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This paper is based on lectures given by the second author at the 2000 Summer conference at Mt. Holyoke.
We also added a brief epilogue, essentially “What there wasn’t time for.” Although the focus of the conference
was on noncommutative geometry, the topic discussed was conventional commutative motivations for the
circle of ideas related to the Novikov and Baum-Connes conjectures. While the article is mainly expository,
we present here a few new results (due to the two of us).

It is interesting to note that while the period from 80’s through the mid-90’s has shown a remarkable
convergence between index theory and surgery theory (or more generally, the classification of manifolds)
largely motivated by the Novikov conjecture, most recently, a number of divergences has arisen. Possibly,
these subjects are now diverging, but it also seems plausible that we are only now close to discovering truly
deep phenomena and that the difference between these subjects is just one of these. Our belief is that, even
after decades of mining this vein, the gold is not yet all gone.

As the reader might guess from the title, the focus of these notes is not quite on the Novikov conjecture it-
self, but rather on a collection of problems that are suggested by heuristics, analogies and careful consideration
of consequences. Many of the related conjectures are false, or, as far as we know, not directly mathematically
related to the original conjecture; this is a good thing: we learn about the subtleties of the original problem,
the boundaries of the associated phenomenon, and get to learn about other realms of mathematics.

Lecture One: Topology andK-theory

1. For the topologist, the Novikov conjecture is deeply embedded in one of the central projects of his field,
that of classifying manifolds within a homotopy type up to homeomorphism or diffeomorphism. To put
matters in perspective, let us begin by reviewing some early observations regarding this problem.

The first quite nontrivial point is that there are closed manifolds that are homotopy equivalent but
not diffeomorphic (homeomorphism is much more difficult). It is quite easy to give examples which
are manifolds with boundary: the punctured torus and the thrice punctured2-sphere are homotopy
equivalent but not diffeomorphic; their boundaries have different numbers of components.

The first class of examples without boundary are the lens spaces: quotients of the sphere by finite
cyclic groups of isometries of the round metric. To be concrete, letS2n−1 be the unit sphere inCn

with coordinates(u1, . . . , un). For anyn-tuple of primitivek-th roots of unitye2πiar/k, one has aZk
action by multiplying ther-th coordinate by ther-th root of unity. The quotient manifolds under these
actions are homotopy equivalent (preserving the identification of fundamental group withZk) iff the
products of the rotation numbersa1a2 · · · an are the same modk. On the other hand, these manifolds
are diffeomorphic iff they are isometric iff the sets of rotation numbers are the same (i.e. they agree after
reordering). There are essentially two different proofs of this fact, both of which depend on the same
sophisticated number-theoretic fact, the Franz independence lemma.

The first proof, due to de Rham, uses Reidemeister torsion. Since the cellular chain complex of a
lens space is acyclic when tensored withQ[x] for x a primitive k-th root of unity, one gets a based
(by cells) acyclic complex0 → C2n−1 → · · · → C0 → 0, which gives us a well-defined nonzero
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determinant element inQ[x] (now called the associated element ofK1). This quantity is well-defined
up to multiplication by a root of unity (and a sign). One now has to check that these actually determine
the rotation numbers, a fact verified by Franz’s lemma. See [Mi] and [Co]. The second proof comes
much later and is due to Atiyah and Bott [AB]. It uses index-theoretic ideas critically, and implies more
about the topology of lens spaces. We will return to it a bit later.

After de Rham’s theorem, it was very natural to ask, following Hurewicz, whether all homotopy
equivalent simply-connected manifolds are diffeomorphic. (It was not until Milnor’s examples of exotic
spheres that mathematicians really considered seriously the existence of different categories of mani-
folds.) However, very classical results can be used to disprove this claim as well. Consider a sphere
bundle over the sphereS4 where the fiber is quite high-dimensional. Sinceπ3(O(n)) = Z for large
n, we can construct an infinite number of these bundles by explicit clutching operations; their total
spaces are distinguished byp1. On the other hand, if we could nullhomotop the clutching maps in
π3(Isometries(Sn+1)) pushed intoπ3(Selfmaps(Sn+1)), we would show that the total space is homo-
topy equivalent to a product. A little thought shows thatπ3(Selfmaps(Sn+1)) is the same as the third
stable homotopy group of spheres, which is finite by Serre’s thesis. Combining this information, one
quickly concludes that there are infinitely many manifolds homotopy equivalent toS4 × Sn+1 for large
n, distinguished byp1.

Much of our picture of high-dimensional manifolds comes from filtering the various strands arising
in the above examples, analyzing them separately, and recombining them.

2. Before considering the parts that are most directly connected to operatorK-theory, it is worthwhile to
discuss the connection between classification of manifolds and algebraicK-theory.

The aforementioned Reidemeister torsion invariant is an invariant of complexes defined under an
acyclicity hypothesis. It is a computationally feasible shadow of a more basic invariant of homotopy
equivalences, namely Whitehead torsion.

LetX andY be finite complexes andf : X → Y a homotopy equivalence. Then using the chain com-
plex of the mapping cylinder off relX or its universal cover, one obtains as before a finite-dimensional
acyclic chain complex of basedZπ chain complexes. The torsionτ(f) of f is the element ofK1(Zπ)
determined by means of the determinant, up to the indeterminacy of basis, which is a sign and element
of π (viewed as a1× 1 matrix over the group ring). The quotientK1(Zπ)/± π is denoted by Wh(π).

A geometric interpretation of the vanishing ofτ(f) is the following: say thatX andY are stably dif-
feomorphic (or, more naturally for this discussion, PL homeomorphic) if their regular neighborhoods in
Euclidean space are diffeomorphic. The quantityτ(f) vanishes ifff is homotopic to a diffeomorphism
between thickenings ofX andY . A homotopy equivalence with vanishing torsion is called asimple
homotopy equivalence. As before, we recommend [Co, Mi] for Whitehead’s theory of simple homotopy
and [RS] for the theory of regular neighborhoods.

Remark: If we requireX andY to be manifolds, then one can ask that the stabilization only allow
taking products with disks. Doing such does change the notion: the entire difference however is that we
have discarded the topologicalK-theory. Two manifolds will be stably diffeomorphic in this restricted
sense iff they have the same stable tangent bundle (in KO, or KPL for the PL analogue) and are simple
homotopy equivalent. The proof of this fact is no harder than the polyhedral result.

3. Much deeper are unstable results. The prime example is Smale’sh-cobordism theorem (or the Barden-
Mazur-Stallings extension thereof).
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Theorem: LetMn be a closed manifold of dimension at least5; then{Wn+1: M is one of two compo-
nents of the boundary ofW , andW deform retracts to both}/diffeomorphism (or PL homeomorphism
or homeomorphism) is in1− 1 correspondence with Wh(π).

The variousW in the theorem are calledh-cobordisms. The significance of this theorem should be
obvious: it provides a way to produce diffeomorphisms from homotopy data. As such, it stands behind
almost all of the high-dimensional classification theorems.

4. The proof that Wh(0) = 0 is an easy argument using linear algebra and the Euclidean algorithm. Thus,
in the simply-connected case theh-cobordisms are products. In particular, every homotopy sphere is the
union of two balls and anh-cobordism that runs between their boundaries. Theh-cobordism theorem
asserts that theh-cobordism is just an annulus; since the union of a ball and an annulus is a ball, one can
show that every homotopy sphere can be obtained by glueing two balls together along their boundary.
This result implies the Poincaré conjecture in high dimensions: every homotopy sphere is a PL sphere.
Using versions for manifolds with boundary, one can quickly prove the following theorems.

Zeeman unknotting theorem: Every proper embedding1 ofDn inDn+k for k > 2 is PL or differentiably
trivial.

Rothenberg-Sondow Theorem: Ifp is a prime number, smoothZp actions on the disk whose fixed set is a
disk of codimension exceeding2 are determined by an element of Wh(Zp) and the normal representation
at a fixed point.

In the topological setting, the actions in the Rothenberg-Sondow theorem are conjugate iff the nor-
mal representations are the same. However, all known proofs of this claim are surprisingly difficult.
Although Whitehead torsion is a topological invariant for closed manifolds, the situation is much more
complicated for problems involving group actions and stratified spaces. Unfortunately, this topic cannot
be discussed here, but see [Ste, Q4, We4].

