements x ∈ Ii,j.

Proof. The sum is direct because 〈γx〉Gn−1 = 〈x〉, and
∑〈x〉 = ⊕〈x〉 by construction.

We proceed to show the submodule spans Γ(m,n). We know
∑〈x〉 = Γ(m,n)Gn−1 ,
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and hence
∑〈γx〉 contains all elements of length 1. So suppose γ ∈ Γ(m,n) has

`Gn−1(γ) := ` > 1 and that
∑〈γx〉 contains all elements of length at most ` − 1.

Since Γ(m,n) is a direct sum of cyclic submodules of dimensions pi, 0 ≤ i ≤ n − 1,

the element g = (σ − 1)`−1γ is in the image of (σ − 1)pi−1 for some pi ≥ `. By

the previous lemma, we can write g =
∑

cx(σ − 1)`Gn−1
(γx)−1γx where the sum

is over elements x ∈ Ii′,j′ with i′ ≥ i and j′ ∈ {−∞, 0, · · · , i(E/F )}; in partic-

ular the elements (σ − 1)`Gn−1
(γx)−`γx exist since `Gn−1(γx) ≥ pi ≥ `. We have

`Gn−1

(
γ −∑

cx(σ − 1)`Gn−1
(γx)−`γx

)
< `, and — since

∑
cx(σ − 1)`Gn−1

(γx)−`γx is

obviously in
∑〈γx〉 — by induction we have γ ∈ ∑〈γx〉.

Corollary 5.18. For each x ∈ Ii,j, (σ − 1)pi−1gx is a minimal preimage of x.

Proof. By Lemma 5.17, γx is a summand of Γ(m,n). Since gx is a minimal preimage of

γx, Assumption 5.1 gives (σ−1)pi−1gx is a minimal preimage of (σ−1)pi−1γx = x.

The proof of Theorem 5.13(3)

Corollary 5.19. Ii,j = ∅ if i > i(E/F ) and j > −∞.

Proof. Lemma 5.10 says that an element γ ∈ Γ(m,n) of length pi for i > i(E/F ) has

minimal preimage of dimension pi. Hence if x is the fixed part of such a submodule

it must have a minimal preimage of dimension 1.

The proof of Theorem 5.13(2)

Lemma 5.20. If x ∈ Ii,j, then 〈gx〉 is a submodule of dimension pi + pj.

Proof. By Corollary 5.18 we know (σ − 1)pi−1gx is a minimal preimage of x. By

Lemma 5.14 we have `G

(
(σ − 1)pi−1gx

)
= pj + 1, and so `(gx) = pi + pj.

Lemma 5.21. For fixed 0 ≤ i ≤ n− 1 and j ∈ {−∞, 0, · · · , n− 1},

Xi,j = ⊕x∈Ii,j
〈gx〉.
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Proof. Suppose there is a non-trivial dependence among the gx, and (without loss,

via the Exclusion Lemma 2.8) we assume this dependence occurs in the fixed part of

each submodule. By the previous lemma, our dependence can be written

∑
x

cx(σ − 1)pi+pj−1gx = 0.

Since
∑

cx(σ−1)pi−1gx is a preimage of
∑

cxx, this dependence shows that a minimal

preimage of
∑

cxx has dimension strictly less than pj + 1. This contradicts Lemma

5.14.

The proof of Theorem 5.13(1)

Lemma 5.22. Let j ∈ {−∞, 0, · · · , n− 1}. Then

• when j = −∞,
(∑

i X
G
i,j

) ∩ ιnn−1(kmEn−1) = {0}; and

• when j ≥ 0,
(∑

i X
G
i,j

) ∩ ιn0 (N j+1
0 (kmEj+1)) = {0}.

Proof. In either case, by Lemmas 5.20 and 5.21 we have

∑
i

XG
i,j =

∑
i

(σ − 1)pi+pj−1Xij. (5.23)

From this equation, we check the first statement by assuming there exists some

α ∈ kmEn−1 with

0 6=
∑

i

∑
x∈Ii,−∞

cx(σ − 1)pi−1gx = ιnn−1(α).

Applying Nn
n−1 to each side we have 0 on the right and {an−1} · (

∑
cxx) on the left.

