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ABSTRACT

The fractional weak discrepancy wdF (P ) of a poset P = (V,≺)
was introduced in [9] as the minimum nonnegative k for which there
exists a function f : V → R satisfying (i) if a ≺ b then f(a)+1 ≤ f(b)
and (ii) if a ‖ b then |f(a) − f(b)| ≤ k. In this paper we generalize
results in [10, 11] on the range of the wdF function for semiorders
(interval orders with no induced 3 + 1) to interval orders with no
n + 1, where n ≥ 3. In particular, we prove that the range for
such posets P is the set of rationals that can be written as r/s,
where 0 ≤ s − 1 ≤ r < (n − 2)s. If wdF (P ) = r/s and P has
an optimal forcing cycle C with up(C) = r and side(C) = s, then
r ≤ (n − 2)(s − 1). Moreover when s ≥ 2, for each r satisfying
s− 1 ≤ r ≤ (n− 2)(s− 1) there is an interval order having such an
optimal forcing cycle and containing no n + 1.

∗Supported in part by a Wellesley College Brachman Hoffman Fellowship.

1



2

1 Introduction

In this paper we will consider irreflexive posets P = (V,≺) and write x ‖ y
when elements x and y in V are incomparable. Of particular importance to us
will be posets with no induced r + s, where r + s is the poset consisting of two
disjoint chains, one with r elements and one with s elements. An interval order
is a poset with no induced 2 + 2; equivalently, P is an interval order if each
element x ∈ V can be assigned an interval Ix on the real line so that x ≺ y
precisely when Ix is completely to the left of Iy [2]. A semiorder (unit interval
order) is an interval order with a representation in which each interval has the
same length. Equivalently, a semiorder is a poset with no induced 2 + 2 and no
induced 3 + 1 [8]. As Fishburn and Monjardet [4] show, these ideas have their
roots in early work of Wiener.

A weak order is a poset with no induced 2 + 1. Alternatively, a weak order
can be defined as a poset P to which we can assign a real-valued function
f : V → R so that a ≺ b if and only if f(a) < f(b) [1]. We can think of such
a function as ranking the elements of P in a way that respects the ordering ≺
and gives incomparable elements equal rank.

We will consider the fractional weak discrepancy of a poset, introduced in
[9] as a generalization of Trenk’s concept of integer-valued weak discrepancy
(originally called “weakness” in [14]). The weak discrepancy is a measure of
how far a poset is from being a weak order.

Definition 1 The fractional weak discrepancy wdF (P ) of a poset P = (V,≺)
is the minimum nonnegative real number k for which there exists a function
f : V → R satisfying

(i) if a ≺ b then f(a) + 1 ≤ f(b) (“up” constraints)
(ii) if a ‖ b then |f(a)− f(b)| ≤ k. (“side” constraints)
To define the (integer) weak discrepancy wd(P ), we take the minimum k ∈

Z, k ≥ 0, for which there is a Z-valued function f satisfying (i) and (ii).

In [9] we express wd(P ) as the optimal solution to an integer program and
wdF (P ) as the optimal solution to its linear relaxation, and prove that wd(P ) =
dwdF (P )e. We can interpret wd(P ) and wdF (P ) as bounding the discrepancy
in ranking between incomparable elements of V , where ranks must be integers
(as in salary or grade levels) or not (as in actual salaries). See [13] for other
interpretations.

For example, the poset P = 3 + 2 is illustrated in Figure 1 with a labeling
that is in fact optimal. The presence of an r + s in a poset P gives a substructure
whose elements we can traverse by traveling up one chain, then to the bottom
of the second chain, then up the second chain, and then back to the bottom of
the first chain, all the while respecting the ordering in P . This is generalized in
the following key definition.

Definition 2 A forcing cycle C of poset P = (V,≺) is a sequence C : x0, x1, . . . , xm =
x0 ofm ≥ 2 elements of V for which xi ≺ xi+1 or xi ‖ xi+1 for each i : 0 ≤ i < m.
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Figure 1: P = 3 + 2 and an optimal labeling showing wdF (P ) = 1.5, wd(P ) = 2.

If C is a forcing cycle, we write up(C) = |{i : xi ≺ xi+1}| and side(C) = |{i :
xi ‖ xi+1}|.

For example, one forcing cycle of P = 3 + 2 in Figure 1 is C1 : a1 ≺ a2 ≺
a3 ‖ b1 ≺ b2 ‖ a1, which has up(C1) = 3 and side(C1) = 2. Another forcing cycle
is C2 : a1 ≺ a2 ‖ b1 ≺ b2 ‖ a1, which has up(C2) = 2 and side(C2) = 2. Note
that in any forcing cycle C, we have up(C) ≥ 0 and side(C) ≥ 2. Forcing cycles
provide the main tool for proving results about (fractional) weak discrepancy,
as shown in the following theorem.

