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I. Introduction

We say that an arbitrary manifold (M,∂M) is topologically rigid relative to its ends if it satisfies
the following condition. If (N, ∂N) is any other manifold with a compact subset C ⊂ N for which
a proper homotopy equivalence h : (N, ∂N) → (M,∂M) is a homeomorphism on ∂N ∪ (N\C), then
there is a compact subset K ⊂ N and a proper homotopy ht : (N, ∂N) → (M,∂M) from h to a
homeomorphism such that ht and h agree on ∂N ∪ (N\K) for all t ∈ [0, 1]. We say that a manifold
M without boundary is properly rigid or absolutely topologically rigid if we eliminate the requirement
that h is a homeomorphism on ∂N ∪ (N\C) and agrees with ht on ∂N ∪ (N\K) for all t ∈ [0, 1].
Along the lines of the classical Borel conjecture that all closed aspherical manifolds are topologically
rigid, Farrell and Jones [FJ] provide the following important theorem.

Theorem: Let m ≥ 5. Suppose that Mm is an aspherical, complete non-positively curved Rieman-
nian manifold with Riemann curvature tensor R. If the i-th covariant derivative ∇iR is bounded
for all i (although not necessarily uniformly in i), then M is topologically rigid relative to its
ends.

In particular, if G is a linear Lie group, i.e. a virtually connected Lie group admitting a faithful
representation ρ : G → GLn(R) for some n, then the hypotheses of the theorem are satisfied by the
double coset space Γ\G/K. Here K is a maximal compact subgroup of G and Γ ⊂ G is a torsion-free
discrete subgroup. This result shows that topological rigidity extends beyond the usual geometric
rigidity theory of Mostow and Margulis, which is ordinarily discussed in the context of arithmetic
manifolds. These manifolds are double coset spaces Γ\GR/K, where G is a semisimple algebraic
subgroup of GLn defined over Q, the subgroup K is maximal compact in the real points GR, and Γ
is a torsion-free arithmetic subgroup of its rational points GQ.

In this paper, we will be interested in topological rigidity for arithmetic manifolds, not relative to
their ends. If Γ\G/K is noncompact, Borel and Serre [BS] construct a well-known compactification
M of M whose Γ-cover has boundary homotopy equivalent to a countably infinite wedge of (r − 1)-
spheres, where r is the rational rank of G. Recall that, if G is a Q-subgroup of SLn(R) and Γ is
commensurable with GZ, then the rational rank rankQ(Γ) of G is the dimension of any maximal Q-
split torus of G. In fact, certain curvature and rigidity phenomena occur or fail to occur in arithmetic
manifolds in accordance with the size of its rational rank. Block and Weinberger [BW] prove that
M = Γ\G/K admits a metric of positive scalar curvature iff rankQ(Γ) ≥ 3, although such positively
curved metrics never belong to the same coarse class as the natural metric on M inherited from the
Lie group structure of G (see Chang [C]).

While arithmetic spaces are always topologically rigid in the category of continuous coarsely
Lipschitz maps, i.e. the bounded structure set Sbdd(Γ\G/K) vanishes [CW], the size of their proper
structure set is conjecturally determined by its rational rank. When rankQ(Γ) ≤ 1, then the above
theorem of Farrell and Jones, together with the results of [FH] and of Gromov on the structure of
cusps, implies that Γ\G/K is indeed rigid in the category of proper maps (note that rankQ(Γ) = 0
implies that Γ\G/K is compact by well-known theorems of Borel and Harish-Chandra [BH]). Block
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and Weinberger give a plausible argument in [BW] suggesting that the same phenomenon occurs
when rankQ(Γ) = 2. In this paper we demonstrate a sort of converse:

Theorem: Let M = Γ\G/K be a noncompact arithmetic manifold for which rankQ(Γ) ≥ 3. Then
M has a finite-sheeted cover N whose proper structure set Sp(N) is nontrivial, i.e. there is a
manifold X with a proper homotopy equivalence g : X → N that is not properly homotopic to a
homeomorphism.

