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Let X be a metric space and define the category B(X) of manifolds bounded over X in the usual
way [FW]. The objects of B(X) are manifolds M equipped with proper2 maps p : M → X. These
maps p need not be continuous. A morphism (M1, p1) → (M2, p2) between objects of B(X) is a
continuous map f : M1 →M2 which is bounded over X in the sense that there exists k > 0 for which
d(p1(m), p2(f(m))) < k for all m ∈ M1. We can additionally form the bounded homotopy category
over X by insisting that all relevant maps and homotopies be bounded over the metric space X. Of
course, the bounded category is interesting only when X is a space of infinite diameter.

If M is an n-dimensional noncompact manifold, one can construct a structure set Sbdd(M) whose
elements are homotopy equivalences M ′ → M bounded over M . As in the compact case, there are
bounded L-groups Lbdd

∗ (M) fitting into the exact sequence

Hn+1(M ; L(e)) → Lbdd
n+1(M) → Sbdd(M) → Hn(M ; L(e)) → Lbdd

n (M).

If Sbdd(M) is trivial, we say that M is boundedly rigid; i.e. if f : M ′ → M is a bounded homotopy
equivalence, then f is boundedly homotopic to a homeomorphism. Results of the so-called bounded
Borel type can be found in [C], [PW], [FP]. See also [S], [PR], [Ra], [W] and [WW]. One recent
theorem of Chang and Weinberger [CW] proves that arithmetic manifolds (those of the form Γ\G/K
where Γ is an arithmetic lattice in a real connected linear Lie group G) are boundedly rigid, even
though they are in general not properly rigid if the rational rank of Γ exceeds 2. One can view
bounded rigidity as topological rigidity in the category of continuous coarsely Lipschitz maps.

Let M be a noncompact manifold. We say that M is uniformly contractible if there is a function
f : (0,∞) → (0,∞) such that, for each x ∈ X and t > 0, the ball B(x, t) is contractible in the ball
B(x, f(t)). This definition arises from the natural notion of the bounded fundamental group in this
bounded context. See [W] or [CW] for details. For such uniformly contractible manifolds, Ferry and
Pedersen [FP] have shown that two basic principles of surgery theory, the product theorem and the
π-π theorem, still hold for bounded surgery problems. It is natural then to consider the rigidity
properties of uniformly contractible spaces. In this paper we prove a rigidity theorem for such spaces
that satisfy a particular asymptotic dimension condition.

The asymptotic dimension of a metric space X is the smallest integer n such that, for any r > 0,
there exists a uniformly bounded cover C = {Ci}i∈I for which no ball of radius r in X intersects
more than n + 1 members of C. This notion was introduced by Gromov in [G]. As mentioned in
[Y1], the notion of asymptotic dimension is a coarse geometric analogue of the covering dimension
in topology, invariant under quasi-isometries. It is well known that any finitely generated subgroup
of Gromov’s hyperbolic groups has finite asymptotic dimension as metric spaces with word-length
metrics. For spaces whose asymptotic dimension is not necessarily finite, we can formulate a more
precise notion.

1The first and third authors are partially supported by NSF grants.
2Here we use the term proper loosely. The map p does not have to be continuous, but the inverse image of bounded

sets should be bounded.
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Definition: Let X be a metric space. For every r > 0, let f(r) be the infimum over all n ∈ N for
which there is a uniform bounded cover C = {Ci}i∈I such that, for every x ∈ X, the ball B(x, r)
intersects at most n + 1 members of C. We will call f : (0,∞) → R the asymptotic dimension
growth of X.

It is clear that the asymptotic growth of any metric spaceX is nondecreasing in r and is eventually
constant iff X has finite asymptotic dimension.

Theorem: Let X be a uniformly contractible manifold with bounded geometry whose asymptotic
growth f satisfies f(r) = o(ln r). Then X is boundedly rigid.

