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ABSTRACT

In this paper we introduce the notion of the fractional weak dis-
crepancy of a poset, building on previous work on weak discrepancy
in [5, 9, 10]. The fractional weak discrepancy wdF (P ) of a poset
P = (V,≺) is the minimum nonnegative k for which there exists a
function f : V → R satisfying (1) if a ≺ b then f(a) + 1 ≤ f(b) and
(2) if a ‖ b then |f(a)− f(b)| ≤ k. We formulate the fractional weak
discrepancy problem as a linear program and show how its solution
can also be used to calculate the (integral) weak discrepancy. We in-
terpret the dual linear program as a circulation problem in a related
directed graph and use this to give a structural characterization of
the fractional weak discrepancy of a poset.1

Keywords: weak discrepancy, fractional weak discrepancy
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1 Introduction

In this paper we consider finite posets P = (V,≺), where incomparability is
denoted by ‖. We begin with some definitions and background on the (integral)
weak discrepancy problem.

Definition 1 The (integral) weak discrepancy of a poset P = (V,≺) (denoted
wd(P )) is the least nonnegative integer k for which there exists an integer-valued
function f : V → Z satisfying

(1) if a ≺ b then f(a) < f(b) (“up” constraints)
(2) if a ‖ b then |f(a)− f(b)| ≤ k. (“side” constraints)

Such a labeling is called an optimal weak labeling of P (or of V ).

For example, the poset R in Figure 1 has wd(R) = 2 with an optimal weak
labeling as shown. Definition 1 is motivated by problems like the following. A
manager who partially orders her employees by their value to the company needs
to assign a salary level to each employee. The “up” constraints ensure that a
more valuable employee gets a higher salary than a less valuable one and the
“side” constraints are fairness conditions that restrict the salary discrepancies
between pairs of incomparable employees. See [9] for additional examples.

If wd(P ) ≤ k, we say that P is k-weak. A weak order can be defined as
one obtained from a linear order by replacing each element by an antichain.
Alternatively, P = (V,≺) is a weak order if it contains no triple of elements
{x, y, z} with x ≺ y and z incomparable to both x and y [2]. Note that P is
0-weak if and only if P is a weak order. The weak discrepancy of an order is a
measure of how far it is from being a weak order.

The class of k-weak orders was introduced in [10]. In that paper a polynomial-
time algorithm is presented for recognizing k-weak orders, and in the affirma-
tive case, producing an appropriate labeling function. This algorithm can be
adapted easily to compute the weak discrepancy in polynomial time, as noted
in [5], where weak discrepancy is known as weakness. The main result in [5] is a
characterization of weak discrepancy using forcing cycles, which we define later.
The related concept of linear discrepancy is studied in [9]. There the function
f in Definition 1 is an injection with domain V and can thus be assumed to be
a bijection from V to {1, 2, 3, . . . , |V |}.

The definition of fractional weak discrepancy is motivated by further con-
sideration of the salary assignment problem. In the version discussed above, we
think of the value f(a) assigned to employee a as a salary level, such as a gov-
ernment salary level. However, for many companies, salaries are not constrained
by levels, and can be any dollar amount. It then makes sense to modify (1) to
ensure that the salaries assigned to employees a and b are significantly different.
This motivates the following definition, in which we can think of f(a) as the
salary assigned to employee a, and the units of f(a) (e.g., dollars, hundreds of
dollars, etc.) should be chosen to make 1 unit a significant salary difference.
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Figure 1: Three posets together with optimal fractional weak labelings.

Definition 2 The fractional weak discrepancy wdF (P ) of a poset P = (V,≺)
is the minimum nonnegative real number k for which there exists a function
f : V → R satisfying

(1) if a ≺ b then f(a) + 1 ≤ f(b) (“up” constraints)
(2) if a ‖ b then |f(a)− f(b)| ≤ k. (“side” constraints)
Such a function f is called an optimal fractional weak labeling of P (or of

V ).

One reason for calling wdF (P ) the fractional weak discrepancy is that Re-
mark 4 implies that wdF (P ) is rational and that all the values of the labeling
function f may be taken to be rational.