This result notably shows that Mostow’s rigidity theorem, which holds for noncompact hyperbolic
manifolds of finite volume (rational rank 1) but fails spectacularly for general symmetric manifolds,
cannot be weakened to provide a proper version of Borel’s conjecture for manifolds of noncompact
type.

The proof of the above theorem combines a number of well-known but deep results: theorems of
Sullivan and Wall from classical surgery theory [Wa], the Borel-Serre compactification of arithmetic
manifolds [BS], Kazhdan’s property T (see [Z]) and a consequence by Lubotzky [L] of Weisfeiler’s
strong approximation for linear groups [Wei].

Note: In the final section of this paper, we will extend the theorem to nonarithmetic nonuniform
lattices using a geometric generalization of the idea of Q-rank.

II. Group-theoretic background

Weisfeiler’s strong approximation result for general linear groups [Wei] states that, if Γ is a
Zariski-dense subgroup in an algebraic group G, then Γ is virtually dense in G with respect to
the congruence topology, i.e. the closure of Γ is of finite index in Ĝ. The congruence topology of
SLn(Z), for example, is the topology for which the groups Γ(m) = ker (SLn(Z) → SLn(Zm)) serve as
a system of neighborhoods of the identity and its completion is Πp SLn(Ẑp). The theorem implies,
in particular, that a finitely generated linear group is either solvable or has a finite index subgroup
with infinitely many different finite simple quotients. Lubotzky uses Weisfeiler’s result to prove the
following:

Theorem A [L]: Let F be a field of characteristic different from 2 or 3, and let Γ be a finitely
generated infinite subgroup of GLn(F). For all d ∈ Z≥1, there is a finite index subgroup of Γ
whose index in Γ is divisible by d.

Wehrfritz gave a different proof [Weh] of the above result for d = 2 that is also valid in characteristics
2 and 3, which is all we need for our main result. It is worth noting that Theorem A is equivalent
to the assertion that, for any prime q, the q-Sylow subgroup of the profinite completion Γ̂ of Γ is
infinite. In our discussion it will be convenient to use the following strengthening of Theorem A:

Theorem B [L]: Suppose that Γ satisfies the hypotheses of Theorem A and is not solvable-by-finite,
i.e. Γ has no solvable subgroup of finite index. Then for every prime q, the q-Sylow subgroup of
Γ̂ is infinitely generated.

Corollary: Let Γ be any linear group. There is then a normal subgroup Γ′′CΓ of finite even index,
and hence Γ contains a subgroup Γ′ with a homomorphism onto Z2.

Proof: Since every subgroup of finite index contains a normal subgroup of finite index, the first
remark follows. Using Cauchy’s theorem, there is a subgroup of Γ/Γ′′ isomorphic to Z2. Let Γ′

be the inverse image of this subgroup.



III. Main Theorem

Proposition: Let G be a semisimple Lie group with trivial center and rankR(G) ≥ 2. Let M =
Γ\G/K be an arithmetic manifold with Γ an irreducible lattice of G. Then M has a finite cover
N for which H1(N) contains 2-torsion.

For any locally compact group G, recall that G has Kazhdan property T if any unitary repre-
sentation π : G → U(H) of G on a Hilbert space H which almost has invariant vectors actually has
nontrivial invariant vectors. Kazhdan [K] proves that, if G is a connected semisimple Lie group with
finite center, each of whose factors has real rank at least two, then G, as well as any lattice subgroup
of G, has Kazhdan property T . This property stands opposite the condition of amenability in the
sense that, if G is amenable, then G has Kazhdan property T iff G is compact. From this result it
is easy to show that, if φ : G → H is a homomorphism where G has Kazhdan property T and H is
amenable, then φ(G) is compact.