The group Wh(Zp) is free abelian of rank(p − 3)/2; it is detected by taking the determinant of a
representative matrix and mapping the group ringZ[Zp] to the ring of integers in the cyclotomic field
associated to thep-th roots of unity. According to Dirichlet’s unit theorem, the group of units of this
number ring has rank(p− 3)/2.

5. In general, there have been great strides in calculating Wh(π) for π finite (see [O]). We will see later
that Wh(π) is conjecturally0 for all torsion-free groups, and that there is even a conjectural picture of
what Wh(π) “should” look like in general.

This picture looks even stronger when combined with higher algebraicK-theory. Remarkably, the
best general lower bounds we have for higher algebraicK-theory are based on the ideas developed for
application in operatorK-theory, namely, cyclic homology. See [BHM]. These results have implications
for lower bounds on the size of the higher homotopy of diffeomorphism groups.

6. The h-cobordism theorem removes the possibility of any bundle theory, since bundles over anh-
cobordism are determined by their restrictions to an end.2 A key to understanding the role of bundles,
unstably, is provided by Wall’sπ − π theorem (as reformulated using work of Sullivan):

1This means that the boundary is embedded in the boundary.
2This claim is correct only when we discuss stable bundle theory; there is room for unstable information from the way in which

the two boundary components destabilize the “same” stabler tangent bundle of the interior. This information does actually arise in
the topological setting, and reflects a relationship between the destabilization of bundle theory and algebraicK-theory. Note that
the “local structure” around points in the interior of theh-cobordism is the product ofR and the local structure at a boundary point;
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Theorem: LetM be a manifold with boundary such that∂M → M induces an isomorphism of fun-
damental groups, and letS(M) = {(M ′, f) | f : (M ′, ∂M ′) → (M,∂M) is a simple homotopy
equivalence of pairs}/Cat isomorphism. There is then a classifying space depending on the category,
denoted F/Cat, such thatS(M) = [M : F/Cat]. ThisS(M) is called the (Cat-) structure set ofM .

If M is noncompact, one can analogously defineSp(M), the proper structure set, using proper ho-
motopy equivalences. This is all explained in [Wa, Br].

7. Much is known about the various F/Cat. For the duration we shall assume that Cat = Top. In that case,
first of all, one has a complete analysis of F/Cat (due mainly to Sullivan, with an assist by Kirby and
Siebenmann):

[M : F/Top]⊗ Z(2)
∼= H4(M ;Z(2))⊕H8(M ;Z(2))⊕H12(M ;Z(2))⊕ · · ·
⊕H2(M ;Z2)⊕H10(M ;Z2)⊕H14(M ;Z2)⊕ · · ·

at2, and away from2,

[M : F/Top]⊗ Z[1/2] ∼= KO0(M)⊗ Z[1/2].

In the second formula, a structure is associated to (the “Poincaré dual” of) the difference of the
signature operators on domain and range. In fact, all the formulas turn out to work much better in
Poincaŕe dual form; theπ − π classification should then be given byS(Mn) ∼= Hn(M ;L), whereL is
the spectrum whose homotopy type is determined by the above calculations in cohomology. The reason
for this terminology will become clearer as we progress. The connection to the signature operator is
hopefully suggestive as well. (For these topics, see [MM] and [RW2].)

8. The material in the previous sections gives rise to a complete analysis ofS(M) forM closed and simply-
connected. Let̂M denoteM with a little open ball removed. ThenS(M) = S(M̂) by the Poincaŕe
conjecture. The latter satisfies the hypotheses of theπ − π theorem, and thusS(M) ∼= Hn(M̂ ;L).
Concretely, up to finite indeterminacy, the structure set is determined by the differences between the
Pontrjagin classespi(M) for 4i < n.

What aboutpi when4i = n? The answer is that it is determined by the lower Pontrjagin classes.
The reason is that the Hirzebruch signature theorem asserts that sign(M4i) = 〈Li(M), [M ]〉. Here,
the quantity sign(M) is the signature of the inner product pairing onH2i of the oriented manifold
M , andL is a graded polynomial in the Pontrjagin classes ofM . This formula has many remarkable
consequences. For instance, Milnor used it to detect exotic spheres. However, for us, it first implies that
a particular combination of Pontrjagin classes is homotopy invariant. As a second point, Hirzebruch’s
formula can be viewed as a simple application of the Atiyah-Singer index theorem [APSIII].

9. For general non-simply connected manifolds, there may exist further restrictions on the variation of the
Pontrjagin classes, and there may exist more manifolds with the same tangential data. We shall deal
with each of these possibilities one at a time. Although the complete story must necessarily involve
interesting finite-order invariants, we shall concentrate on the⊗Q story which, at our current level of
ignorance, seems to be closely tied to analysis. Said slightly differently, the whole known and even
conjectured story with⊗Q can be explained analytically. However, no one has any direct approach
to obtaining isomorphisms betweenL-theory and operatorK-theory, and as we shall explain in the
epilogue, this connection seems unlikely.

equivalently, in the case of manifolds, the dimension of a manifold is one more than the dimension of its boundary. Hence the
“tangential data” on the interior is ”stabler” than the data on the boundary.
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10. The Novikov conjecture is the assertion that, iff : M → Bπ is a map, then the image of the Poincaré
dual of the gradedL-class ofM in ⊕Hn−4k(Bπ;Q) is an oriented homotopy invariant. Note that,
for the homotopy equivalent manifold, one must use the obvious reference map toBπ obtained by
composing the homotopy equivalence withf .

For π trivial, this statement is a consequence of the Hirzebruch signature theorem. In fact, the
Novikov conjecture is known for an extremely large class of groups at present. We will describe some
of this work in the next lecture.

11. It is worth noting that the cases for which the Novikov conjecture is known are the only combinations
of Pontrjagin classes that can be homotopy invariant. This claim can be proven axiomatically from the
simply-connected case together with cobordism of manifolds and theπ−π theorem. However, we shall
“take the high road,” and use the surgery exact sequence, and work for simplicity in the topological
category. In this venue, we assert that, forM a compact closed manifold of dimension at least5, there
is an exact sequence,

· · · → Ln+1(π1)→ S(M)→ Hn(M,L)→ Ln(π1)→ · · ·

where theL are 4-periodic, purely algebraically defined groups, and covariantly functorial inπ1 =
π1M .

If M has boundary and if one is working rel boundary then the same sequence holds. For manifolds
with boundary, and for working not rel boundary, the sequence changes by the presence of relative
homology groups and relativeL-groupsL(π1, π

∞
1 ); theπ − π theorem then reduces to the statement

thatL(π, π) = 0, which is perfectly obvious from the exact sequence of a pair (which indeed does hold
in this setting).

We can do better by taking advantage of the periodicity.3 Let M be ann-manifold, and define
Sk(M) = S(M ×Dj) for anyj such thatn+ j − k is divisible by4. With that notation, the sequence
becomes

· · · → Ln+1(π1)→ Sn(M)→ Hn(M,L)→ Ln(π1)→ · · ·

(with obvious relative versions). With this notation, one can then say that the sequence is a covariantly
functorial sequence of abelian groups and homomorphisms. The push-forward map on structures (ele-
ments ofS-groups are called “structures”) is closely related to the push-forward of elliptic operators of
Atiyah and Singer [ASI] although defined very differently.

The functoriality implies that one can defineSn(X) for any CW complexX just by taking the direct
limit of Sn(Xk) asXk runs though any ascending union of sub-CW-complexes whose union isX. (Note
that homology andL-theory both commute with direct limits.) Consequently, the mapHn(M,L) →
Ln(π1) factors through the mapHn(Bπ1,L) → Ln(π1). The latter is called theassembly map. Forπ
trivial, the classification of simply-connected manifolds explained in Section 8 implies that the assembly
map for a trivial group is an isomorphism. (Hence the homology theory introduced in section 7 hasL-
groups as its homotopy groups, explaining the source of the notation.) The groupsLi(e) = Z, 0,Z2, 0
for i = 0, 1, 2, 3 mod4, respectively, exactly the homotopy groups of F/Top mentioned above.