Figure 1 illustrates labelings of the posets Q, N , and R that show wdF (Q) ≤
1.5, wdF (N) ≤ .5, and wdF (R) ≤ 2. In Example 12 and Corollary 15 we will
prove that in fact these are all equalities. In particular, the poset R is an example
for which the weak discrepancy and the fractional weak discrepancy are equal.
For posets Q and N we will see that wd(Q) = 2 and wd(N) = 1, which are
achieved by taking the ceiling of each label given in Figure 1. Equivalently, we
could take the floor of each label.

In Proposition 7 we will show that in general by taking the ceiling (or floor) of
each label we obtain wd(P ) = dwdF (P )e. This establishes a connection between
the fractional and (integral) weak discrepancy problems. In the remainder of
this paper we will show that both discrepancy problems can be solved using
linear programming techniques. Furthermore, we use duality theory to interpret
fractional weak discrepancy as a problem about optimal circulations in directed
graphs.
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2 A Linear Programming Approach

In this section we frame the fractional weak discrepancy problem as a linear
program and also study the (integral) weak discrepancy problem in this way.

We will omit the degenerate case of linear orders from further consideration.
We now define an LP formulation PF of the fractional weak discrepancy problem
in the nondegenerate case.

Definition 3 Given a poset P = (V,≺) with at least one incomparable pair of
elements, let V = {a1, a2, . . . , an} and let PF be the following linear program
with decision variables k and x1, x2, . . . , xn.

minimize k
subject to

xi − xj ≤ −1 for ai ≺ aj (“up” constraints)
xi − xj − k ≤ 0
xj − xi − k ≤ 0

}
for ai ‖ aj (“side” constraints)

x1, . . . , xn, k unrestricted

Here xi = f(ai) defines a labeling f of V that satisfies the up and side
constraints of Definition 2. Since there is at least one pair of side constraints
xi − xj ≤ k, xj − xi ≤ k, or equivalently, |xi − xj | ≤ k, each feasible solution
has k ≥ 0 as required in Definition 2.

A feasible solution to PF can be obtained by letting xi be the height of ai in
a linear extension of P and letting k = n−1, and thus an optimal solution exists
to this minimization problem. Since the objective function and the constraints
of PF match those of Definition 2, we conclude the following.

Remark 4 In an optimal solution to the linear program PF , k = wdF (P ) and
the values of xi determine an optimal labeling of V .

Given an optimal labeling of V , we can add a constant to each xi to produce
another optimal labeling in which all labels are nonnegative.

The linear programming formulation allows one to solve fractional weak
discrepancy problems using standard implementations of LP algorithms.

Example 5 We formulate the LP for the poset N of Figure 1.

minimize k
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subject to

x1 − x2 ≤ −1
x3 − x2 ≤ −1
x3 − x4 ≤ −1

x1 − x3 − k ≤ 0
x3 − x1 − k ≤ 0
x1 − x4 − k ≤ 0
x4 − x1 − k ≤ 0
x2 − x4 − k ≤ 0
x4 − x2 − k ≤ 0
x1, . . . , x4, k unrestricted

The LP package LINGO [6] produces x1 = .5, x2 = 1.5, x3 = 0, x4 = 1,
k = .5 as an optimal solution to this problem. It is easy to verify that this
labeling, which was given in Figure 1, is a feasible solution to the LP. We will
prove it is optimal in Example 12. As we can see from Example 5, even a small
poset can yield a large number of constraints. One can check that in posets
where there are chains of three or more elements, we do not need to include
inequalities for comparabilities that are implied by transitivity, such as a1 ≺ a3

in poset Q.
The following remark follows directly from Remark 4 and Definitions 1 and

2.

Remark 6 The (integral) weak discrepancy problem of Definition 1 can be
formulated as an integer program PI by restricting all the variables in PF to be
integers.

We end this section with a proposition that shows how a solution to the
linear program PF yields a solution to the integer program PI . This means that
the weak discrepancy of a poset can be found using standard implementations
of LP algorithms.

Proposition 7 Let P = (V,≺) be a poset with V = {a1, a2, . . . , an} and let
x1, x2, . . . , xn, k be an optimal solution to the fractional weak discrepancy prob-
lem PF . Then dx1e, dx2e, . . . , dxne, dke is an optimal solution to the weak dis-
crepancy problem PI .