Theorem 3 ( [6, 9]) Let P = (V,≺) be a poset with at least one incomparable
pair. Then wd(P ) =

⌈
maxC

up(C)

side(C)

⌉
and wdF (P ) = maxC

up(C)

side(C)
, where the

maximum is taken over all forcing cycles C in P .

The maximum ratio for the poset P = 3 + 2 in Figure 1 is achieved by the
forcing cycle C1. So wd(P ) = d3/2e = 2 and wdF (P ) = 3/2.

One consequence of Theorem 3 is that the fractional weak discrepancy of
a poset is always a nonnegative rational number. This raises two important
questions:

Question 1: Which nonnegative rational numbers can be achieved as wdF (P )
for which posets P?
Question 2: If wdF (P ) = r/s for integers r ≥ 0 and s ≥ 2, does there exist a
forcing cycle C in P with up(C) = r and side(C) = s?

The authors’ earlier papers [10] and [11] gave partial answers to these ques-
tions. Theorem 4 answers Question 1 for three classes of posets.

Theorem 4 ([10, 11]) The range of wdF (P ) can be described as follows:

(i) {wdF (P ) : P a semiorder} = {0, 1
2 ,

2
3 ,

3
4 ,

4
5 , . . .}.
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1/2 2/2 3/2 4/2 5/2 6/2 7/2 8/2 9/2 10/2 · · ·

2/3 3/3 4/3 5/3 6/3 7/3 8/3 9/3 10/3 · · ·

3/4 4/4 5/4 6/4 7/4 8/4 9/4 10/4 · · ·

4/5 5/5 6/5 7/5 8/5 9/5 10/5 · · ·

5/6 6/6 7/6 8/6 9/6 10/6 · · ·

· ·
· ...

...
...

...
...

Figure 2: The range of positive values for wdF (P ). The solid boxes show the
range for semiorders. The dashed boxes illustrate Theorem 12 when n = 4.
They show the r-s pairs (r ≥ 1, s ≥ 2) for which there is an interval order P
containing a 3 + 1 but no 4 + 1, where wdF (P ) = r/s and P has an optimal
forcing cycle C with r = up(C), s = side(C).

(ii) {wdF (P ) : P not a semiorder} = {q ≥ 1 : q ∈ Q}.

(iii) {wdF (P ) : P an interval order but not a semiorder} = {q ≥ 1 : q ∈ Q}.

In [11], we answered Question 2 in the negative by exhibiting a poset P with
wdF (P ) = 3/2 but having no forcing cycle C with up(C) = 3 and side(C) = 2.

The current paper extends Theorem 4 in the following way. We generalize
the notion of a semiorder (interval order with no 3 + 1) to the larger class of
interval orders with no induced n + 1, when n ≥ 3. In Theorem 5 we give a
sufficient condition in terms of forcing cycles for an interval order to contain
an n + 1. In Theorem 12 we give conditions that guarantee the existence of an
interval order that contains no n + 1. These two results lead to Corollary 18,
where we answer Question 1 for this class for each n: the range of wdF (P ) is
the set of rationals that can be written as r/s, where 0 ≤ (s−1) ≤ r < (n−2)s.
When s ≥ 2 and r ≤ (n − 2)(s − 1) these orders have an optimal forcing cycle
with r = up(C), s = side(C). Figure 2 illustrates the case n = 4, where
r ≥ 1, s ≥ 2. The solid boxes show the values where r = s−1 and correspond to
the semiorders. The dashed boxes show the r-s pairs where s−1 < r ≤ 2(s−1),
and correspond to interval orders that contain a 3 + 1 but no 4 + 1 and have an
optimal forcing cycle with r = up(C), s = side(C). As the figure shows, such
an order can exist for some but not all pairs that represent the same rational
number, e.g., 6/4 is in a dashed box but 3/2 is not. An example of this is
discussed immediately after Corollary 18.

We also consider the following variant of Question 2:
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Question 2′: Let r ≥ 1 and s ≥ 2 be integers for which r/s can be achieved
as the fractional weak discrepancy of some poset. Does there exist a poset
P with an optimal forcing cycle C such that wdF (P ) = r/s,up(C) = r, and
side(C) = s?

We answer Question 2′ in the affirmative and show in Corollary 17 that when
n is sufficiently large (n ≥ 2 + r

s−1 ) we can take P to be an interval order with
no n + 1.