3Periodicity is not quite true in the topological category: it can fail by a copy ofZ, if M is closed, and cannot fail ifM has
boundary. See [Ni], and see also [BFMW] for the geometric explanation and repair of this failure.
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The commutativity of the diagram

Hn(M,L)

��

// Ln(π1)

��
Hn(Bπ1,L) // Ln(π1)

quickly implies that the only possible restriction on the characteristic classes comes from the difference
of theL-classes inHn(Bπ1,L). Moreover, the homotopy invariance of the higher signatures is exactly
equivalent to the rational injectivity of the assembly map.

12. A similar discussion applies to manifolds with boundary. We leave it to the reader, with references to
[We1,3] for the impatient reader. For instance, theπ − π theorem implies that there are no homotopy
invariant characteristic classes ofπ − π manifolds. The extended higher signature conjecture would
have posited the proper homotopy invariance of theL-class inHn(Bπ1, Bπ

∞
1 ) = 0.

13. Although rational injectivity of the assembly map is conjectured to be universal, surjectivity is not. The
simplest example of this notion comes from the Hirzebruch signature formula. Note that the right-hand
side of the formula

sign(M) = 〈L(p∗(M)), [M ]〉
is clearly multiplicative in coverings: ifN → M is finite covering, theL-classes pull back, but the
fundamental class is multiplied by the degree of the covering. This argument implies that, for closed
manifolds, signature is multiplicative in coverings.

Note that, as a consequence, ifM andM ′ are homotopy equivalent and cobordant by a cobordismV ,
then an obstruction to the homotopy equivalence being homotopic to a diffeomorphism can be obtained
by gluing the boundary components ofV together to obtain a Poincaré duality space, which might well
not satisfy the multiplicativity of signature. In fact, this method can be extended further, as noted by
[Wa] and [APS1, APS3], and underlies the proof of de Rham’s theorem on lens spaces given in [AB].
Suppose for simplicity thatM has fundamental groupπ, and so does the cobordismV mentioned above.
Then the cohomology of the universal cover ofV has aπ action on it. Theequivariant signatureof this
quadratic form can be shown to be a multiple of the regular representation; i.e. each character except for
the one corresponding to the trivial element must vanish. Atiyah and Bott had computed these characters
for the lens space situation in the course of their argument. The multiplicativity issue is equivalent to
the vanishing of the average of these characters.

Remark:The multiplicativity invariant can be used even if the fundamental group is infinite: one must
use von Neumann signature of the universal cover in place of ordinary signature. (The relevant multi-
plicativity is Atiyah’sL2 signature theorem.) This is the key point in the proof of the following flexibility
theorem, perhaps one of the simplest general applications of analytic methods that does not yet have a
purely topological proof:

Theorem [CW]: IfM4k+3 has non-torsion-free fundamental group,k > 0, thenS(M) is infinite. (This
theorem fails in all other dimensions, except0 and1 when the hypothesis is vacuous – at least if the
Poincaŕe conjecture is true.)
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14. The “trick” of the previous section can sometimes be turned into a method or an invariant, a so-called
secondary invariant, even in situations where the manifolds are not (a priori known to be) cobordant. A
first example arises in the situation of the previous section. IfM is an odd-dimensional manifold with
finite fundamental group, then some multiplesM , of it bounds a manifold with the same fundamental
group. One can then consider the signature of the universal cover of that manifold, multiplied by1/s
to correct for the initial multiplication. (Signature can be defined for manifolds with boundary just by
throwing away the singular part of the inner product.)

A much deeper way of accomplishing the same task, which applies in some circumstances where the
cobordism group is not torsion, is due to [APS], who defined a real-valued invariant of odd-dimensional
manifolds with finite-dimensional unitary representations of their fundamental groups. If the image of
the representation is a finite group, it reduces to what we just considered above, but in general, it is much
more subtle. Years ago, the first author conjectured that:

Conjecture: Ifπ1M is torsion-free, then for any unitary representationρ, the Atiyah-Patodi-Singer
invariant is homotopy invariant; in general it is an invariant up to a rational number.

The second statement was proven in [We2] as an application of known cases of the Novikov conjec-
ture. In the original paper, it was shown to follow from the Borel conjecture. Keswani [Ke1] proved it
for a class of groups, such as amenable groups, assuming a version of the Baum-Connes conjecture.

Cheeger and Gromov [ChG] considered the von Neumann analogue of this discussion. Mathai [Mat]
made the analogous conjecture to the one above: that the Cheeger-Gromov invariant is homotopy in-
variant for manifolds with torsion-free fundamental group. Special cases are verified in [Mat, Ke2, CW,
Ch2], in all cases using Novikov-like ideas. The flexibility result of the previous section is the converse
to Mathai’s conjecture.

Finally, we should mention the ideas of [Lo1] and [We1] which define “higher” versions of these sec-
ondary signature-type invariants in situations in which the Novikov conjectures provide for the existence
of higher signatures to be definable (in a homotopy-invariant fashion). Unlike the classical secondary in-
variants, these ideas require some cohomological vanishing condition, rather like Reidemeister torsion.
We will postpone further discussion of these subjects until section 17.

15. We have seen that the entire classification of simply-connected manifolds follows essentially from the
Poincaŕe conjecture (Smale’s theorem) and the formal structure of surgery theory. The same result is
true for any fundamental group: understanding any manifold with that fundamental group well enough
will determine the classification theory for all. The Borel conjecture, or topological rigidity conjecture,
is the following:

Conjecture: IfM is an aspherical manifold andf : M ′ → M is a homotopy equivalence, thenf is
homotopic to a homeomorphism.

In fact, it is reasonable to extend the conjecture to manifolds with boundary and homotopy equiv-
alencesf that are already homeomorphisms on the boundary. (Similarly, one can deal with proper
homotopy equivalences between noncompact aspherical manifolds that are assumed to be homeomor-
phisms in the complement of some unspecified compact set.)

Notice that the Borel conjecture implies that Wh(π) = 0 for the fundamental group of an aspherical
manifold (exercise!). Note also that, by enlarging our perspective to include the noncompact case, the
aggregate ofπ to which the conjecture applies is the set of countable groups of finite cohomological
dimension. (In fact, it is pretty obvious, by direct matrix considerations, that one can remove the count-
ability, if one so desires!) Furthermore, by feeding the problem into the surgery exact sequence, one
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obtains in addition the statement thatA : Hn(Bπ1,L) → Ln(π1) is an isomorphism for alln. Indeed,
the Borel conjecture (for alln) is equivalent to the verity of these two assertions.

Much is known about the Borel conjecture; so far, no one knows of any counterexample to the claim
that these algebraic assertions hold for all finite groups. (Note that for all groups with torsion, the map
A fails to be a surjection by the flexibility theorem forn divisible by4.)

16. It is probably worthwhile to discuss the motivation for the Borel conjecture and its variants. Reportedly,
Borel asked this question in response to the theorems of Bieberbach and Mostow about the classifica-
tion of flat and hyperbolic manifolds, respectively. In the first case, an isomorphism of fundamental
groups gives an affine diffeomorphism between the manifolds and in the second (assuming the dimen-
sion is at least three) it gives an isometry (which is unique). Since symmetric manifolds of noncompact
type are all aspherical, Borel suggested that perhaps this condition should be the topological abstrac-
tion of a symmetric space, and that, without assuming a metric condition, one should instead try for a
homeomorphism.

In light of this suggestion, it is worthwhile to consider the noncompact version. For noncompact
hyperbolic manifolds of finite volume (the nonuniform hyperbolic lattices), Mostow’s rigidity theorem
remains true (although its failure in dimension2 is even more dramatic: the homotopy type does not even
determine the proper homotopy type of the manifold) as was proven by Prasad. It might therefore seem
reasonable (as was done in at least one ICM talk!) to suggest that Borel’s conjecture could be extended
to properly homotop a homotopy equivalence to a nonuniform lattice quotient to a homeomorphism.
The following result that we proved jointly with Alex Lubotzky shows that this situation never occurs.
(We shall give a different nonuniform rigidity theorem in Part II.)

Theorem: Suppose thatΓ is a nonuniform irreducible arithmetic lattice in a semisimple Lie groupG.
Let K be the maximal compact subgroup ofG. If rankQ(Γ) > 2, then there is a non-properly-rigid
finite-sheeted cover ofΓ\G/K.

In part II we will explain why it is extremely likely that proper rigidity holds if rankQ(Γ) = 1 or 2. (If
rankQ(Γ) = 0, then the lattice is cocompact by the well-known theorem of Borel and Harish-Chandra.)