Proof. First we show that dx1e, dx2e, . . . , dxne, dke defines a feasible solution
to PI . For each up constraint, xi ≤ xj − 1 ≤ dxje − 1, thus dxie ≤ dxje − 1.
For each side constraint, xi ≤ xj + k ≤ dxje + dke, thus dxie ≤ dxje + dke. In
fact, this is an optimal solution to PI , since otherwise there would be a feasible
solution to PI , and hence to PF , with objective function value k′ ≤ dke−1 < k.
2
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Figure 2: The preference-indifference digraph ~GN .

3 Forcing Cycles and the Dual Program

3.1 Forcing cycles and the weak discrepancy problem

In [5], the weak discrepancy is characterized using forcing cycles. A forcing cycle
C of poset P = (V,≺) is a sequence C : a0, a1, . . . , am = a0 of m ≥ 2 elements
of V for which ai ≺ ai+1 or ai ‖ ai+1 for each i : 0 ≤ i < m. In [4], these are
called picycles (preference-indifference cycles).

If C is a forcing cycle, we write up(C) = |{i : ai ≺ ai+1}| and side(C) = |{i :
ai ‖ ai+1}|. For example, the poset Q of Figure 1 has forcing cycle C : a1 ≺ a2 ≺
a3 ‖ b1 ≺ b2 ‖ a1 with up(C) = 3, side(C) = 2 and wdF (Q) = 3/2. (As noted
in Section 1 we will prove later that the values we claim for wdF of Q, N , and
R are correct.) Similarly, the poset N has forcing cycle C : a1 ≺ a2 ‖ a4 ‖ a1

with up(C) = 1, side(C) = 2 and wdF (N) = 1/2. Also, the poset R has forcing
cycle C : a1 ≺ a2 ≺ a3 ≺ a4 ‖ b1 ≺ b2 ‖ a1 with up(C) = 4, side(C) = 2 and
wdF (R) = 4/2 = 2.

In [5], Gimbel and Trenk prove that for all posets P , wd(P ) = maxC

⌈
up(C)

side(C)

⌉
where the maximum is taken over all forcing cycles C in P . The analogous result
for fractional weak discrepancy appears in Theorem 13 and involves a directed
graph ~GP associated with poset P .

Given a poset P = (V,≺) with at least one incomparable pair, we define
the preference-indifference digraph ~GP = (V,E) with arc set E = U ∪ S, where
U = {(a, b) : a ≺ b} and S = {(a, b) : a ‖ b}. We call U the set of “up” arcs
and S the set of “side” arcs in ~GP . Figure 2 illustrates ~GN for the poset N of
Figure 1.

Notice that the forcing cycles in a poset P correspond precisely to the di-
rected cycles in the digraph ~GP . Furthermore, we make the following observa-
tion about directed cycles in ~GP .

Remark 8 Since each poset P that we consider has at least one incomparable
pair, ~GP has at least one directed cycle, and since precedence (≺) is transitive,
every directed cycle of ~GP must contain at least two side arcs.
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3.2 Duality

In this section, we interpret the dual DF of the linear program PF as a circula-
tion problem on the directed graph ~GP . We also establish a connection between
circulation flow and forcing cycles and use linear programming duality to solve
the fractional weak discrepancy problem.

A circulation is a flow in a directed graph where flow is conserved at each
vertex. More formally, a circulation on a digraph ~G = (V,E) is a function
Φ : E → R satisfying the equation∑

{b:(a,b)∈E}

Φ(a, b) −
∑

{b:(b,a)∈E}

Φ(b, a) = 0 for each a ∈ V.

For example, the circulation equations for the digraph ~GN shown in Figure 2
take the following form. Here we use the vertex-arc incidence matrix representa-
tion of ~GN , each uij is the flow Φ(i, j) along the up arc (i, j) ∈ U and, similarly,
each sij is the flow along the side arc (i, j) ∈ S.


1 0 0 1 −1 1 −1 0 0
−1 −1 0 0 0 0 0 1 −1
0 1 1 −1 1 0 0 0 0
0 0 −1 0 0 −1 1 −1 1





u12

u32

u34

s13

s31

s14

s41

s24

s42


=


0
0
0
0

 (1)

In the proof of Theorem 13 we will need to apply the following well-known
result about circulations, which appears in [1].