2 Interval orders containing an induced n + 1

The main result of this section, Theorem 5, gives a sufficient condition for an
interval order to contain an induced n + 1, generalizing the case of n = 3. If C
is a forcing cycle of an interval order P with side(C) = r + 1 and up(C) > r,
Theorem 3 implies wdF (P ) ≥ 1. Thus Theorem 4(i) implies that P is not
a semiorder. Since semiorders are interval orders with no induced 3 + 1, P
must contain a 3 + 1. The bound up(C) > r is tight since we have shown
([10], Proposition 16) how to construct, for each r > 0, an interval order P
possessing an optimal forcing cycle C with side(C) = r + 1 and up(C) = r but
no induced 3 + 1. In the case n = 3, we can express this result as saying that
if up(C) > (n − 2)r and side(C) = r + 1, then P must contain an n + 1. This
generalization is contained in Theorem 5, whose proof appears in Section 2.3.

Theorem 5 Let n be an integer with n ≥ 3. If an interval order P contains a
forcing cycle C with up(C) > (n− 2)(side(C)− 1), then P contains an induced
n + 1.

In Theorem 12 we will construct, for each integer r > 0, an interval order P
possessing an optimal forcing cycle with side(C) = r + 1 and up(C) = (n− 2)r
but with no induced n + 1. Thus the bound given in Theorem 5 is the best
possible for interval orders. The inequality in Theorem 5 cannot be generalized
to include all noninterval orders since P = (n− 1) + (n− 1) has no induced
n + 1 but has an optimal forcing cycle C with up(C) = 2(n − 2), side(C) = 2,
and wdF (P ) = n− 2. When n ≥ 3, this poset P contains a 2 + 2 and so is not
an interval order. However, we have shown that a slightly weaker bound holds
for all posets: if P is any poset for which wdF (P ) > n− 2, then P contains an
n + 1 ([14, 11]).

We will prove Theorem 5 by contradiction. Let C be a forcing cycle with
up(C) > (n− 2)(side(C)− 1) and suppose P contains no n + 1. We will apply
an algorithm to C that will lead to a contradiction. First we will outline the
algorithm and illustrate it with an example, and then we will prove the theorem.
The algorithm is based on moving along C through successive sequences of uj

up steps and sj side steps. It builds a stack K of elements taken from C and
then derives a contradiction from it.
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j uj sj λj Σj
l=1(ul − λl)

1 2 2 3 –1
2 2 1 1 0
3 5 2 3 2

Table 1: Example 6 before preprocessing, with n = 4.

2.1 The algorithm and an example

The algorithm consists of the following three stages:

1. Preprocessing: If necessary, relabel C to start the cycle at the beginning
of a sequence of up steps and so that the partial sums of Σ(uj − σj) are
nonnegative, where σj is a certain function of sj and n.

2. Initialization: (step 0) Place the first element of C on the stack.

3. Iteration: Let p be the number of alternating sequences of up and side
steps in C. For each j = 1, 2, . . . , p,

(step ju) Add the next uj elements of C, corresponding to the next
sequence of up steps, to the top of K.

(step js) Remove the top σj elements from K.

Iterate until we return to the beginning of C. We will prove that the
stack never empties.

Suppose that P does not contain an n + 1. We will show that in any interval
representation of P , after each step of the algorithm the order of elements on
the stack K respects the partial order of P . We will then use the structure of
K to show that C is not a forcing cycle, a contradiction. It will therefore follow
that P must contain an n + 1.

In order to define σj , we first introduce the parameter λj . For j = 1, 2, . . . , p
let

λj = (n− 2)(sj − 1) + 1. (1)

Example 6 Consider an interval order P that contains the following forcing
cycle C, shown in Figure 3.

C : x0 ≺ x1 ≺ x2 ‖ x3 ‖ x4 ≺ x5 ≺ x6

‖ x7 ≺ x8 ≺ x9 ≺ x10 ≺ x11 ≺ x12 ‖ x13 ‖ x14 = x0.

We will let n = 4 in this example and assume as above that P does not
contain an n + 1. Here p = 3,up(C) = 9, and side(C) = 5, so we have λj =
2sj − 1 and (n− 2)(side(C)− 1) = 8. The values of the various parameters and
of the partial sums of Σ(uj − λj) are shown in Table 1.
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x0 = x14
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Figure 3: A forcing cycle in an interval order P (there may be other elements,
comparabilities, and incomparabilities that are not shown).
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j uj sj σj Σj
l=1(ul − σl)

1 2 1 1 1
2 5 2 3 3
3 2 2 3 2

Table 2: Example 6 after preprocessing, with n = 4.

step uj σj K
0 y0
1u 2 y0, y1, y2
1s 1 y0, y1
2u 5 y0, y1, y4, y5, y6, y7, y8
2s 3 y0, y1, y4, y5
3u 2 y0, y1, y4, y5, y11, y12
3s 3 y0, y1, y4

Table 3: Evolution of the stack K in Example 6.