But {an−1} · (
∑

cxx) 6= 0 since the x ∈ Γ(m,n) are chosen to be independent, and so

we have a contradiction.

Again using Equation (5.23), we check the second statement by assuming we can

write

0 6=
∑

i

∑
x∈Ii,j

cx(σ − 1)pi+pj−1gx = ιn0 (N j+1
0 (α))



CHAPTER 5. THE CASE I(E/F ) > −∞ 56

for some α ∈ kmEj+1. Writing α′ = (σ − 1)pj+1−pj−1α we have Nn
n−1 (α′) = 0; this

is immediate when j < n − 1 because ιnn−1(kmEn−1) ⊆ ker Nn
n−1, and is true when

j = n− 1 since then

α′ ∈ im
(
(σ − 1)pn−pn−1−1

) ?⊆ im
(
(σ − 1)pn−1

)
⊆ ker Nn

n−1,

where containment ? follows since p > 2. This implies that
(∑

cx(σ − 1)pi−1gx

)
−α′

is a preimage of
∑

cxx.

We also have (σ − 1)pj
α′ = ιn0 (N j+1

0 (α)), so that

(σ − 1)pj

α′ = (σ − 1)pj


∑

i

∑
x∈Ii,j

cx(σ − 1)pi−1gx


 .

Hence `G

((∑
cx(σ − 1)pi−1gx

)
− α′

)
< pj, and so a minimal preimage of

∑
cxx has

dimension strictly less than pj + 1. By Lemma 5.9,
∑

cxx must therefore have a

minimal preimage of dimension at most pj−1 + 1, and therefore lies in I0,j−1. This

contradicts the choice of the elements x, which were to sit in a complement of a

submodule containing I0,j−1.

Lemma 5.24. X = ⊕i,jXi,j.

Proof. We proceed by induction on the index set (i, j). Suppose we have already

shown
∑

(i,j)<(̃i,j̃) Xi,j = ⊕Xi,j. Now if we have a dependence

∑

(i,j)≤(̃i,j̃)

∑
x∈Ii,j

cxfx(σ)gx = 0,

then the Exclusion Lemma 2.8 allows us to assume this dependence occurs in the

fixed submodule, so that we have

∑
i,j

∑
x∈Ii,j

cx(σ − 1)pi+pj−1gx = 0.

We must have cx 6= 0 for some x ∈ Iĩ,j̃ since the submodules Xi,j are independent for
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(i, j) < (̃i, j̃).

Suppose first that there is a nontrivial coefficient cx in this sum where x ∈ Iî,ĵ

and ĵ < j̃. Choosing ĵ to be the smallest index which shows up (nontrivially) in the

dependence, we reorganize and find

∑
i

∑
x∈Ii,ĵ

cx(σ − 1)pi−pĵ−1gx = −
∑

j>ĵ

∑
i

∑
x∈Ii,j

cx(σ − 1)pi−pj−1gx.

We shall examine the left- and right-hand side of this equation to arrive at a contra-

diction; we shall consider the cases ĵ = −∞ and ĵ ≥ 0 separately.

In the case ĵ = −∞, the left-hand side is a (nontrivial) element of
∑

i X
G
i,−∞ (it is

nontrivial since by induction we have already verified
∑

i Xi,ĵ = ⊕iXi,ĵ). The right-

hand side, however, is an element of ιnn−1(kmEn−1). This follows because a generator

gx of Xi,j has (σ − 1)pi
gx ∈ ker Nn

n−1, and hence (since j > −∞ and using Lemma

5.20) we have (σ−1)pi+pj−1gx ∈ ker Nn
n−1∩(kmEn)G. But this submodule is contained

in ιn0 (kmE0) ⊆ ιnn−1(kmEn−1) by Lemma 3.17, as claimed. Hence we have

∑
i

XG
i,−∞ ∩ ιnn−1(kmEn−1) 6= {0},

contradicting the first part of Lemma 5.22.