Theorem 9 (Flow Decomposition Theorem) Every circulation on a digraph
~G = (V,E) can be decomposed into nonnegative flows along at most |E| directed
cycles.

Proposition 10 Suppose P is a poset with at least one incomparable pair. The
dual DF of the linear program PF can be interpreted as an optimization problem
on the digraph ~GP in which we wish to find a circulation that maximizes the
sum of the flows along the up arcs while constraining the sum of the flows along
the side arcs to equal one.

Proof. Given poset P = (V,≺) with at least one incomparable pair, let PF

be the LP in Definition 3. Let n = |V |, m = |U |, and 2p = |S|, where U (resp.
S) is the set of up arcs (resp. side arcs) in ~GP , and let em = (1, . . . , 1)T ∈ Rm.
We denote the vector of primal variables by x = (x1, . . . , xn)T ∈ Rn and let
u′ ∈ Rm and s′ ∈ R2p be the (column) vectors of dual variables corresponding to
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the up and side constraints of PF , respectively. Finally, let matrix A be the m×n
matrix of coefficients of the variables xi in the up constraints of Definition 3,
and let B be the corresponding 2p×n matrix for the side constraints. Then we
can express PF and its dual program DF in the following form.

PF : min k DF : max− em · u′

subject to subject to

Ax ≤ −em AT u′ + BT s′ = 0n

Bx− ke2p ≤ 02p −e2p · s′ = 1
x, k unrestricted u′ ≤ 0m, s′ ≤ 02p

This is illustrated in Example 12 below. In matrix form, the constraints in
PF and DF are the following.(

A 0m

B −e2p

)(
x
k

)
≤
(
−em

02p

) (
AT BT

0T
m −eT

2p

)(
u′

s′

)
=
(

0n

1

)
Now we let u = −u′ and s = −s′, so that the dual is as follows.

DF : max em · u
AT u + BT s = 0n

e2p · s = 1
u ≥ 0m, s ≥ 02p

In matrix form, the dual constraints after the sign change are given below.

(
AT BT

0T
m eT

2p

)(
u
s

)
=
(

0n

1

)
(2)

We can interpret the coordinates of u and s as nonnegative flows along the
arcs of ~GP . Each of the n rows of AT , BT corresponds to a vertex of ~GP , with a
1 for every arc leaving the vertex and a −1 for every arc entering it as illustrated
in Equation (1) above. So AT u + BT s = 0n states that flow is preserved at
each vertex of ~GP , and a feasible solution is a circulation on ~GP subject to the
additional constraint that the sum of the flows on the side arcs, e2p · s, equals
1. The objective is to maximize em · u, which is just the sum of the flows on
the up arcs. 2

Recall that the optimal value for the primal problem PF is wdF (P ), by
Remark 4. Since at optimality the primal and dual problems have the same
objective function value, the maximum value of em · u equals wdF (P ). This
proves the following corollary.
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Corollary 11 Suppose P is a poset with at least one incomparable pair. Then
wdF (P ) is the maximum sum of the flows along the up arcs taken over all
circulations in ~GP for which the sum of the flows along the side arcs equals one.

Example 12 In Example 5, we show PF for the poset N . Here we express PF

in matrix form. Each row corresponds to an arc of ~GN and each column (except
for the last one) corresponds to a vertex.

PF : min k
subject to

1 −1 0 0 0
0 −1 1 0 0
0 0 1 −1 0
1 0 −1 0 −1
−1 0 1 0 −1
1 0 0 −1 −1
−1 0 0 1 −1
0 1 0 −1 −1
0 −1 0 1 −1




x1

x2

x3

x4

k

 ≤



−1
−1
−1
0
0
0
0
0
0


x, k unrestricted

Let the dual variables (after the sign change) be uij for the m = 3 up
constraints xi−xj ≤ −1 and sij for the 2p = 6 side constraints xi−xj − k ≤ 0.
We express DF in matrix form below. Now each row of the dual matrix (except
the last) corresponds to a vertex of ~GN and each column corresponds to an arc.
This part of the matrix is identical to the coefficient matrix in Equation (1) and
corresponds to the partitioned matrix (AT BT ) of Equation (2).