The details of the preprocessing step will be explained during the proof of
Proposition 9. In Example 6, preprocessing will start the forcing cycle at x4:

x4 ≺ x5 ≺ x6 ‖ x7 ≺ x8 ≺ x9 ≺ x10 ≺ x11 ≺ x12

‖ x13 ‖ x14 = x0 ≺ x1 ≺ x2 ‖ x3 ‖ x4.

To simplify the notation, we relabel the elements and denote the new forcing
cycle again by C,

C : y0 ≺ y1 ≺ y2 ‖ y3 ≺ y4 ≺ y5 ≺ y6 ≺ y7 ≺ y8
‖ y9 ‖ y10 ≺ y11 ≺ y12 ‖ y13 ‖ y14 = y0.

We again denote the number of alternating up and side steps in the cycle by
uj , sj , redefine λj accordingly, and then define

σj =

{
0, if j = p and sp = 1
λj , otherwise.

(2)

That is, we remove the top σj = λj elements from the stack unless there
is only one side step at the end of the forcing cycle. In that case λp = 1 and
σp = 0, and we remove no elements in step ps.

Table 2 gives the characteristics of the cycle after preprocessing. In this
example, σp = λp, i.e., the exceptional case in (2) does not arise. Table 3 shows
how the stack K evolves when we apply the algorithm to C.

Continuing Example 6, we will give samples of the reasoning we will use in
the proof of Theorem 5 to show how the evolution of the stack determines the
form of any interval representation of P .
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I(y0) I(y1) I(y2)

I(y3)
I(y4) I(y5) I(y6) I(y7) I(y8)

Figure 4: A possible interval representation of P after step 2u in Example 6,
where one element was removed from the stack in the preceding step 1s.

I(y0) I(y1) I(y2)

I(y3) I(y4) I(y5) I(y6) I(y7) I(y8)

I(y9)

I(y10) I(y11)

Figure 5: A possible interval representation of P after step 3u in Example 6,
where three elements were removed from the stack in the preceding step 2s.

Figure 4 shows a possible configuration of the intervals assigned to elements
y0, y1, . . . , y8 in P after step 2u. Note that y1 precedes y4 in the stack. We
assign to each yi the interval I(yi) = [L(yi), R(yi)]. We show that in any
interval representation of P , the vertical dashed lines must appear in the order
shown. That is R(y1) < L(y2) ≤ R(y3) < L(y4) because in P we have y1 ≺ y2,
y2 ‖ y3, and y3 ≺ y4. Thus we may conclude that y1 ≺ y4 in P .

Figure 5 shows a possible configuration of the intervals assigned to y0, y1, . . . , y11
after step 3u. We will show that since P does not contain a 4 + 1 the vertical
dashed lines must appear in the order shown, that is R(y5) < L(y9) ≤ R(y10) <
L(y11). First, we have y8 ‖ y9 hence L(y8) ≤ R(y9). Since y5 ≺ y6 ≺ y7 ≺ y8,
if we had L(y9) ≤ R(y5) then (y5 ≺ y6 ≺ y7 ≺ y8) ‖ y9 would be an induced
4 + 1. Hence R(y5) < L(y9), the first of our three inequalities. The second and
third inequalities follow directly from y9 ‖ y10 and y10 ≺ y11, respectively. In
particular, we have shown that y5 ≺ y11.
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2.2 Preprocessing to obtain a good starting point

We started with a forcing cycle C with up(C) > (n − 2)(side(C) − 1). Let
r = up(C), s = side(C). We may choose to start the cycle at an element x0

that is the beginning of a sequence of up steps, i.e., if C contains m elements
then xm−1 ‖ xm = x0 ≺ x1. We call x0 an upward starting point for C. Then
C consists of p alternating sequences of uj up steps and sj side steps.

Our goal in preprocessing is to find an upward starting point for C so that
the stack K never empties during the algorithm. We will accomplish this by
finding an upward starting point for which the partial sums of

∑p
j=1(uj − σj)

are all nonnegative. This is done in Proposition 9, which we prove after the
following lemmas.

Lemma 7 Let n ≥ 4, let the forcing cycle C begin at an upward starting point,
and suppose r > (n− 2)(s− 1). Then

∑p
j=1(uj − λj) ≥ p− 1.