The theorem is a simple combination of several deep ingredients. By the theory of Borel and Serre
[BS], we find that any suchΓ\G/K has a compactification as aπ − π manifold. According to Sieben-
mann’s thesis, any manifold proper homotopy equivalent to it will have the same property. Using the
h-cobordism theorem, any such manifold has a unique compactification so that the extension of the
proper homotopy equivalence to the compactification is a simple homotopy equivalence. By theπ − π
theorem, we haveSp(Γ\G/K) = [Γ\G/K; F/Top]. The calculations in section 7 then show that it
suffices to prove thatH2(Γ\G/K;Z2) is nonzero, perhaps after replacingΓ by a subgroup of finite
index, which we will still callΓ. Note that, under our assumptions, all irreducible lattices inΓ have
vanishing first Betti number. IfΓ were simple, this statement would follow from Kazhdan’s property
T . In general, it follows from superrigidity (see [Mar, Z]). By the universal coefficient theorem (recall
thatΓ is finitely generated), it thus suffices to find a latticeΓ such thatH1(Γ;Z2) is nonzero. In fact,
every infinite linear group has a subgroup with this property; this statement is equivalent to the theorem
of [Lu] and [Weh] that every infinite linear group has an even-order quotient.

Remark:The theorem of Lubotzky is stronger and implies that one can forceSp(Γ\G/K) to have large
rank by choosing the lattice more carefully. In fact, if theR-rank is large enough and rankQ(Γ) > 2,
then one can construct infinite structure sets with nontrivial elements detected by Pontrjagin classes (e.g.
for SLn(Z) for n sufficiently large, using Borel’s calculations). Unlike the elements constructed here,
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these elements do not die on passage to further finite-sheeted covers. Note that, for a product of three
punctured surfaces, the proper rigidity conjecture is always false (for any cover), but is virtually true, in
that any counterexample dies on passing to another finite cover!

17. We now shall consider a much more fruitful (but still false) conjecture suggested by the heuristic that
lead to the Borel conjecture: the “equivariant Borel conjecture” or “equivariant topological rigidity con-
jecture.” Notice that Mostow rigidity actually immediately implies the following seeming strengthening
of itself.

Theorem: Suppose thatM andN are hyperbolic manifolds, andf : π1N → π1M is an isomorphism
which commutes with the representation of a groupG on Out(π) induced by actions ofG by isometries
onM andN . Then there is a unique isometry betweenM andN (realizingf ) which conjugates the
G-actions to each other.

Mostow rigidity is the case of this theorem whenG is trivial; on the other hand, since the isometry
betweenM andN realizing any given group isomorphism is unique, it must automatically intertwine
any actions by isometries that agree on fundamental groups. So let us now make another conjecture:

Conjecture: Suppose thatG acts aspherically and tamely on a compact closed aspherical manifoldM ,
and thatf : N →M is an equivariant homotopy equivalence, thenf is homotopic to a homeomorphism.

The condition that the action be tame means that one assumes that all components of all fixed point
sets are, say, locally flatly embedded topological submanifolds, and the asphericality means that these
components are all aspherical. This condition means that these spaces are the terminal objects in the
category of spaces which are connected to a given one by equivariant1-equivalences; i.e. one considers
mapsX → Y which induce isomorphisms[K,X]G → [K,Y ]G for anyG−1-complex, i.e. a1-complex
with aG-action. See [May].

In fact, this conjecture is false for several different reasons. However, it points us in the right direction.
For one, its analytic analogue is the celebrated Baum-Connes conjecture. For a second, its “Novikov
shadow” does seem to be true:

Conjecture (Equivariant Novikov conjecture, see [RW1]): Suppose thatG acts tamely and aspherically
on a finite-dimensional spaceX, and thatf : M → X is an equivariant map. Then for any equivariant
mapg : N → M which is a homotopy equivalence, one hasf∗g∗(∆(N)) = f∗(∆(M)) in KG

∗ (X),
where∆ denotes the equivariant signature operator.

The hypothesis thatG acts tamely is point-set theoretic; smoothness is certainly more than enough.
For example, this conjecture holds wheneverX is a symmetric space of noncompact type andG is a
compact group of isometries ofX. It is also worth noting that one can often build equivariant maps from
anyM with the appropriate fundamental group to thisX using harmonic map techniques; see [RW1].

An analysis of this conjecture (for the case of discreteG) is that, ifG is the “orbifold fundamental
group ofX,” i.e. 1 → π1X → Γ → G → 1 is exact, then KOG∗ (X) ⊗ Z[1/2] must inject into
L(Γ)⊗Z[1/2]. In the next sections we will discuss more refined estimates ofL(Γ). Working rationally,
we see where we went wrong in our understanding ofL(Γ). Before our estimate was KOn(BΓ)⊗Q =
KOn(X/G) ⊗ Q, which differs a great deal from KOGn (X) ⊗ Q because of the fixed-point sets. IfX
is a point, we see that the representation theory ofG enters, exactly as we saw before in our discussion
of secondary invariants. In fact, most of the higher secondary invariants, when they are defined, take
values in KOGn+1(EG,X)⊗Q.
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Remark:The conjecture that these refined lower bounds forL-theory hold universally would imply the
infiniteness of structure sets proven above usingL2 signatures.

18. Unfortunately, the equivariant Borel conjecture is false. The first source of counterexamples discovered
was related to the Nil’s of algebraicK-theory [BHS, Wald1]. Soon thereafter analogous counterexam-
ples were discovered based on Cappell’s Unils [Ca1]. See [CK] for a discussion of these examples. The
full explanation requires an understanding of equivarianth-cobordism and classification theorems; we
cannot describe these topics here, but recommend the surveys [CaW, HW, We4].

Let us begin with the equivarianth-cobordism theorem. According to Steinberger and West’s analysis
(Quinn provided a more general version for all stratified spaces), one has an exact sequence:4

· · · → H∗(M/G; Wh(Gm))→Wh(G)→Whtop(M/G rel sing)→ H∗(M/G;K0(Gm))

→ K0(G)→ Ktop
0 (M/G rel sing)→ H∗(M/G;K−1(Gm))→ · · ·

whereGm is the isotropy of the pointm. Here the “rel sing” means that we are consideringh-
cobordisms which are already products on the singular set; note that, unlike the smooth case, this con-
dition does not give us a neighborhood of the set on which it is a product. It is precisely that which is
measured by the homology term.

Perhaps the connection between a Whitehead group andK0 seems odd. This interaction is analogous
to (and actually stems from) a phenomenon studied by Siebenmann, arising from his thesis. Siebenmann
discovered that theh-cobordism theorem can be extended from the situation of compact manifolds
to a wide range of noncompact manifolds. A condition that renders the statements much simpler is
“fundamental group tameness,” which asserts that there is an ascending exhausting sequence of compact
setsK1,K2, . . . in W , such that the mapsM\K1 ← M\K2 ← M\K3 ← · · · are all1-equivalences.
Let us assume thatW has one end (so these complements are all connected). Then we denote the
common fundamental group of the complements byπ∞1 W . According to Siebenmann, there is a map

Whp(W )→Wh(π1W,π
∞
1 W )

which thus fits into an exact sequence

· · · →Wh(π∞1 W )→Wh(π1W )→Whp(W )→ KO(π∞1 W )→ KO(π∞1 W )→ · · ·

Note that when the fixed set consists of isolated points, this exact sequence for Whp of the orbit space
of the free part is the same as the Steinberger-West sequence.

If W is the interior of a compact manifold with boundary, then the target of the boundary map
Whp(W ) → K0(π∞1 W ) measures the obstruction to completing theh-cobordism as a manifold with
corners. The homology term is analogous to a controlledK0 or Wh; we will return to controlled algebra
in Part II. In the Whitehead story, it turns out that Whtop decomposes into a sum of terms, one for each
stratum ofM/G, each of the form Whtop(Z/Hrel sing) for someZ and someH. For surgery theory,
this decomposition does not hold, and the strata interact in a much more interesting way.