Proof: The corollary above asserts the existence of a subgroup Γ′ ≤ Γ equipped an epimorphism
φ : Γ′ → Z2. Let H = ker φ so that Γ′/H ∼= Z2. Let J = [Γ′ : Γ′] be the commutator subgroup
of Γ′. Observe that both H and J are normal in Γ′. Now consider the quotient homomorphism
ρ : Γ′ → Γ′/J . First assume that G is simple. By the condition on the real rank of G, it follows
that Γ′ has property T . Since Γ′/J is amenable, the image ρ(Γ′) = Γ′/J must be compact, and
hence the discreteness of Γ, the index [Γ′ : J ] is finite. Therefore let N be the cover of M with
respect to the subgroup Γ′ ≤ Γ. Then π1(N) = Γ′ and H1(N) = Γ′/J contains 2-torsion.

In the case that G is not simple, we use superrigidity of Γ′ in place of property T [Ma]. Since
a positive Betti number of N would give a homomorphism to S1 with infinite image (by sending
the generator of Z to an irrational rotation), according to superrigidity G would have to have such
a homomorphism. As it does not, all the lattices that we consider have vanishing b1. Therefore
the first integral homology of N is finite. The remainder of the proof proceeds as in the simple
case.

Corollary: Let N be given as above. Then the group H2(N, Z2) is nonzero.

Proof: By the above proposition, the homology group H1(N) contains 2-torsion. We then conclude
that Ext(H1(N), Z2) is nontrivial, since Ext(Zm, Zn) ∼= Z(m,n) for any m,n ∈ Z≥1. By the
Universal Coefficient Theorem, the map Ext(H1(N), Z2) → H2(N, Z2) is injective, so H2(N, Z2)
is nontrivial as well.

Theorem 1: Let M = Γ\G/K be a noncompact arithmetic manifold whose Q-rank is at least 3.
Then M has a finite-sheeted cover N whose proper structure set is nontrivial; i.e. the manifold
M is virtually properly rigid.

Proof: Let Γ′ be a normal subgroup of Γ of finite even index and let N be the cover of M corresponding
to Γ′. Then π1(N) = Γ′ and H2(N, Z2) is nonzero. As observed by Block and Weinberger [BW],
this N can be compactified to a π-π manifold N with boundary since the Q-rank is greater
than 2. This result follows from the identification of the homotopy type of the Γ-cover of the
boundary with a wedge of (q − 1)-spheres using the Solomon-Tits theorem [BS]. According to
Siebenmann’s thesis, any manifold that is properly homotopy equivalent to M will have the
same property. Using the h-cobordism theorem, any such manifold has a unique compactification
so that the extension of the proper homotopy equivalence to the compactification is a simple
homotopy equivalence. We can then identify S(N) with the proper structure set Sp(N). By



the π-π theorem of Wall [Wa], the structure set S(N) of N is isomorphic to [N, F/Top]. Since
F/Top = K(Z2, 2)×K(Z2, 6)×K(Z2, 10)× · · · × Z for some space Z [MM], we then have

Sp(N) = S(N) = [N,F/Top] = [N,F/Top]
= [N,K(Z2, 2)×K(Z2, 6)×K(Z2, 10)× · · · × Z]
= [N,K(Z2, 2)]× [N,K(Z2, 6)]× · · · × [N,Z]

which by the previous corollary is nontrivial since [N,K(Z2, 2)] = H2(N, Z2).

Theorem 2: Let M = Γ\G/K be an arithmetic manifold with Γ irreducible. If rankQΓ ≥ 3, then
M has finite-sheeted covers N whose proper structures are arbitrarily large.