This paper is inspired by two results. In [Y1] Yu proves that the coarse Baum-Connes conjecture
holds for proper metric spaces with finite asymptotic dimension. The coarse Baum-Connes conjecture
for a space X states that, if {Ck} is an anti-Cech system of locally finite and uniformly bounded
covers for X and N(Ck) is the associated nerve space endowed with the spherical metric for each k,
then the induced map

lim
k→∞

Ki(N(Ck)) → Ki(C∗(X))

is an isomorphism. Here C∗(X) is the usual Roe algebra of locally compact operators onX with finite
propagation speed. With the descent principle, one can prove that the (strong) Novikov conjecture
holds for Γ if (1) Γ is a finitely generated group for which BΓ has the homotopy type of a CW
complex and (2) Γ has finite asymptotic dimension as a metric space with the word-length metric.
The coarse Baum-Connes conjecture also implies the Novikov conjecture on homotopy invariance of
higher signature, the Gromov-Lawson-Rosenberg conjecture for K(π, 1) manifolds and the zero-in-
the-spectrum for uniformly contractible Riemannian manifolds with bounded geometry and finite
asymptotic dimension. Our paper is an extended L-theoretic analogue of Yu’s theorem. We should
mention that the Novikov conjecture in algebraic K-theory was proved for the groups with finite
asymptotic dimension in [B] and [CG]. In [B] the L-theory analogue was stated for the case of
finite asymptotic dimension (without proof). Dranshnikov has recently proved that the polynomial
asymptotic dimension growth condition implies property A [D] and hence the coarse Baum-Connes
conjecture by a result in [Y2].

Our other source of inspiration was the development of “squeezing structures,” i.e. an ε-δ surgery
exact sequence for noncompact manifolds with bounded geometry. We recall that a connected locally
finite polyhedron B with a metric bilipschitz equivalent to the barycentric metric is said to have
bounded geometry if there is a finite bound on the number of vertices of B adjacent to a given
vertex [F]. Classically, a smooth manifold M has bounded geometry if it has bounded sectional
curvature and a lower bound on the injectivity radius. Under various conditions on the dimension
of the manifold M and the control p : M → B, the ε-structure set Sε(M → B) is stable for all
sufficiently small ε > 0. Using such notions of squeezing, we shall prove the bounded rigidity of
uniformly contractible manifolds with slow asymptotic growth by establishing that the assembly
map A : Hn(M ; L(e)) → Lbdd

n (M) is an isomorphism. We will also exploit a Mayer-Vietoris sequence
of [RY] for these controlled surgery groups.

We would like to thank Bruce Hughes, Erik Pedersen and Shmuel Weinberger for helpful conver-
sations.
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I. Bounded surgery

LetM be a metric space and letX be a CW-complex. Consider a map p : X →M , not necessarily
continuous, with the property that there is a positive integer k and a covering {Uα} of X such that
diam p(Uα) < k for all α. If k can be chosen so that diam p(C) < k for each cell of X, then we say
that (X, p) is a bounded CW complex over M . We say that the pair (X, p) is 0-connected if, for every
d > 0, there exists k so that, if x, y ∈ X and d(p(x), p(y)) ≤ d, then x and y may be joined by a path
in X whose image in M has diameter less than k. It is (-1)-connected if there is k such that, for each
m ∈M , there is x ∈ X such that d(p(x),m) < k. The following definitions may be found in [FP].

Definition: Let (X, p) be a bounded CW complex over the metric space M , and let p : X → M be
0-connected.

1. We say that (X, p) has trivial bounded fundamental group if, for each d > 0, there is k so
that for every loop α : S1 → X with diam p ◦ α(S1) < d, there is a map α : D2 → X so that
diam p ◦ α(D2) < k.

2. We say that (X, p) has bounded fundamental group π if there is a π-cover X̃ such that the map
π̃ : X̃ → M gives rise to a bounded CW complex (X̃, π̃) over M which has trivial bounded
fundamental group.

One of the main results of Ferry and Pederson is a surgery result of the following sort. Consider
a bounded surgery problem

(Mn, ∂M) → (X, ∂X) → Z,

where ∂M → ∂X is a bounded (simple) homotopy equivalence, whereX is 0- and (-1)-connected with
bounded fundamental group π and n ≥ 5. There is then a geometrically defined L-group Lbdd

n (M,Zπ)
such that one can do surgery relative boundary to produce a bounded (simple) homotopy equivalence
iff an invariant in Lbdd

n (M,Zπ) vanishes. Moreover every element in Lbdd
n (M,Zπ) is realized as the

obstruction problem with target N × I and homotopy equivalence on the boundary for an arbitrary
(n − 1)-dimensional manifold N → Z which is 0- and (-1)-connected with bounded fundamental
group π.