In the case ĵ ≥ 0, the left-hand side is a (nontrivial) element of
∑

i X
G
i,ĵ

. The

right-hand side is an element of ιn0 (N ĵ+1
0 (kmEĵ+1)) by Lemma 5.9 and the fact that

ιn0 (N ĵ+k
0 (kmEĵ+k)) ⊂ ιn0 (N ĵ+1

0 (kmEĵ+1)) for every k ≥ 1. Hence we have

∑
i

XG
i,ĵ
∩ ιn0 (N ĵ+1

0 (kmEĵ+1)) 6= {0},

contradicting Lemma 5.22.

In either case we see that our dependence only involves elements x ∈ Ii,j where

j = j̃, and so our dependence takes the form

∑
i

∑
x∈Ii,j̃

cx(σ − 1)pi+pj̃−1gx = 0.
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Since (σ − 1)pi−1gx is a minimal preimage of x, this implies the element
∑

cxx has

a minimal preimage of dimension at most pj̃. By Lemma 5.9,
∑

cxx has a minimal

preimage of dimension at most pj̃−1 + 1, and hence
∑

cxx must lie in I0,j̃−1. But

each x ∈ Ii,j̃ is selected to lie in a complement of this submodule, and so we have a

contradiction.

The proof of Theorem 5.13(5)

Lemma 5.25. For 0 ≤ j ≤ n− 1,

X ∩ ιn0 (N j
0 (kmEj)) = ⊕i′ ⊕j′≥j XG

i′,j′ .

Proof. First we note that ⊕i′ ⊕j′≥j XG
i′,j′ =

∑
i′

∑
j′≥j XG

i′,j′ by Lemma 5.24. Lemma

5.9 gives the ⊇ containment.

For the opposite containment, we show that for any ĵ < j we have

∑
i

XG
i,ĵ
∩ ιn0 (N j

0 (kmEj)) = {0},

which by the Exclusion Lemma 2.8 gives Xi,ĵ ∩ ιn0 (N j
0 (kmEj)) = {0}. Then the

independence of the Xi,j gives ⊕i ⊕ĵ<j Xi,ĵ ∩ ιn0 (N j
0 (kmEj)) = ∅, which implies the

desired result.

First, if ĵ ≥ 0 then Lemma 5.22 gives

{0} =
∑

i

XG
i,ĵ
∩ ιn0 (N ĵ+1

0 (kmEĵ+1)) ⊇
∑

i

XG
i,ĵ
∩ ιn0 (N j

0 (kmEj)).

For ĵ = −∞, Lemma 5.22 gives

{0} =
∑

i

XG
i,−∞ ∩ ιnn−1(kmEn−1) ⊇

∑
i

XG
i,−∞ ∩ ιn0 (N j

0 (kmEj)).
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The proof of Theorem 5.13(4)

Lemma 5.26. Let xl ∈ Ii(l),j(l) for 1 ≤ l ≤ r, and let cl ∈ F×p and 1 ≤ e(l) ≤ pi(l)−1.

Suppose that there exists ` so that ` = `
(
cl(σ − 1)e(l)gxl

)
for all 1 ≤ l ≤ r. Then

g :=
∑

l cl(σ − 1)e(l)gxl
is a minimal preimage of γ :=

∑
l cl(σ − 1)e(l)γxl

.

Proof. Suppose this is not the case, and let h be a minimal preimage of γ. Let

j = min{j(l)}, and (without loss) assume that j(l) = j for 1 ≤ l ≤ s, and that

j(l) > j for l > s. Hence for l > s we have `−pj−1+e(l) = pi(l) +pj(l)−pj−1 ≥ pi(l),

and so `Gn−1(γxl
) = pi(l) gives (σ − 1)`−pj−1+e(l)γxl

= 0.

We compute:

Nn
n−1

(
(σ − 1)`−pj−1h

)
= (σ − 1)`−pj−1{an−1} ·

( ∑

1≤l≤r

cl(σ − 1)e(l)γxl

)

= {an−1} ·
( ∑

1≤l≤r

(σ − 1)`−pj−1+e(l)γxl

)

= {an−1} ·
( ∑

1≤l≤s

(σ − 1)`−pj−1+e(l)γxl

)
.