In any case, let us now consider some particularly simple equivariantly aspherical manifolds, and
understand what is implied by the vanishing of Whtop. Let M = Dn with a linear action. Then
the homology would be concentrated at the origin. The mapH∗(M/G; Wh(Gm)) → Wh(G) is an

4For the development of of such homology groups, see [Q2] and the appendix of [We4] for homology with coefficients in a cosheaf
of spectra. Note that it is an analogue of generalized cohomology theories and of sheaf cohomology.
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isomorphism (and similarly forK0), and indeed Whtop(M) = 0. Now let us considerM = S1 ×Dn.
Again the homology is concentrated entirely on the singular part, and we have

H∗(S1; Wh(G)) ∼= Wh(G)×K0(G)→Wh(Z×G).

This map is indeed a split injection, but it is not an isomorphism. The cokernel is Nil(G) × Nil(G)
according to the “fundamental theorem of algebraicK-theory” [Ba]. These Nil groups are rather mys-
terious. A general theorem of Farrell show that Nil is infinitely generated if it is nontrivial. Some
calculations can be found in [BM] and [CdS].

Similarly, inL-theory, the equivariant Borel conjecture would imply calculational results about theL-
theory of, say, linear groups. The mapH∗(M/G;L(Gm))→ L(G) should be an isomorphism whenM
is aspherical. (Incidentally, away from 2, the left-hand side can be identified with KOG[1/2].) It is also
not so hard to change the context of all of this discussion from finite quotients of aspherical manifolds
to proper actions on contractible manifolds. However, these conjectures were already disproved by
Cappell’s results on the infinite dihedral groupZ2 ∗ Z2. Cappell showed thatL2(Z2 ∗ Z2) is not just a
sum of copies ofL2(Z2) concentrated at fixed points, but rather that there is another infinitely generated
summand that is not in the image of the relevant homology group.

These conjectures can be somewhat rehabilitated by considering the properties of Nil and Unil. For
instance, one can ask about other rings besides integral group rings. The conjectures then lose some of
their geometric immediacy, but withQ, for instance, they stand a chance of being true. (For instance,
whenever1/2 is in the coefficient ring, Cappell’s Unils vanish identically, and there is no need for any
further corrections to the isomorphism conjecture.) Just as the “fundamental theorem of algebraicK-
theory” is true for all rings, it is very worthwhile to understand to what extent the purported calculations
apply to general rings, even to the point of mere split injectivity. One might mention at this point
the wonderful result of Bokstedt, Hsiang and Madsen affirming the algebraicK-theoretic version of
injectivity of the usual assembly map forZ, after tensoring with the rationals, for groups with finitely
generated integral homology [BHM]. Unfortunately, their method does not apply to other rings, and
does not directly imply anything about the algebraicK-theoretic injectivity statement raised here.

19. There is another more geometric reason why the equivariant Borel conjecture fails; the reasons are
orthogonal to the algebraic problems discussed in the previous section, but are, undoubtedly,5 related to
pseudoisotopy theory. This second failure occurs when the gap hypothesis does not hold.6 Again, the
construction of the counterexamples and their classification would take us rather far afield, but it seems
worth mentioning one simple example: a crystallographic group.

Suppose that one looks at an action ofZp on T p−3 × T p, where the action on the first coordinates
is trivial, and on the second set is by permutation. The fixed point set is aT p−2 in T 2p−3 exactly at
the edge of dimensions for which it is possible for homotopic embeddings not to be isotopic. In fact,
it is quite easy to build nonisotopic embeddings: take a curve inπ1(T 2p−3) and push a small sheet of
theT p−2 around that curve and then link this little sheet to the originalT p−2 some number of times.
This construction does not completely determine the curve. Using the opposite linking, one can replace

5This word brazenly advertises that we are aware of no direct connections.
6In fact, there are general theorems of Shirokova [Shi] which assert that the equivariant Borel conjecture is always false (under

very weak assumptions) whenever the gap hypothesis fails. This gap hypothesis is the bane of the classification theory of group
actions; it assumes that, wheneverMH lies inMK , either these fixed sets coincide or one is somewhat less than half the dimension
of the other. Necessary in the establishment of the foundations of equivariant surgery theory (see Memoirs of the AMS by Dovermann
and Petire and by Dovermann and Rothenberg), the condition is needed to allow for surgeries performed inductively over the strata.
It is important to realize that the gap hypothesis is usually assumed to make progress, not at all because it is natural or generally true.
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a curve by its opposite; also curves that can be homotoped intoT p−2 do not change the isotopy class
of the embedding. But in essence one produces isotopy classes of embeddings ofT p−2 isotopic to the
original embedding (see [Shi]), one for each element inZ[Z(p−1)∗]Z2 .

Cappell and the second author showed [CaW] in this special case that an embedding is the fixed set of
someZp-action equivariantly homotopy equivalent to the affine action iff the new embedding is isotopic
to its translate under theZp action. Furthermore, the action is unique up to conjugacy. Note that the
counterexamples exist even rationally; they do display a nilpotency. Any particular action is conjugate
to the affine action after passing to a cover. Passing to any large enough cover, we find that the curves
used for modifying the embedding no longer go around, and thus do not change the embedding. More
generally, there are connections to embedding theory, but not quite as precise as they are in this special
case [We1].

20. Farrell and Jones have suggested another very general way to handle the failure of these algebraic
assembly maps to be an isomorphism. Essentially the idea is the following: we could have been led to
our previous isomorphism conjecture by a somewhat different line of reasoning.

Observing that the assembly mapA : H∗(Bπ;L) → L∗(π) is not an isomorphism for groups with
torsion, we could have looked for “the universal version of an assembly map that does not oversimplify
L(π) for π finite.” For eachΓ we might considerEΓ, which has an equivariant map fromEΓ → EΓ,
and build an assembly mapH∗(EΓ/Γ;L(Γx))→ L(Γ). (The variousΓx will run over finite subgroups
of Γ.) Now that we see that even this modified conjecture fails for groups likeZ × π, for π finite, and
Z2 ∗ Z2, they suggest reiterating the process, but now with respect to the “virtually cyclic groups,” i.e.
the groups with cyclic subgroups of finite index. Thus one builds a more complicated classifying space
EΓ, on whichΓ acts, and uses it for an assembly map. One should be somewhat careful, because the
action cannot be proper to give us the requisite infinite groups as isotropy, but it is quite simple to build
the correct thing simplicially. We refer the interested reader to [FJ2, DL] for more information.

21. It is worth making one more remark before closing this general lecture (i.e. one devoid of information
about the conjectures themselves) about the connection to index theory and the geometric implications
thereof.

This book is devoted to analogues in index theory of the Novikov conjecture and the Borel conjecture,
indeed in all of the versions discussed above and in the ones to be discussed in Lecture 2. There is no
need for the Farrell-Jones isomorphism ideas, because for virtually cyclic groups the Baum-Connes
conjecture is true, unlike its Borel cousin. The topological side of these issues, for the moment, has
additional complications arising from deep arithmetic connections. (TheL-theory of finite groups, for
instance, has a beautiful and important arithmetic side not visible in the theory ofC∗-algebras). On
the other hand, the analysis has beautiful connections to representation theory (some discussion on this
subject will spill off into the Epilogue) and other geometric applications through other operators besides
the signature operator.

These other applications can also suggest a variety of problems and methods. Two of these merit at
least a mention here, although we do not have the space to develop them fully. The first is the work
that a number of people have done on the (generalized) Hopf conjecture: that for any aspherical2n-
manifold, the Euler characteristic is0 or of sign (−1)n. Methods ofL2 index theory applied to the
de Rham (and Dolbeault) complex have given positive results in some spaces with negative curvature
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and K̈ahler structure (see [Gr]). The second problem, now known to be very closely tied to the Baum-
Connes conjecture, is the characterization of the closed7 manifolds which have metrics of positive scalar
curvature.

The connection between index theory and the positive scalar curvature problem already appears in the
Annals papers of Atiyah and Singer [AS]; they prove in the same paper the Hirzebruch signature formula
using the index theorem and a vanishing theorem for theÂ-genus of a spin manifold with positive scalar
curvature (based on a key calculation of Lichnerowicz). Combining ideas that are intimately related to
(partial results on) the Novikov conjecture, one can obtain information on the non-simply connected
case. We recommend the papers [GL1,2, Ros1,2,3, Sto] and the forthcoming monograph by Rosenberg
and Stolz that shows that a “stable” version of the positive scalar curvature problem can be completely
solved if the Baum-Connes conjecture were true, or even just the (easier) injectivity half.