Let M be a uniformly contractible noncompact manifold with asymptotic growth f and bounded
geometry. Let the identity p : M → M be the control map. We want to show that, under various
conditions on f , the manifold M is boundedly rigid, i.e. the bounded structure set Sbdd(M → M)
contains only one element. Notice that uniform contractibility implies that the bounded fundamental
group is trivial. The bounded surgery exact sequence is given by

· · · → Lbdd
n+1(M,Z) → Sbdd(M →M) → Hn(M,L(e)) → Lbdd

n (M,Z).

We say that M is boundedly rigid if its bounded structure set Sbdd(M → M) contains only one
element; that is, if f : M ′ →M is a bounded homotopy equivalence, then f is boundedly homotopic
to a homeomorphism. The following sections are devoted to validate the bounded rigidity, i.e. the
bijectivity of the assembly map Hn(M,L(e)) → Lbdd

n (M,Z), for manifolds M whose asymptotic
dimension growth f satisfies f(r) = o(ln r).

II. The nerve space
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Consider a locally finite and uniformly bounded cover C = {Oα} for a proper metric space
X. Construct a simplicial complex N(C) whose vertex set is C and for which a finite subset
{Ok1 , . . . ,Okn} ⊆ C spans an n-simplex in N(C) if and only if the intersection

⋂n
i=1Oki

is nonempty.
This complex N(C), called the nerve space of the cover C, can be endowed with the so-called spheri-
cal metric, whereby every simplex {Ok1 , . . . ,Okn} in N(C) is identified with the upper n-hemisphere
in Rn+1 by the correspondence

n∑
i=1

tiOki
7−→

(
n∑

i=1

t2i

)−1/2

(t1, . . . , tn),

where
∑n

i=1 ti = 1 and ti ≥ 0 for all i. The standard spherical metric on each simplex of N(C) is
defined to be the metric induced from the standard spherical metric on Sn, and the spherical metric
on N(C) is defined as the maximal metric whose restriction to each simplex is the standard spherical
metric. The distance between two points is infinite if and only if they lie in different connected
components of N(C).

Let M be a manifold with bounded geometry. By Lemma 3.7 of [HR], the asymptotic dimension
growth f of such a manifold is always defined, so that there is a sequence of open covers {Ck}∞k=1 such
that each Ck = {Ok,`}∞`=1 is an open cover of M satisfying the following conditions (these conditions
may be somewhat relaxed):

1. For each positive integer k, there is a positive real number Rk such that sup` diamOk,` < Rk

with Rk increasing and tending to infinity.

2. If k′ > k, each member of Ck is contained in some member of Ck′ .

3. For each k ∈ Z≥1, if x ∈M , then B(x, k) intersects with at most dk + 1 members of Ck, where
dk = f(k) and f is the asymptotic dimension growth.

4. For all x ∈M and r > 0, there isK such that, for each k ≥ K, there is ` such thatB(x, r) ⊆ Ok,`

(i.e. every ball in M is eventually wholly contained in some open set for all sufficiently large
covers).

Properties 1 and 2 imply that the sequence {Ck}∞k=1 is an anti-Cech system of M . See [R] and [Y1].
As a result, for every pair k2 > k1, there is a simplicial map ik1,k2 : N(Ck1) → N(Ck2) which maps
a simplex {O1, . . . ,On} ∈ N(Ck1) to a simplex {O′1, . . . ,O′n} ∈ N(Ck2) satisfying Oi ⊆ O′i for all i.
Our theorem reduces to the following claim.

Claim: Let N(Ck) be the nerve space associated to Ck endowed with the spherical metric. Note that
dimN(Ck) ≤ dk. If dk = o(ln k), then

lim
k→∞

Hn(N(Ck),L(e)) → lim
k→∞

Lbdd
n (N(Ck))

is an isomorphism.

Let M be a uniformly contractible manifold with bounded geometry. Let C = {Ok}k be a uniformly
bounded open cover that is uniformly locally finite, i.e. supk diamOk < ∞. We wish to construct
maps φ : M → N(C) and ψ : N(C) →M which are “nearly” homotopy inverses.
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1. Let {χk} be a partition of unity subordinate to {Ok}. Define, for all x ∈ M , the quantity
φ(x) =

∑
k χk(x)Ok ∈ N(C).