Proof: By the proof of Lubotzky’s Theorem B the profinite completion Γ̂ of Γ contains an infinitely
generated elementary abelian 2-group Z∞2 . If M is a fixed positive integer, there is then a finite
quotient Γ/I of Γ containing ZM

2 . Let Γ′ be the inverse image of this ZM
2 under the projection

map Γ → Γ/I. If L/I = [Γ′/I, Γ′/I] is the commutator subgroup of Γ′/I, then the abelianization
of Γ′/I is isomorphic to Γ′/L, which is a 2-group with the property that Ext(Γ′/L, Z2) has at
least 2M elements. Let J = [Γ′,Γ′] and consider the short exact sequence of abelian groups given
by 0 → L/J → Γ′/J → Γ′/L → 0. Therefore we have the exact sequence 0 → Hom(Γ′/L, Z2) →
Hom(Γ′/J, Z2) → Hom(L/J, Z2). Since all quotients here are finite abelian (superrigidity implies
that Γ′/J is finite), we have

|Ext(Γ′/J, Z2)| = |Hom(Γ′/J, Z2)| ≥ |Hom(Γ′/L, Z2)| = |Ext(Γ′/L, Z)| ≥ 2M .

If N is the finite cover of M corresponding to the subgroup Γ′ ≤ Γ = π1(M), we can conclude
as in the above corollary that H2(N, Z2) is arbitrarily large. Therefore the proper structure set
Sp(N) is also arbitrarily large.

Remark: In fact, if the R-rank is large enough and rankQ(Γ) > 2, then one can construct infinite
structure sets with nontrivial elements detected by Pontrjagin classes, e.g. for SLn(Z) for n suffi-
ciently large, using Borel’s calculations [B]. Unlike the elements constructed here, these elements
do not die on passage to further finite-sheeted covers. Note that, for a product of three punctured
surfaces, the proper rigidity conjecture is always false for any cover, but is virtually true, in that
any counterexample dies on passing to another finite cover.

IV. Coarse Volume Growth and Nonarithmetic Lattices

The results in the previous section can be generalized to locally symmetric spaces M = Γ\G/K
for which we eliminate all irreducibility or arithmeticity requirements on the subgroup Γ.

Definition: Let M be a metric space and let p ∈ M . For any R > 0 define

cov1(B(p, R)) = inf
k

{
k : B(p, R) ⊂

k⋃
i=1

B(pi, 1) for some p1, . . . , pk ∈ M

}
.

We denote by cvg(M), the coarse volume growth of M , to be the quantity

cvg(M) = lim
R→∞

log cov1(B(p, R))
log R

.



It is clear that the coarse volume growth of M is independent of the basepoint p.

Remark 1: The quantity cov1(B(p, R)) generalizes the notion of the growth rate of groups, given
by the function fG(n) = |B(x, n)|, where B(x, n) denotes the ball of radius n about a fixed
vertex x in the Cayley graph of G with the usual word length metric. Note, for instance, that
cvg(Rn) = n when Rn is endowed with the usual Euclidean metric and cvg(M) = 0 when M
is bounded. If P is an n-dimensional simplicial complex and M = cP is the open cone on
P , then cvg(M) = n + 1. Coarse volume growth enjoys many properties exhibited by rational
rank. For example, it is additive over products; i.e. if M1 and M2 are metric spaces, then
cvg(M1 ×M2) = cvg(M1) + cvg(M2) when M1 ×M2 is given the usual product metric.

Remark 2: Technically the notion of rational rank applies only when Γ is arithmetic, although as
mentioned in [Mo] one can extend the definition to all lattices using the Margulis arithmeticity
theorem. In particular, if Γ is a lattice of a semisimple Lie group G, then up to isogeny and
modulo the maximal compact factor of G we can write G = G1 × · · · ×Gr so that Γi = Γ ∩Gi is
an irreducible lattice in Gi for all i. One can then define RankQ(Γ) = RankQ(Γ1)+· · ·+RankQ(Γr),
where

RankQ(Γi) =


0 if rankR(Gi) = 0,
1 if rankR(Gi) = 1,

rankQ(Γi) otherwise.

This apparently forced generalization of rational rank is actually consistent with the coarse volume
growth in the context of locally symmetric spaces. Although it is a more extended concept than
is required in this paper, we will continue to use this latter form of volume growth as a more
natural large-scale geometric measure of general metric spaces.