Lecture Two:K-theory and Topology

This lecture is an introduction to some of the topological methods that have been applied to the conjectures
made in the previous lecture. Unlike that lecture which explained howK-theory contributes to topology, this
one studies contributions that topology makes toK-theory andL-theory.

1. The same general technique used to prove theh-cobordism theorem (handlebody theory) was subse-
quently applied by a number of researchers to a host of other problems, which in light of surgery theory
imply solutions to Novikov and Borel conjectures in special cases. Here are some of those problems:
(a) Putting a boundary on a noncompact manifold: Suppose thatW is a noncompact manifold. When

is W the interior of a compact manifold with boundary? Aside from homotopical or homological
conditions at infinity, the answer is regulated byK0(π∞1 W ). This idea was Siebenmann’s thesis
[Si1]. A nice special case due earlier to [BLL] is that, ifW is simply-connected at infinity, thenW
can be compactified iff its integral homology is finitely generated. You might want to go back now
and review the properh-cobordism discussion from the last lecture.

(b) Fibering over a circle: Without loss of generality, suppose that one has a surjection fromπ1M → Z.
When is this map induced from a fiber bundle structure onM over the circle? The obvious necessary
condition is that the induced infinite cyclic cover ofM should have some finiteness properties.
Ultimately, the result is determined by Wh(π1M). The history here is somewhat complicated; see
Farrell’s thesis for an analysis of the problem as a sequence of obstructions in terms of pieces of
Wh(π1M); Siebenmann [Si3] gave a complete “one step” analysis of the problem. [F] sketches a
very simple proof based on Siebenmann’s thesis.

Remark: If one lightens the demand on the fibration to be an approximate fibration (see, e.g.
[HTW]), then the obstruction to an approximate fibration overS1 lies entirely in the Nil piece
of Wh(π1M). In this form, a slightly strong form of the Borel conjecture can be stated as follows:

Conjecture: Suppose thatM is a manifold andV is the cover ofM induced by a homomorphism
π1M → Γ, whereΓ is a group withBΓ a finite complex. Then there is an aspherical homology
manifoldZ and an approximate fibrationM → Z iff V is homotopically finite, and an obstruction
involving the various Nil(π1V ) vanishes.

7This connection extends rather further into the setting of noncompact manifolds, as we will discuss in Part II. Other noncompact
instances will be mentioned later.
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Note that this conjecture implies thatBΓ is automatically a Poincaré complex; this implication
can be verified directly. Otherwise, the spaceV is never finitely dominated.8 WhenV is simply-
connected, this conjecture boils down to the Borel conjecture for the groupΓ (see the discussion
in Chapter 13 of [We4] and also the introduction to [HTWW]). Also, as a result of [WW], if one
wants to avoid discussion of approximate fibrations, in the special case thatZ is a manifold, one
can decide to allowT ×M to fiber overZ (for some torus factor), and then one can remove the Nil
obstruction as well.

(c) Splitting theorems: Here one has a homotopy equivalencef : M ′ → M and a codimension one
submanifoldN of M ; the problem is to homotopf to a map, still calledf , such thatf is transverse
to N , andf−1(N) is homotopy equivalent toN (mapped to one another byf ). The ultimate
theorem in this direction is Cappell’s splitting theorem, which applies wheneverπ1N injects into
π1M and the normal bundle ofN is trivial.

Earlier partial results are due to Wall, Farrell, Farrell-Hsiang, Lee and others.

Cappell [Ca1] gave very useful conditions under whichτ(f), the Whitehead torsion of the map, de-
termines the obstruction. However, in general this claim does not hold: in [Ca2] he gave infinitely many
PL manifolds homotopy equivalent toRP4k+1#RP4k+1 that are not connected sums. This example is
responsible for some of the instances of non-rigid affine crystallographic group actions on Euclidean
space discussed in the last lecture.

Note that the fibering theorem gives some situations in which one can analyze the splitting problem,
and one can show in fact (using some surgery theory) that the splitting theorem and the fibering problem
are equivalent for the class of groups that arise in the latter problem: The fibering problem reduces to an
analysis groups that act simplicially on the line, and the splitting theorem to those that act on some tree.

2. The translation of fibering and splitting theorems was done first by Shaneson in his thesis [Sha]; see
also Wall’s book [Wa]. This translation led to the first proofs of the Borel conjecture for tori by Hsiang-
Shaneson and Wall (the same proof works verbatim for poly-Z groups); Farrell and Hsiang had earlier
given a proof of the Novikov conjecture for the free abelian case. Cappell’s paper [Ca1] gives the
Mayer-Vietoris sequence inL-theory for groups acting on trees associated to his splitting theorem. The
corresponding theorems in algebraicK-theory are due to Waldhausen [Wald1] and in operatorK-theory
to Pimsner [Pi]. However, as is now extremely well known, most interesting groups do not act at all on
trees. (See Serre [Se] for an early example.)

3. The vanishing of algebraicK-groups and the Borel conjectures were next proved for the class of flat and
almost flat manifolds in a very beautiful and influential paper of [FH]. This paper combined a variant
of Brauer’s induction theory from classical representation theory, due to Dress [Dr], with controlled
topology methods. These methods could have been adapted (more easily, in fact) to index theory,
but there never seemed to be a need for it. They were however applied successfully to crystallographic
groups with torsion in algebraicK-theory by [Q3] and toL-theory by Yamasaki [Ya]. These papers were
very influential in formulating the cruder isomorphism conjectures mentioned in section 17 of Lecture
I. (A more perspicacious mathematical community could have done so on the basis of thinking carefully
about proper actions on trees, which can be analyzed on the basis of the theorems of Waldhausen and
Cappell.)

8According to Wall, this condition is equivalent to a chain complex condition.
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4. To develop controlled topology one must redo all of the classical topology problems such as those
mentioned in section 1 (for example, putting boundaries on open manifolds), but in addition keep track
of the size of these constructions in some auxiliary space. Here is the classical example.

Theorem [CF]: Suppose thatM is a compact manifold. Then for everyε > 0 there is aδ > 0 such that,
if f : N →M is aδ-controlled homotopy equivalence, then it isε-homotopic to a homeomorphism.

Now for the definitions. Aδ-controlled homotopy equivalenceis a mapf : N → M , equipped with
a mapg : M → N , so that the compositesfg andgf are homotopic to the identity by homotopiesH
andH ′, such that the tracks (i.e. the images of(H ′)−1(p, t) ast varies, for any specificp) of all of these
homotopies (perhaps pushed usingf ) in M have diameter less thanδ. A similar definition holds for
ε-homotopy.

The result stated (called theα-approximation theorem) is an example of a rigidity theorem. While
it clarifies the idea of control, the following theorem of Quinn [Q1,2] separates the geometric problem
from the control and also has obstructions, and thus give a better feel for the subject.

Theorem: (Controlledh-cobordism theorem). LetX be a finite-dimensional ANR (e.g. a polyhedron).
Then for allε > 0 there is aδ > 0 such that, iff : Mn → X is a map with all “local fundamental
groups= π” (e.g. if there is a mapM → Bπ which when restricted to any fiber off is an isomor-
phism on fundamental group),n > 4, then anyδ-h-cobordism with boundaryM defines an element
in H0(X; Wh(π)); this element vanishes iff theh-cobordism isε-homeomorphic overX to Mx[0, 1].
Moreover, every element of this group arises from someh-cobordism.

Notice two extremes: IfX is a point, this result is the classicalh-cobordism discussed in I.3. If
M = X then this result gives a metric criterion (due to Chapman and Ferry) that can be used to produce
product structures, since Wh(e) = K0(e) = K−i(e) = 0. This result includes the celebrated result of
Chapman that the Whitehead torsion of a homeomorphism vanishes. Note that we need all the negative
K-groups because Wh is a spectrum, so all of its homotopy contribute to the homology groups. The
main theorems of controlled topology assert that various types of controlled groups are actually groups
that are parts of homology theories. See [CF,Q1,2,4,FP,We4] for more information.