2. We now use the uniformly contractibility of M to construct a map ψ : N(C) → M by the
following process. Let f : C → M be a map for which f(Ok) ∈ Ok. Define ψ inductively on
the dimension i of the skeleton N(C)(i). When i = 0, let ψ = f . Assume that we have defined
ψ : N(C)(i−1) → M . Let [Ok1 , . . . ,Oki

] be an i-simplex. Extend ψ to [Ok1 , . . . ,Oki
] from

ψ|boundary such that, for all j = 1, . . . , i and x ∈ [Ok1 , . . . ,Oki
], we have d(ψ(x), ψ(Okj

)) < R

for some uniform R.

Note that ψ ◦φ : M →M is homotopic to the identity function on M but φ ◦ψ : N(C) → N(C) may
not be homotopic to the identity on N(C), although it moves points at most a distance R. Notice
in particular that the map ψ : N(C) →M is a homotopy domination.3 If the cover C ′ is very small,
then ψ ◦φ : M →M is very close to the identity and may be homotopically connected to the identity
geodesically. For larger covers C, we consider a sufficiently large cover C ′ subordinating C and the
composition φ : M → N(C) → N(C ′) so that ψ ◦ φ is still homotopic to the identity on M .

III. Controlled L-theory

At this point, we must appeal to controlled ε-δ surgery theory, particularly surgery over the ring
Z. In this section we will offer a brief overview and important theorems taken from [F] and [RY],
where a more complete treatment of the material may be found.

Definition: For an integer n ≥ 0, a pair of nonnegative numbers δ ≥ ε ≥ 0, and a ring with involution
R, the set Lδ,ε

n (X,Y, pX , R) contains the equivalence classes of finitely generated n-dimensional
ε-connected ε-quadratic complexes on pX that are ε-Poincaré over X − Y , where X is a fixed
metric space and Y is a subset of X. The equivalence relation is generated by finitely generated
δ-connected δ-cobordisms that are δ-Poincaré over X − Y . Here pX denotes a fixed control map
from a space M to the metric space X. For the precise definitions of these δ-ε concepts, please
refer to [RY, pages 3–5].

Notation: We use the following abbreviations proposed by [RY page 9]:

1. Lδ,ε
n (X, pX , R) = Lδ,ε

n (X, ∅, pX , R)

2. Lε
n(X,Y, pX , R) = Lε,ε

n (X,Y, pX , R)

3. Lε
n(X, pX , R) = Lε,ε

n (X, pX , R)
3A map d : X → Y is a homotopy domination if there is a map u : Y → X so that d ◦u is homotopic to the identity.

Wall’s papers on “Finiteness conditions for CW complexes” show that, when X is a finite polyhedron, there is a K0

obstruction to modifying a homotopy domination to give a homotopy equivalence from a finite complex to Y . The

main technical result of [Q] is that the epsilon K0 group is trivial and that “controlled dominations” can be modified

to give controlled equivalences. What we have at this stage of the construction is a sort of bounded domination. We

have a bit of extra information about distances in the nerve’s metric on the domain side, so it is not exactly a bounded

domination in the sense of Ferry-Pedersen, since in [FP] we do not pay attention to the metric in the domain.

5



Direct sum (C,ψ) ⊕ (C ′, ψ′) = (C ⊕ C ′, ψ ⊕ ψ′) of free R-module chain complexes C on pX : M →
X endowed with an n-dimensional ε-quadratic structure ψ induces an abelian group structure on
Lδ,ε

n (X,Y, pX , R). If [C,ψ] = [C ′, ψ′] ∈ Lδ,ε
n (X,Y, pX , R), then there is a finitely generated 100δ-

connected 2δ-cobordism between (C,ψ) and (C ′, ψ′) that is 100δ-Poincaré over X − Y 100δ. Here Y µ

means the µ-neighborhood of Y in X. If δ′ ≥ δ and ε′ ≥ ε, then there is a homomorphism