DF : max u12 + u32 + u34

subject to


1 0 0 1 −1 1 −1 0 0
−1 −1 0 0 0 0 0 1 −1
0 1 1 −1 1 0 0 0 0
0 0 −1 0 0 −1 1 −1 1
0 0 0 1 1 1 1 1 1





u12

u32

u34

s13

s31

s14

s41

s24

s42


=


0
0
0
0
1



u ≥ 03, s ≥ 06

One feasible solution is u12 = s24 = s41 = 0.5, with all other dual variables
equal to 0, i.e., flow is preserved at each of the n = 4 vertices and the flows along
the side arcs sum to 1. The sum of the flows along the up arcs is 0.5, which is
the value of k found for the solution to the primal problem in Example 5. Since
the primal and dual objective values are the same, these must be the optimal
solutions to the two problems and so wdF (N) = 0.5.
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3.3 Forcing cycles and the fractional weak discrepancy
problem

We are now ready to prove an analogue to Gimbel and Trenk’s theorem in [5]
that characterizes weak discrepancy using forcing cycles. Our approach uses
duality theory and circulations. An alternative approach can be based on a
result of Bellman (see [3]) about shortest paths and constraint digraphs.

Theorem 13 Let P = (V,≺) be a poset with at least one incomparable pair.
Then wdF (P ) = maxC

up(C)
side(C) , taken over all forcing cycles C in P . Any forcing

cycle C0 that achieves the maximum determines an optimal solution to DF in
which the nonzero variables are all equal to 1

side(C0)
and are the flows along the

arcs of the corresponding directed cycle in ~GP .

Proof. Consider an optimal solution to DF , with dual variables uij , sij

corresponding to flows along the up arcs (i, j) ∈ U and the side arcs (i, j) ∈ S.
By Proposition 10, this solution is a circulation that maximizes

∑
uij subject

to the restriction
∑

sij = 1. This circulation can be represented as cycle flow
along at most |E(~GP )| directed cycles C1, C2, ..., Cr, using Theorem 9. By
Remark 8 forcing cycles exist in P , and since P is finite some cycle C0 achieves
the maximum maxC

up(C)
side(C) among all directed cycles C of ~GP . We show an

optimal solution can be achieved by restricting all (nonzero) flow to C0. We
accomplish this by iteratively moving the flow from Cj to C0 for j = 1 to r.

Repeat the following argument for j = 1 to r. Let

εj =
side(Cj)
up(Cj)

− side(C0)
up(C0)

.

Note that εj ≥ 0 since up(Cj)
side(Cj)

≤ up(C0)
side(C0)

. Solving for side(Cj), we obtain

side(Cj) = up(Cj) ·
[
side(C0)
up(C0)

+ εj

]
. (3)

Let fj be the flow around Cj . Define a new flow by removing fj from each arc
of the directed cycle Cj and adding

fj ·
[
up(Cj)
up(C0)

+
εj · up(Cj)
side(C0)

]
≥ 0

to each arc of C0.
We show that the resulting change in the dual variables also yields an optimal

solution to DF . First we establish feasibility. The conservation constraints are
maintained when we remove the same value from the flow along each arc of the
directed cycle Cj , and similarly when we add the same value to the flow along
each arc of C0. The sum of the flows along the side arcs of ~GP has not changed
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since we have removed a total of fj · side(Cj) from the side arcs of Cj , but by
Equation (3) have added a total of

fj ·
[
up(Cj)
up(C0)

+
εj · up(Cj)
side(C0)

]
· side(C0) = fj · up(Cj) ·

[
side(C0)
up(C0)

+ εj

]
= fj · side(Cj)

to the side arcs of C0. Thus, the new flow values yield a feasible solution to DF .
The value of the objective function,

∑
uij , has not decreased since we re-

moved a total of fj · up(Cj) from the up arcs of Cj and added a total of

fj ·
[
up(Cj)
up(C0)

+
εj · up(Cj)
side(C0)

]
· up(C0) = fj · up(Cj)

[
1 +

εj · up(C0)
side(C0)

]
≥ fj · up(Cj)

to the up arcs of C0. Thus the new flow assignment yields an optimal solution
to DF . Once we complete this process for j = r, we have an optimal solution
to the circulation problem DF in which all nonzero flow is along arcs in a single
directed cycle C0 that achieves maxC

up(C)
side(C) among all directed cycles C of ~GP .