5. We give a cheating application of theα-approximation theorem to rigidity phenomena. Suppose thatf :
M → T is a homotopy equivalence to a torus. Now, pass to a large finite cover; the target is still a torus,
which we identify with the original one by the obvious affine diffeomorphism. Now we have a new map
which is anα-approximation. Thus, all sufficiently large covers ofM are tori. Unfortunately, this proof
is somewhat circular (at least for the original proof ofα-approximation which used the classification
of homotopy tori.) However, a slight modification of this argument shows that any embedding of the
torus in another torus of codimension exceeding two, homotopic to an affine embedding, is isotopic to
the affine embedding in all sufficiently large covers. It also can be used to show that any sufficiently
large cover of a homotopy affineG-torus is affine (see [Ste]). To reiterate, as we saw before, the
counterexamples to equivariant Borel mentioned in I.18 and I.19 die on passage to covers. Controlled
topology implies that they all do.

6. There are, by now, a number of other versions of control in the literature, which, while fun for the ex-
perts, can be somewhat bewildering to the beginner. Some of these are: bounded control [Ped1, AM,
MR, FP, HTW], continuous control at infinity [ACFP, Ped2], and foliated control [FJ3,4]. These theo-
rems have all enjoyed applications to rigidity and to the Novikov conjecture. They are also important
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in other topological problems. To give the flavor of one of these variants, let us discuss the bounded
theory.

Definition: LetX be a metric space. Aspace overX is a spaceM equipped with a mapf : M → X.
The mapf need not be continuous, but it is usually important that it be proper. A map between spaces
(M,f) and(N, g) overX is a continuous maph : M → N such thatdX(f(m), gh(m)) < C for some
C. SinceC can vary, this construction forms a category.

If X has bounded diameter, this category is essentially equivalent to the usual category of spaces and
maps. But, things heat up a lot whenX is as simple as the real line or Euclidean space. Note that it
is easy to define the homotopy category overX, and thus notions ofh-cobordism overX, homotopy
equivalence and homeomorphism can all be defined “overX.” Note also that the all-important funda-
mental group must be generalized in this setting. Without any additional hypothesis, this generalization
can be complicated (see [A]), but the following condition is often sufficient, especially for problems
involving torsion-free groups:

Definition: Thefundamental group of(M,f) overX is π, if there are constantsC andD, and a map
u : M → Bπ such that, for allx ∈ X, the image ofπ1 of the inverse image of the ball of radiusC
aboutx inside the inverse image of the ball of radiusD is isomorphic toπ via the mapu.

For simplicity we will assume that this condition holds, unless otherwise stated.

Example: IfM is a space with fundamental groupΓ, then its universal cover is a space overΓ, where
Γ is given its word metric. It is in fact simply-connected overΓ. (A typical “bad example” would be an
irregular cover, e.g. the cover ofM corresponding to finite subgroups (which plays an important role in
understanding groups with torsion.)

Remark:The analogue in this setting of being contractible is being uniformly contractible; i.e there is a
functionf such that, for allx in X and allC, the ballBx(C) is nullhomotopic inBx(f(C)). Similarly,
the notion of uniform asphericality requires that the map from the cover ofBx(C) into the universal
cover ofBx(f(C)) be nullhomotopic.9

These spaces are the terminal objects in the subcategory of spaces with the same “bounded1-type”
of a given one. By analogy, we shall be interested in their rigidity properties.

7. It is worth pondering the theory in some detail whenX = R
n. First, let us consider the Novikov

conjecture in this setting:

Theorem: LetM be a manifold with a proper mapπ toRn andf : N →M be a homotopy equivalence
overRn. GiveN the structure of a space overRn by usingπf . Then sig(π−1(0)) = sig(f−1π−1(0)).

Here, we are assuming that0 is a regular value ofπ andπf . This theorem readily implies Novikov’s
theorem about the topological invariance of rational Pontrjagin classes [No]. See [FW2].

8. The following geometric result of Chapman is sufficient for proving a number of bounded Borel con-
jecture results. After one develops bounded Whitehead theory and surgery, it implies calculations of
K-groups andL-groups, ones which can be done independently algebraically (see [PW, FP]). Even
after they are proven, the following theorem still feels “greater than the sum of its parts.”

Theorem [Ch]: Suppose thatN → M = V × Rn is a bounded homotopy equivalence, whereV is
some compact manifold. Then there is some manifoldZ homotopy equivalent toV ×Tn whose infinite

9We assume that the maps induced by inclusions of balls in one another are injections on fundamental group.
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abelian cover isN ; moreover, the manifoldZ is unique up to homeomorphism if we insist that it be
“transfer invariant,” i.e. homeomorphic to its own finite-sheeted covers that are induced from the torus.

TheK-theoretic version would be that Whbdd(V × Rn) = K1−n(π1(V )) and thatLbddk (V × Rn) =
L−nk−n(V ). In the second case, the dimension of theL-group is shifted (remember they are 4-periodic,
so negativeL-theory is nothing to fear), and the superscript “decoration” is also shifted. See [Sha, PR,
Ra, We4, WW] for some discussion of this topic.

9. Now that we have a bounded version of the Borel conjecture, we can repair the aesthetic defect uncov-
ered in I.18: we can give a topological rigidity analog of Mostow rigidity for nonuniform lattices. For
noncompact arithmetic manifoldsM = Γ\G/K, whereG is a real connected linear Lie group andK
its maximal compact subgroup, the slight strengthening of Siegel’s conjecture proven in [J] provides
the following picture from reduction theory. For each suchM there is a compact polyhedronP and a
Lipschitz mapπ : M → cP from M to the open cone onP such that (1) every point inverse deform
retracts to an arithmetic manifold, (2) the mapπ respects the radial direction, and (3) all point inverses
have uniformly bounded size. See Chang [C] for further discussion.

In [FJ1] Farrell and Jones show topological rigidity of these arithmetic homogeneous spaces relative
to the ends. On the contrary, if rankQ(Γ) > 2, thenM may not be properly rigid, as discussed in the
remark of I.17. The following theorem asserts thatM is topolgically rigid in the category of continuous
coarsely Lipschitz maps.

Theorem: Let M = Γ\G/K be a manifold for whichΓ is an arithmetic lattice in a real connected
linear Lie groupG. EndowM with the associated metric. Iff : M ′ → M is a bounded homotopy
equivalence, thenf is boundedly homotopic to a homeomorphism.

To see that the reduction theory implies the vanishing ofSbdd(M), one appeals to the bounded surgery
exact sequence:

Hn+1(M ; L(e))→ Lbdd
n+1(M)→ Sbdd(M)→ Hn(M ; L(e))→ Lbdd

n (M).

We note that the radial direction ofcP can be scaled to increase control arbitrarily, and that all the funda-
mental groups arising in the point inversesπ−1(∗) areK-flat by [FJ1]. These two ingredients give us an
isomorphismLbdd

∗ (M) ∼= H∗(cP ; L(π−1(∗))). Given the Leray spectral sequence forπ and the stalk-
wise equivalence ofL-cosheaves, one also has the identificationH∗(M ; L(e)) ∼= H∗(cP ; L(π−1(∗))).
These isomorphisms give the required vanishing ofSbdd(M).

Remark: A C∗-algebraic analogue of this calculation is relevant to the question of whetherM has a
metric of positive scalar curvature in its natural coarse quasi-isometry class (see following section). The
unresolved state of the Baum-Connes conjecture for lattices prevents from from repeating the above
argument in that setting.

10. It is now well recognized that the original approach by [GL2] and [SY] proving that no compact man-
ifold of nonpositive sectional curvature can be endowed with a metric of positive scalar curvature is
actually based on a restriction on the coarse quasi-isometry type of complete noncompact manifolds.
Block and Weinberger [BW] investigate the problem of complete metrics for noncompact symmetric
spaces when no quasiisometry conditions are imposed. In particular they show the following:
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Theorem: Let G be a semisimple Lie group and consider the double quotientM ≡ Γ\G/K for Γ
irreducible inG. ThenM can be endowed with a complete metric of positive scalar curvature if and
only if Γ is an arithmetic group of with rankQΓ ≥ 3.

In fact, in the case of rankQΓ ≤ 2, one cannot impose uponM a metric of uniformly positive scalar
curvature even in the complement of a compact set. However, in the cases for which such complete
metrics are constructed, they always exhibit the coarse quasiisometry type of a ray.

In the context of the relative assembly mapA : H∗(Bπ,Bπ∞,L) → L(π, π∞) and the classifying
mapf : (M,M∞) → (Bπ,Bπ∞), one might expect that the obstruction for complete positive scalar
curvature on a spin manifoldM is given by the imagef∗[DM ] of the Dirac operator inKOn(Bπ,Bπ∞)
instead of the signature class inH∗(Bπ,Bπ∞,L). One could reasonably conjecture that a complete spin
manifold with uniformly positive scalar curvature satisfiesf∗[DM ] = 0 in KOn(Bπ,Bπ∞) if π1(M)
andπ∞1 (M) are both torsion-free.