Lδ,ε
n (X,Y, pX , R) → Lδ′,ε′

n (X,Y, pX , R)

which sends [C,ψ] to [C,ψ]. This is called the relax-control map.
More generally, [RY page 13] consider the following construction. Fix a subset Y of X and let

F be a family of subsets of X such that Z ⊃ Y for each Z ∈ F . Let n ≥ 0 and δ ≥ ε ≥ 0.
Define LF ,δ,ε

n (Y, pX , R) to be the equivalence classes of finitely generated n-dimensional ε-Poincaré
ε-projective quadratic complexes ((C, p), ψ) such that [C, p] = 0 in K̃n,ε

0 (Z, pZ , R) for each Z ∈ F .
The equivalence relation is generated by finitely generated δ-Poincaré δ-cobordisms on pY such that
[D, q] = 0 in K̃n+1,δ

0 (Z, pZ , R). Direct sum induces an abelian group structure on LF ,δ,ε
n (Y, pX , R)

and we abbreviate LF ,ε
n (Y, pX , R) = LF ,ε,ε

n (Y, pX , R). There is an obvious map i : Lδ,ε
n (Y, pY , R) →

LF ,δ,ε
n (Y, pX , R) given by [C,ψ] 7→ [(C, 1), ψ].

Construction: Let X be the union of two closed subsets A and B with intersection N = A ∩B. Set
α = 20000 and µn = 160000(n+ 5). There are three maps defined as follows.

1. When δ′ ≥ αδ and ε′ ≥ αε, then we have a map

i∗ : L{A,B},δ,ε
n (N, pX , R) → Lδ′,ε′

n (A, pA, R)⊕ Lδ′,ε′
n (B, pB, R)

defined by i∗(x) = (iA(x),−iB(x)).

2. When δ′ ≥ δ and ε′ ≥ ε, then we have a map

j∗ : Lδ,ε
n (A, pA, R)⊕ Lδ,ε

n (B, pB, R) → Lδ′,ε′
n (X, pX , R)

given by j∗(x, y) = jA∗ + jB∗, where jA : A→ X and jB : B → X are inclusion maps.

3. When W ⊃ Nµnδ, δ′ ≥ µnδ and ε′ ≥ µnε, then there is the boundary map

∂ : Lδ,ε
n (X, pX , R) → L

{A∪W,B∪W},δ′,ε′
n−1 (W,pX , R).

With these maps, one can construct a Mayer-Vietoris sequence for the quadruple (N,A,B,X) at
the expense of enlarging some of the relevant subsets.

Theorem A1: [RY pages 25–26] For any integer n ≥ 2, let µn and α be as given above. Then the
following holds true for any control map pX and two closed subsets A and B of X with X = A∪B.
Let N = A ∩B.

1. Suppose that δ′ ≥ αδ, ε′ ≥ αε, δ′′ ≥ δ′ and ε′′ ≥ ε′ so that the following maps are defined:

L{A,B},δ,ε
n (N) → Lδ′,ε′

n (A)⊕ Lδ′,ε′
n (B) → Lδ′′,ε′′

n (N).

Then the composition is zero.
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2. Suppose that δ′ ≥ δ, ε′ ≥ ε, W ⊃ Nµnδ′ , δ′′ ≥ µnδ
′ and ε′′ ≥ µnε

′ so that the following maps
are defined:

Lδ,ε
n (A)⊕ Lδ,ε

n (B) → Lδ′,ε′
n (X) → L

{A∪W,B∪W},δ′′,ε′′
n−1 (W ).

Then the composition is zero.

3. Suppose that W ⊃ Nµnδ, δ′ ≥ µnδ, ε′ ≥ µnε, δ′′ ≥ αδ′ and ε′′ ≥ αε′ so that the following maps
are defined:

Lδ,ε
n (X) → L

{A∪W,B∪W},δ′,ε′
n−1 (W ) → Lδ′′,ε′′

n−1 (A ∪W )⊕ Lδ′′,ε′′

n−1 (B ∪W ).

Then the composition is zero.

Theorem A2: For any integers n ≥ 0, there is a constant λn > 1 which is linear in n (one can take
λn = 100000(4n+ 50)) such that the following statements hold true for any control map pX and
any two closed subsets A and B of X with A ∪B = X. Let N = A ∩B.