This implies that (σ − 1)`−pj−1h is a preimage of
∑

1≤l≤s clxl ∈
∑n−1

i=0 〈Ii,j〉.
But now `(h) < `, and so we have `

(
(σ − 1)`−pj−1h

)
= `(h)−(`−pj−1) < pj +1.

Since
∑s

l=1 clxl has a preimage of length less than pj + 1, Lemma 5.9 says that it has

a preimage of length at most pj−1 + 1, and so
∑s

l=1 clxl ∈ I0,j−1. This, however,

contradicts the construction of the Ii(l),j (1 ≤ l ≤ s).

We are prepared to prove Theorem 5.13(4), though we state a more precise result.

Lemma 5.17 implies that every element γ ∈ Γ(m, n) can be written uniquely as an

Fp-linear combination of the elements (σ−1)eγx, where x ranges through all elements

of Ii,j, i and j range through {0, · · · , n − 1} and {−∞, · · · , i(E/F )} (respectively),

and 0 ≤ e ≤ pi − 1. The following lemma says that the ‘obvious’ preimage of γ in X

is a minimal preimage.
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Lemma 5.27. Suppose that γ ∈ Γ(m,n) takes the form

γ =
∑
i,j

∑
x∈Ii,j

pi−1∑
e=0

ce,x(σ − 1)eγx.

Then
∑
i,j

∑
x∈Ii,j

pi−1∑
e=0

ce,x(σ − 1)egx

is a minimal preimage for γ.

Proof. For a pair e, x, let `e,x := ` (ce,x(σ − 1)egx). Lemma 5.26 says that for fixed `

we have ∑

`e,x=`

ce,x(σ − 1)egx

is a minimal preimage of
∑

`e,x=` ce,x(σ − 1)eγx. Hence Lemma 5.8 says that

∑

`

∑

`e,x=`

ce,x(σ − 1)egx

is a minimal preimage of

∑

`

∑

`e,x=`

ce,x(σ − 1)eγx = γ.

Remark 5.28. The previous lemma doesn’t just tell us that X contains a minimal

preimage for every γ ∈ Γ(m, n). In fact, the lemma tells us that our Assumption 5.1

is equivalent to the a priori stronger

Assumption 5.29. For every γ ∈ Γ(m,n), if g is a minimal preimage of γ then

(σ − 1)g is a minimal preimage of (σ − 1)γ.
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5.4 Proof of Theorem 5.2

Let X = ⊕i,jXi,j be defined as in the previous section, and we construct the submod-

ules Yi.

For i = n, let In be an Fp-basis for ιn0 (Nn
0 (kmEn)). For each x ∈ In choose an

element αx ∈ kmEn with x = ιn0 (Nn
0 (αx)), and define Yn =

∑
x∈In

〈αx〉Fp[G]. The

Exclusion Lemma 2.8 gives
∑

x∈In
〈αx〉Fp[G] = ⊕x∈In〈αx〉Fp[G], and so Yn is a direct

sum of free Fp[G]-modules.

For i < n, let Ii be an Fp-basis for a complement of

〈ιn0 (N i+1
0 (kmEi+1)), X ∩ ιn0 (N i

0(kmEi)〉Fp

within ιn0 (N i
0(kmEi). For each x ∈ Ii choose αx ∈ kmEi with ιn0 (N i

0(αx)) = x, and

define Yi =
∑

x∈Ii
〈αx〉Fp[G]. This gives Yi ⊆ ιni (kmEi). As always, the Exclusion

Lemma 2.8 ensures Yi = ⊕x∈Ii
〈αx〉Fp[G], and hence Yi is a direct sum of free Fp[Gi]-

modules.

Our construction also implies

ιn0 (N j
0 (kmEj)) =

∑

j′≥j

Y G
j′ +

(
X ∩ ιn0 (N j

0 (kmEj))
)
,

which by Theorem 5.13(5) gives

ιn0 (N j
0 (kmEj)) =

∑

j′≥j

Y G
j′ +

∑
i

∑

j′≥j

XG
i,j′ . (5.30)