However, the standard methods inL-theory fail in theK-theoretic framework because there is no
assembly map fromKOn(Bπ,Bπ∞) to the relativeK-theory of some appropriate pair ofC∗-algebras
which might reasonably be an isomorphism for torsion-free groups. For the case of rankQΓ = 2 consid-
ered in [BW], an alternate route was found (the cases of rankQΓ ≤ 1 are covered by [BH] and [GL2]):
the verification thatf∗[DM ] vanishes inKOn−1(Bπ∞) under the assumption that suitable Novikov-
type conjectures hold for the groupπ∞.

The results of [BW] do not settle whether these uniformly positive curvature metrics onΓ\G/K
can be chosen to be (a) quasiisometric (i.e. uniformly bi-Lipschitz) to the original metric inherited
from G or (b) of bounded geometry in the sense of having bounded curvature and volume. The first
author proved the former negatively in [C] by identifying a coarse obstruction of Dirac type in the group
K∗(C∗(M,π)), whereC∗(M,π) is a generalized Roe algebra of locally compact operators onM̃ whose
propagation is controlled by the projection mapπ : M̃ →M . This algebra encodes not only the coarse
behavior ofM but also its local geometry.

11. The principle of descent was first formulated explicitly in [FW2], although it appears, somewhat im-
plicitly in [GL2, Ka, FW1, C, CP] as well. The paper of Gromov and Lawson is especially nice from
this point of view, in that they explicitly suggest the use of a families form of a non-compact index
theorem to deduce Gromov-Lawson conjecture type results (for manifolds of positive scalar curvature).
The principle of descent is, in genrral, a vehicle for translating bounded Borel or Baum-Connes conjec-
ture type results from the universal cover of a manifold, to deduce Novikov conjecture type results for
the manifold itself. This principle remains a powerful tool and is exploited in the most recent exciting
advances in the subject (see, e.g. [Yu1, Tu2, HR]).

The bounded Novikov conjecture states that, ifX is uniformly contractible andM is a manifold over
X, thenf∗(L(M) ∩ [M ]) ∈ H`f

∗ (X;Q) is a bounded homotopy invariant. Equivalently, ifΓ is the
fundamental group ofM , then the bounded assembly map

Abdd : H lf
∗ (EΓ;L(e))→ L

bdd(EΓ)

is a split injection. HereLbdd(EΓ) is the spectrum whose0-th space is given by a simplicial model for
which then-simplices aren-ad surgery problems onk-manifolds together with a proper coarse map to
Γ with the word metric. The map is on the level of the space of sections of assembly maps associated to
the fibrationE ×Γ E → BΓ to a twisted generalized cohomology.

Assuming the split injectivity ofAbdd, we consider the following commutative diagram:
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H∗(BΓ;L(e)) A //

∼=
��

L∗(ZΓ)

FBT
��

H0(BΓ;H`f
∗ (Rn;L(e)))

Abdd // H0(BΓ;Lbdd(Rn))

The right-hand “family bounded transfer map” is a compositeL∗(ZΓ) → H0(BΓ;Lbdd(EΓ)) →
H0(BΓ;Lbdd(Rn)). The left-hand vertical isomorphism arises whenBΓ is a finite complex from
Spanier-Whitehead duality and the proper homotopy equivalence of the mapEΓ → R

n. It too is a
family bounded transfer map, for which, at each pointx of BΓ, one lifts a cycle to the universal cover
EΓ based atx. The splitting ofAbdd clearly induces a splitting ofA, and the descent argument is
complete.

The principle of descent is also instrumental in deducing the (analytic) Novikov Conjecture from
the coarse Baum-Connes Conjecture. The latter states that, for any bounded geometry spaceX, the
coarse assembly mapA∞ : KX∗(X) → K∗(C∗X) is an isomorphism. HereKX∗ denotes the coarse
homology theory corresponding toK-homology. See [Roe] for more details.

Epilogue

In this epilogue, we would like to mention some issues that there was no time to discuss during those
lectures. For the most part, the ideas discussed above provide quite close parallels (at least at the level of
conjecture) between topology and index theory. There are several areas where the subjects have diverged that
create new opportunity for further developments in one subject or the other.

1. KK (and E). In index theory there is a powerful computational calculus which builds two-way maps be-
tween relevant groups. So far, no analogous flexible theory has been developed in topology. Besides the
sad conclusion that beautiful results like those of [HK, Tu1, Yu1] are not yet known on the topological
side (let alone in algebraic K-theory, other coefficient rings, twistings, etc.), even the simple curvature
calculations of [Yu1] which give a rational counterexample to a coarse version of the Novikov conjec-
ture for a metric space without bounded geometry cannot be copied in topology. Thus, we have very
little information about how the epsilons in controlled topology depend on dimension.

2. In topology, however, there are a number of subtle arithmetic issues that don’t arise in index theory.
Some of these are associated to “decorations”10 (see [Sha]), Nil and Unil (see [Ba, Ca]). The latter
shows that very routine version of Baum-Connes type conjectures in topology are false even for the
infinite dihedral group (which is crystallographic and hence amenable).

However, injectivity statements still have a reasonable chance of being correct. For instance, it seems
that the objectlim(Lbdd(V )), whereV runs through the finite-dimensional subspaces of a Hilbert space
(V included inW gives rise to a map between the bounded L-theories by taking the product, used
in defining the directed system) should arise in geometrizing [HK]. A dreamer could hope that one
can do this geometrization topologically using a more complicated category (more arrows connecting
subspaces to one another) for other Banach spaces. But, at the moment, one cannot even recover the
analytically proven results for groups which embed uniformly in Hilbert space.

10Decorations are superscripts adorningL-groups, and modify their definitions by restricting or refining their precise defintion
using modules and maps which lie in subgroups of appropriate algebraic K-groups.
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3. Nonetheless, there is the spectacular work of Farrell and Jones (see [FJ1]) which naturally led to and ver-
ified variant versions of this conjecture for discrete subgroups of linear Lie groups. The main difficulty
in mimicking these methods seems to be the very strong transfer formulae in topology. The “gamma
element” is precisely a transfer-projection element.

Philosophically speaking, the strong rigidity of the signature operator in families (a consequence
of Hodge theory) makes its study more particular. Besides the difficulty in transferring the ideas of
Farrell and Jones to index theory, this issue also arises in trying to develop a stratified index theory for
operators on stratified spaces, parallel to [We4]. It would be interesting to see geometric examples of
this phenomenon, for example, for some version of positive scalar curvature metrics on spaces with
certain singularities. Of course, for particular classes of stratified spaces, and operators, one should be
able to obtain such theories. See, for example, [Hi] for a theory of operators onZ/k-manifolds.

4. In the past year, a number of counterexamples to versions of Baum-Connes, in particular the coarse
version, were obtained using metric spaces that contain expanding graphs (see, for example, [HLS]).
On the other hand, Kevin Whyte and the second author showed that some of these examples do not give
counterexamples to the bounded version of the Borel conjecture. If, as seems likely, the isomorphism
conjecture (or “stratified Borel conjecture” with rational coefficients) will be verified for hyperbolic
groups, then the limit constructions of Gromov will also not lead to counterexamples to the topological
versions of these problems.

5. Finally, it seems important to mention the circle of mathematical connections between index theory,
cyclic homology, pseudoisotopy theory (=algebraic K-theory of spaces), and Goodwillie’s calculus of
functors. The Goodwillie idea (see, for example, [Go1, GW]) gives a powerful method for analyzing
situations where assembly maps are not isomorphisms.

The Borel conjecture are about the “linear part” of classification of manifolds. There are higher
order “nonlinear terms” which are responsible for the counterexamples to the equivariant form. One
should connect these ideas to families of operators and the work of Bismut and Lott [BL]. In addition, it
would be good to have a better understanding of an index-theoretic (or perhaps we should say operator-
algebraic) viewpoint on spectral invariants like Ray-Singer torsion and of eta invariants (and their higher
versions, see [Lo1,2, We2,3 LP1, LL]).
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