1. Suppose that δ′′ ≥ δ′ and ε′′ ≥ ε′ so that the map j∗ : L
δ′,ε′
n (A) ⊕ Lδ′,ε′

n (B) → Lδ′′,ε′′
n (X) is

defined. If δ ≥ λnδ
′′ and W ⊃ Nλnδ′′ , then the relax-control image of ker j∗ in Lαδ

n (A ∪W )⊕
Lαδ

n (B ∪W ) is contained in im i∗ below:

Lδ′,ε′
n (A)⊕ Lδ′,ε′

n (B)

��

j∗ //Lδ′′,ε′′
n (X)

L
{A∪W,B∪W},δ
n (W )

i∗ //Lαδ
n (A ∪W )⊕ Lαδ

n (B ∪W )

2. Suppose that W ⊃ Nκnδ′ , δ′′ ≥ κnδ
′ and ε′′ ≥ κnε

′, so that the map ∂ : Lδ′,ε′
n (X) →

L
{A∪W,B∪W},δ′′,ε′′
n−1 (W ) is defined. If δ ≥ λnδ

′′, then the relax-control image of ker ∂ in Lδ
n(X)

is contained in im j∗ below:

Lδ′,ε′
n (X)

��

∂ //L
{A∪W,B∪W},δ′′,ε′′
n−1 (W )

Lδ
n(A ∪W )⊕ Lδ

n(B ∪W )
j∗ //Lδ

n(X)

3. Suppose that δ′′ ≥ αδ′ and ε′′ ≥ αε′ so that i∗ : L
{A,B},δ′,ε′
n−1 (N) → Lδ′′,ε′′

n−1 (A) ⊕ Lδ′′,ε′′

n−1 (B) is
defined. If δ ≥ λnδ

′′, M ⊃ Nλnδ′′ and W = Mκnδ, then the relax-control image of ker i∗
in L

{A∪W,B∪W},δ
n−1 (W ) is contained in ker ∂ associated with the two closed subsets A ∪M and

B ∪M .

L
{A,B},δ′,ε′
n−1 (N)

��

i∗ //Lδ′′,ε′′

n−1 (A)⊕ Lδ′′,ε′′

n−1 (B)

Lδ
n(X) ∂ //L

{A∪W,B∪W},δ
n−1 (W )
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Theorem B: [RY, page 10, Proposition 3.10] Let F = (f, f) be a map from pX : M → X to pY : N →
Y , and suppose that f is Lipschitz continuous with Lipschitz constant λ, i.e. there is a constant
λ > 0 such that d(f(x1), f(x2)) ≤ λd(x1, x2) for all x1, x2 ∈ X. Then F induces a homomorphism

F∗ : Lδ,ε
n (X,X ′, pX , R) → Lδ′,ε′

n (Y, Y ′, pY , R)

if δ′ ≥ λδ, ε′ ≥ λε and f(X ′) ⊆ Y . If two maps F = (f, f) and G = (g, g) are homotopic through
maps Ht = (ht, ht) such that each ht is Lipschitz continuous with Lipschitz constant λ, δ′ ≥ λδ,
ε′ ≥ λε and ht(X ′) ⊆ Y ′, then F and G induce the same homomorphism

F∗ = G∗ : Lδ,ε
n (X,X ′, pX , R) → Lδ′,ε′

n (Y, Y ′, pY , R).

IV. Main Theorem

Before proving our theorem, we review a construction given by the third author in [Y1, page
348]. Given a proper metric space X with asymptotic dimension growth f , we can arrange our
covers from Section II so that Rk+1 > 4Rk for all k and diam(Ok,`) < Rk/4 for all Ok,` ∈ Ck. For
each k, let C ′k = {B(Ok+1,`, Rk) : Ok+1,` ∈ Ck+1}. Clearly the family {C ′k} is an anti-Cech system for
X. In addition we can arrange the covers {Ck} so that no ball with radius Rk intersects more than
f(Rk) + 1 members of Ck+1. Let m be a fixed positive integer. For each n > m, we can construct
differentiable functions χn : [0,∞) → R such that

1. χn(t) = 1 for all t ∈ [0, 1],

2. χn(t) = 0 for all t ≥ Rn,

3. |χ′n(t)| ≤ c/Rn for some uniform constant c > 0.