Remark 3: Certainly coarse volume growth is a coarse invariant. By Ji and MacPherson [JM], if M
is an arithmetic manifold, then M is coarsely equivalent to the metric cone over the Tits complex
∆(Γ\G/K) of dimension rankQ(Γ)− 1. We therefore have the following.

Proposition: If the manifold M = Γ\G/K is arithmetic, then the coarse volume growth of M is
the dimension of the tangent cone of M , i.e. cvg(M) = rankQ(Γ). In general, it agrees with the
extension mentioned in Remark 2.

Proposition: Let G be a semisimple Lie group and let the locally symmetric manifold M = Γ\G/K
be endowed with the natural metric inherited from G. Here Γ is a lattice of G which is not
necessarily irreducible or arithmetic. If the coarse volume growth of M is at least 3, then M is a
π-π manifold.

Proof: As mentioned above, if Γ is irreducible, it follows from [BS] and the structure of cusps [G2]
that then the universal cover ∂̃(M) of the boundary of M is homotopy equivalent to a wedge
of spheres of dimension cvg(M) − 1. The general case is proved using the observation that, of
cvg(Γ\G/K) = q and cvg(Γ′\G′/K ′) = r, then homotopically we have

∂̃(Γ\G/K × Γ′\G′/K ′) = ∂̃(Γ\G/K) ∗ ∂̃(Γ′\G′/K ′) =
∨

Sq−1 ∗
∨

Sr−1 =
∨

Sq+r−1.

Theorem: Let G be a semisimple Lie group and let Γ be a lattice of G (with no assumptions on
arithmeticity or irreducibility). If M = Γ\G/K and cvg(M) ≥ 3 then there is a finite-sheeted
cover N of M which is not properly rigid.



Proof: Given the condition on the coarse volume growth and the proposition above, we know that
M can be compactified to a π-π manifold, so that [M,F/Top] = Sp(M). If Γ is irreducible, then
M is arithmetic by Margulis, and the proof can be completed as before. If Γ is reducible, then
write M = M ′ ×M ′′, where M ′ = Γ′\G′/K ′ and M ′′ = Γ′′\G′′/K ′′. Note that it is sufficient to
prove that H2(N, Z2) 6= 0 for some cover N of M . et N ′ and N ′′ be finite-sheeted covers of M ′

and M ′′ equipped with surjections φ1 : π1(N ′) → Z2 and φ2 : π1(N ′′) → Z2.
Case 1: Suppose that both φ1 and φ2 can be chosen so that they factor through Z. Then Z

is a summand of both H1(N ′) and H1(N ′′), so that Z2 is a summand of both H1(N ′, Z2) and
H1(N ′′, Z2). If N = N ′ ×N ′′, then H2(N, Z2) is nonzero.

Case 2: Suppose that there is no surjection φ1 : π1(N ′) → Z2 that factors through Z. Let J be
the commutator subgroup of π1(N ′). If H1(N ′) has no 2-torsion, then H1(N ′) = π1(N ′)/J must
be infinite since [π1(N ′) : J ] = [π1(N ′) : kerφ ][kerφ : J ] = 2 [kerφ : J ]. Hence π1(N ′)/J ∼= Z ⊕ R
for some abelian group R. Therefore the composite π1(N ′) → π1(N ′)/J → Z ⊕ R → Z is a
surjection, yielding a contradiction. If N = N ′ × M ′′, then H1(N) = H0(N ′) ⊗ H1(M ′′) ⊕
H1(N ′)⊗H0(M ′′) = H1(M ′′)⊕H1(N ′) has 2-torsion, and so H2(N, Z2) is nonzero by the Universal
Coefficient Theorem.

Remark: We (and Jonathan Block) note that the existence of uniformly positive scalar curvature
metrics on Γ\G/K when Γ is irreducible and rankQ(Γ) ≥ 3 established in [BW] can be proved for
any locally symmetric space M with cvg(M) ≥ 3 by the above method; moreover, if cvg(M) ≤ 2,
then M has no complete metric of positive scalar curvature.
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