The submodule Yn is independent from the submodule ⊕i,jXi,j because Y G
n ⊆

ιn0 (Nn
0 (kmEn)), whereas ⊕i,jXi,j ∩ ιn0 (Nn

0 (kmEn)) = {0} by Theorem 5.13(5). So

assume Yk+1 + · · ·+ Yn +
∑

i,j Xi,j = Yk+1 ⊕ · · · ⊕ Yn ⊕⊕i,jXi,j, and we show that Yk

is independent from this collection. For this we remark that Y G
k ⊆ ιn0 (Nk

0 (kmEk)) is

chosen in a complement to the space spanned by ιn0 (Nk+1
0 (kmEk+1)) ⊇ ⊕i≥k+1Y

G
i and

X ∩ ιn0 (Nk
0 (kmEk)). The Exclusion Lemma 2.8 implies that Yk is independent from
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all of Yi (for i ≥ k + 1) and ⊕i,jXi,j. Hence

Y0 + · · ·+ Yn +
∑
i,j

Xi,j = Y0 ⊕ · · · ⊕ Yn ⊕
⊕
i,j

Xi,j := J.

We only have to show that kmEn = J , which we do by induction on the length of

elements. First, we claim that for any element with length at most pn − pn−1 there

exists γ′ ∈ kmEn with Nn
n−1(γ

′) = 0, `G(γ′) ≤ `G(γ), and so that γ′ ∈ J implies

γ ∈ J . For this, suppose that Nn
n−1(γ) 6= 0, since otherwise there is nothing to do.

Since (σ− 1)pn−pn−1
= ιn0 ◦Nn

n−1 annihilates γ, we have Nn
n−1(γ) ∈ ker ιnn−1. Hence we

have Nn
n−1(γ) = {an−1} · g for some g ∈ Γ(m,n). Theorem 5.13(4) says there exists

g ∈ X so that g is a minimal preimage of g. Hence we have γ′ = γ−g ∈ ker Nn
n−1, and

that `(γ′) ≤ `(γ) by minimality of g. Finally, if γ′ ∈ J , then because g ∈ X ⊆ J we

also have γ ∈ J . Hence if `G(γ) ≤ pn− pn−1, we can (and do) assume that γ ∈ Nn
n−1.

Let γ be an element of length 1. Then clearly `G(γ) ≤ pn − pn−1, so we can

assume Nn
n−1(γ) = 0. Lemma 3.17 gives γ ∈ ιn0 (kmE0), and hence Equation (5.30)

gives γ ∈ J .

Suppose that `(γ) = pk + l for some l ≥ 2. If `G(γ) ≤ pn − pn−1 then we can

assume γ ∈ ker Nn
n−1. Hence Corollary 3.20 gives (σ− 1)`(γ)−1γ ∈ ιn0 (Nk+1

0 (kmEk+1)).

By Equation (5.30) and the construction of the Yi and Xi,j, we can find some α ∈⊕
j′≥k+1 Yj′ ⊕

⊕
i

⊕
j′≥k+1 Xi,j′ with

(σ − 1)`(γ)−1γ = ιn0 (Nk+1
0 (α)) = (σ − 1)pk+1−1α.

Hence γ − (σ − 1)pk+1−`(γ)α is an element of length at most `(γ)− 1, and so is in J .

But since α ∈ J , so too is γ.

Finally, suppose that γ has `(γ) > pn− pn−1. Since p > 2 this gives `(γ) > 2pn−1,

and so Lemma 3.18 gives (σ − 1)`(γ)−1γ ∈ ιn0 (Nn
0 (kmEn)). But Y G

n is an Fp-basis for

ιn0 (Nn
0 (kmEn)), so there exists some α ∈ Yn with

(σ − 1)`(γ)−1γ = ιn0 (Nn
0 (α)) = (σ − 1)pn−1(α).

Therefore γ − (σ − 1)pn−`(γ)α is an element of length at most `(γ) − 1, and so by
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induction is in J . Since α ∈ J , we have γ ∈ J also.
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[8] J. Mináč, A. Schultz, and J. Swallow. Automatic realizations of Galois groups

with cyclic quotient of order pn. In review.

[9] J. Mináč, A. Schultz, and J. Swallow. Galois module structure of Milnor k-theory

mod ps in characteristic p. Available at http://arxiv.org/pdf/math.NT/0602546.

64



BIBLIOGRAPHY 65
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