For such n and U ∈ Cn+1, define U ′ = {V ∈ N(C ′m) : V ∈ C ′m and V ∩ U 6= ∅}, where V ∈ N(C ′m)
is the vertex of N(C ′m) corresponding to V ∈ C ′m. Given x ∈ N(C ′m), we construct the map

gm,n(x) =
1
A

∑
U∈Cn+1

χn(d(x,U ′))B(U,Rn) where A =
∑

W∈Cn+1

χn(d(x,W ′)).

Furthermore, we can choose the map im,n : N(C ′m) → N(C ′n) in Section II so that, for each V ∈
Cm+1, we have im,n(B(V,Rm)) = B(U,Rn) for some U ∈ Cn+1 satisfying U ∩ V 6= ∅. Also, define
F (t, x) = tgn(x) + (1− t)im,n(x) for all t ∈ [0, 1] and x ∈ N(C ′m).

Lemma 1: Let X be a proper metric space with asymptotic dimension growth f . Assume that gm,n,
F and im,n are as above. Assume that all nerve complexes are endowed with the spherical metric.
We then have the following.

1. The assignment gm,n is a proper Lipschitz map from N(C ′m) to N(C ′n) with a Lipschitz constant
depending only on f ;

2. The assignment F is a Lipschitz straight-line homotopy [0, 1]×N(C ′m) → N(C ′n) between gm,n

and im,n with a Lipschitz constant depending only on f ;
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3. For any R > 0, there is a constant c(R) > 0 such that d(gm,n(x), gm,n(y)) < c(R)
√

f(Rn)3

Rn
for

all x, y ∈ N(C ′m) satisfying d(x, y) ≤ R.

The proof of the lemma is a straightforward consequence of the properties of χn and the definition
of the spherical metric. See [Y1, pages 347–348]. Note that (3) implies that gm,n is distance-
shrinkning if X has slow asymptotic dimension growth.

Lemma 2: For each r, there are constants c0 > 0 and ε0 > 0 such that if Y is an `-dimensional
simplicial polyhedral complex and if δr < ε0/c

`
0, then we have a bijection Hr(Y,L(e)) → Lδr

r (Y ).

Proof: The result certainly holds if ` = 0. Assume by induction that the result holds when dim Y =
`− 1 for some positive integer ` and for all r. We shall prove the theorem when dim Y = `. For
each simplex ∆ of dimension ` in Y , we define

∆1 = {x ∈ ∆: d(x, c(∆)) ≤ 1/100} and ∆2 = {x ∈ ∆: d(x, c(∆)) ≥ 1/100},

where c(∆) is the center of ∆. Let D` be the collection of all `-dimensional simplices in Y and set

A` =
⋃

∆∈D`

∆1 and B` =
⋃

∆∈D`

∆2.

Notice that A` and B` have the following properties:

1. A` is Lipschitz homotopy equivalent to the zero-dimensional simplex {c(∆): ∆ ∈ D`};

2. B` is Lipschitz homotopy equivalent to the (`− 1)-skeleton Y (`−1) of Y ;

3. the `-skeleton Y (`) is equal to A` ∪ B` and A` ∩ B` is the disjoint union of the boundaries of
all ∆1, where ∆ is an `-dimensional simplex in Y (`).

Statements (1) and (2), along with Lemma 1 and the induction hypothesis, imply that the result holds
for A and B. By (3) and the induction hypothesis, the desired result also holds for A`∩B`. Using
the five-lemma, the controlled Mayer-Vietoris sequence (Theorems A1 and A2) and the Lipschitz
homotopy equivalence result of [RY] (Theorem B), we conclude that there exist constants c0 > 0
and ε0 > 0 such that, if δr < ε0/c

`
0, then the assembly map Hr(Y,L(e)) → Lδr

r (Y ) is a bijection.
Here ε0 depends on the control required to execute the base case, and c0 depends on the control
constants in the controlled Mayer-Vietoris sequence (which in turn depend on r) and in the
Lipschitz result from Section III.

Theorem: Let M be an r-dimensional uniformly contractible manifold with bounded geometry whose
asymptotic growth f satisfies f(s) = o(ln s). Then M is boundedly rigid.