The conservation constraints imply that the flows along each arc of C0 are equal,
i.e., there exists some v ≥ 0 such that

uij (resp., sij ) =

{
v if (i, j) ∈ U (resp., S) is an arc of C0

0 otherwise
.

This equation restricted to side arcs implies v ·side(C0) =
∑

sij = 1, so that
v = 1

side(C0)
. At optimality the values of the objective functions of PF and its

dual DF are equal. The value of the former equals wdF (P ). Thus,

wdF (P ) =
∑

uij

= v · up(C0)

=
up(C0)

side(C0)

= maxC
up(C)

side(C)

as required. 2

Example 14 We continue analyzing the primal and dual problems for the poset
N shown in Figure 1. We apply Theorem 13 to the poset N , continuing our
results from Examples 5 and 12. One can check that the forcing cycle C : a1 ≺
a2 ‖ a4 ‖ a1 with up(C) = 1 and side(C) = 2 achieves maxC

up(C)
side(C) = 1

2 . As
stated in Theorem 13, the forcing cycle C determines an optimal solution to
DF , namely u12 = s24 = s41 = 0.5 with all other dual variables equaling 0.
This is precisely the optimal solution found in Example 12.
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For some posets such as Q and R of Figure 1, it is easy to identify the
forcing cycles C that achieve the maximum ratio of up(C) to side(C). We
denote the poset Q of Figure 1 by 3 + 2 and R by 4 + 2, and more generally
write r1 + r2 + · · · + rt with r1 ≥ r2 ≥ · · · ≥ rt for the poset consisting of the
disjoint union of t chains with ri elements in the ith chain. As observed in [9], a
forcing cycle C in this poset with largest ratio of up(C) to side(C) is obtained
by cycling through the subposet r1 + r2, thus proving the following corollary to
Theorem 13. In particular, this establishes wdF (Q) = 1.5 and wdF (R) = 2, as
claimed in Section 1.

Corollary 15 If P is the disjoint union r1 + r2 + · · ·+ rt of t ≥ 2 chains with
r1 ≥ r2 ≥ · · · ≥ rt, then wdF (P ) =

(
r1+r2

2

)
− 1.

4 Conclusion

In this paper we have explored some of the connections between weak dis-
crepancy and fractional weak discrepancy. Proposition 7 gives a way to solve
the weak discrepancy problem by rounding up an optimal solution to the cor-
responding fractional weak discrepancy problem. Theorem 13, characterizing
fractional weak discrepancy using forcing cycles, is an analogue of Theorem 2.1
of [5], and Corollary 15 is an analogue of Theorem 21 in [9].

Several additional results in [5] and [9] about weak discrepancy have frac-
tional weak discrepancy counterparts. We mention two such results below, one
giving an upper bound on fractional weak discrepancy and the other calculating
the fractional weak discrepancy for the standard example posets Sn. Theorem 16
is an analogue of Theorem 12 in [9], whose proof can be adapted easily to the
fractional case.

Theorem 16 If P is an n-element poset, then 0 ≤ wdF (P ) ≤ n−2
2 . Moreover,

the lower bound is achieved precisely when P is a weak order and the upper
bound is achieved precisely when P is the disjoint union of two chains.

The standard example Sn = (V,≺) for n ≥ 2 is the height two poset with
V = {a1, a2, . . . , an} ∪ {b1, b2, . . . , bn} whose only comparabilities are ai ≺ bj

for i 6= j. This poset has the forcing cycle C : a1 ≺ b2 ‖ a2 ≺ b1 ‖ a1

with up(C)
side(C) = 1, thus wdF (Sn) ≥ 1 by Theorem 13. The labeling f(ai) = 1,

f(bi) = 2 for i : 1 ≤ i ≤ n, shows wdF (Sn) ≤ 1. This proves the following
analogue of Theorem 19 in [9].

Theorem 17 For all n ≥ 2, wdF (Sn) = wd(Sn) = 1.

Results like Theorems 16 and 17 are analogues of theorems already known
for weak discrepancy. In future work [7] and [8] we use the more refined measure
wdF (P ) to distinguish among classes of posets having the same wd(P ). Note
that the current paper predates [7] and [8].
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