Proof: Recall that it suffices to prove the claim in Section II. Let {Ck} be a sequence of covers of
M as given in Section II. Condition (3) gives an inclusion map jm,n : Cm → Cn whenever n > m.
By the discussion above, this map induces an inclusion map im,n : N(C ′m) → N(C ′n), where {C ′k}
is a sequence of covers of M satisfying the same conditions as {Ck}. Lemma 1 allows us to
construct, for such pairs (m,n), a map gm,n : N(C ′m) → N(C ′n) such that (a) gm,n is boundedly
homotopic to im,n, and (b) gm,n is distance-shrinking in the sense of part 3 of Lemma 1. If r
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is the dimension of M , let gr
m,n : Lbdd

r (N(C ′m)) → Lbdd
r (N(C ′n)) be the map of bounded L-theory

and irm,n : Hr(N(C ′m),L(e)) → Hr(N(C ′n),L(e)) be the map of homology induced by gm,n. Let
gr
m,n : Lbdd

r (N(C ′m)) → Lbdd
r (N(C ′n)) be the composition gr

n−1,n ◦ gr
n−2,n−1 ◦ · · · ◦ gr

m,m+1.
For any m ∈ Z≥1, consider the diagram

Hr(N(C ′m),L(e))
irm,m+1 //

��

Hr(N(C ′m+1),L(e))

��

// · · · // lim
k→∞

Hr(N(C ′k),L(e))

��

Lbdd
r (N(C ′m))

gr
m,m+1

//Lbdd
r (N(C ′m+1)) // · · · // lim

k→∞
Lbdd

r (N(C ′k))

It is sufficient for our purposes to prove that the mapA∞ : lim
k→∞

Hn(N(C ′k),L(e)) −→ lim
k→∞

Lbdd
n (N(C ′k))

is an isomorphism since the maps φk constructed in Section II give rise to a commutative diagram

Hr(M,L(e)) //

��

Lbdd
r (M)

��
lim

k→∞
Hr(N(C ′k),L(e)) // lim

k→∞
Lbdd

r (N(C ′k))

for which the vertical maps are isomorphisms by the condtion that M is a uniformly contractible
manifold with bounded geometry.

We will prove the surjectivity of A∞. The same argument shows injectivity as well. Any element
x ∈ lim

k→∞
Lbdd

r (N(C ′k)) may be considered as an element in Lt
r(N(C ′m)) for some real t > 0 and

sufficiently large integer m. By Lemma 1, for any positive integer j and real number u > 0 the
function gr

1,j may therefore be considered a map with domain Lu
r (N(C ′1)) and range Laj(u)

r (N(C ′j)),

where aj(u) = c(u)
√

f(Rj)3

Rj
as in Lemma 1. An element x ∈ Lt

r(N(C ′m)) may be pulled back to an
element y ∈ Lt

r(N(C ′1)) via gr
1,m, so that gr

1,j(y), which by abuse of notation we will still call x, lies

in Laj(t)
r (N(C ′j)) for all positive integers j > m.
To prove the surjectivity of A∞, consider the constants c0 and ε0 > 0 (which depend on r, the

dimension of our original space M) guaranteed by Lemma 2. Recall that ` ≡ dimN(C ′j) ≤ f(j)
and Rj+1 ≥ 4Rj for all j. The assumption on the asymptotic dimension growth f of M states that
f(j) ≤ K log j for some constant K. Now

c(t) c`0

√
f(Rj)3

Rj
≤ c(t) cK log j

0

√
f(Rj)3

Rj
= c(t) jK log c0

√
f(Rj)3

Rj
.

Given the growth rate of Rj and f(j), we can find an integer J such that the above quantity is less
than ε0 for all j ≥ J . Therefore aj(t) < ε0/c

`
0 for all j ≥ J , where ` = dimN(C ′j). By Lemma 2,

this condition then yields a bijective map

Hr(N(C ′j),L(e)) → L
aj(t)
r (N(C ′j))

10



for all j ≥ J . By the diagram

Hr(N(C ′j),L(e))

��vvlllllllllllll

L
aj(t)
r (N(C ′j))

//Lbdd
r (N(C ′j))

we see that x ∈ L
aj(t)
r (N(C ′j)) has a preimage in Hr(N(C ′j),L(e)) for all sufficiently large j, so the

map A∞ is a surjection. �
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