Proof.
p∑

j=1

(uj − λj) =
p∑

j=1

uj −
p∑

j=1

λj

= r −
p∑

j=1

((n− 2)(sj − 1) + 1) (by (1))

= r − (n− 2)s+ (n− 2)p− p
> (n− 2)(s− 1)− (n− 2)s+ (n− 2)p− p (since r > (n− 2)(s− 1))
= (n− 2)(p− 1)− p
≥ 2(p− 1)− p (since n ≥ 4)
= p− 2.

So
∑p

j=1(uj − λj) > p− 2, and since both sides are integers the result follows.
�

We will also need the following technical lemma stating that whenever the
sum of a finite number of reals is positive, there is a cyclic permutation of the
terms that makes all the partial sums positive.

Lemma 8 Let τp : t1, t2, . . . , tp be a finite sequence of real numbers with
∑p

j=1 tj >
0. There exists an index q with 1 ≤ q ≤ p for which the partial sums of the
sequence τq : tq+1, tq+2, . . . , tp, t1, t2, . . . , tq are all positive.

Proof. If all partial sums of τp are positive, we are done. Otherwise, choose q
so that

∑q
j=1 tj = k ≤ 0 is the minimum of the partial sums, and q is the largest

index to achieve this minimum value. Since the sum of the entire sequence is
positive, q ≤ p− 1.

We will show all the partial sums of τq are positive. For q + 1 ≤ i ≤ p,
we have

∑i
j=q+1 tj > 0 because of the way q was chosen, i.e., it is nonnegative



11

because k is minimum, and nonzero because q is the largest index to achieve
the value k. For similar reasons, when 1 ≤ i ≤ q we have

p∑
j=q+1

tj +
i∑

j=1

tj ≥
p∑

j=q+1

tj +
q∑

j=1

tj =
p∑

j=1

tj > 0.

�

Proposition 9 There is an upward starting point for C for which the partial
sums of

∑p
j=1(uj − σj) are all nonnegative.

Proof. Recall that σj = λj except that if λp = 1 then σp = 0. Thus∑p
j=1(uj −σj) ≥

∑p
j=1(uj −λj). So it suffices to find an upward starting point

for which all partial sums of
∑p

j=1(uj − λj) are nonnegative.
If all partial sums of

∑p
j=1(uj −λj) are nonnegative then we simply start C

at the current upward starting point x0. In particular, Lemma 7 implies this is
the case when p = 1 and there is only one term in the sum, u1−σ1 ≥ p−1 = 0.

Now suppose some partial sum is negative, so that p ≥ 2. Since
∑p

j=1(uj −
λj) ≥ p− 1 > 0, by Lemma 8 there is an index q for which the partial sums of

p∑
j=q+1

(uj − λj) +
q∑

j=1

(uj − λj)

are all positive.
This corresponds to letting the starting point of C be

y0 = xu1+s1+···+uq+sq
,

the element that completes the first q alternating sequences of up and side steps.
We then relabel the elements of C as y0, y1, y2, . . . , ym−1, ym = y0 and relabel
the uj , λj , σj accordingly, so that u1 is now the number of up steps beginning
at y0, etc. Then y0 is an upward starting point for C for which the partial sums
of
∑p

j=1(uj − λj) are all positive. �
In Example 6, it is now easy to check that the procedure in Proposition 9

for choosing a new starting point for C gives q = 1 and y0 = x4.

2.3 Initialization and iteration

Let y0 denote an upward starting point of C for which the partial sums of∑p
j=1(uj − σj) are all nonnegative. We initialize the stack K with y0 and then

iteratively add the next sequence of uj elements and subtract σj elements from
the stack, for j = 1, 2, . . . , p. The following remark is easy to verify and will be
useful in the proof of Proposition 11.

Remark 10 Let P = (V,≺) be a poset and n be an integer, n ≥ 3. If P
contains a chain c1 ≺ · · · ≺ cn and an element d incomparable to both c1 and
cn, then c1 ≺ · · · ≺ cn and d form an induced n + 1 in P .
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Proposition 11 (a) The stack K never empties during the algorithm.

(b) Suppose P does not contain an induced n + 1. Then after each step ju and
js, j = 1, 2, . . . , p, the order of elements on the stack respects the partial
order in P .

Proof. We will use the following notation to help describe the evolution of the
stack K during the algorithm. Let βj be the first element added to the stack
during step ju and let αj be the top element of the stack after step js. For
example, using Table 3 we see that β2 = y4 and α2 = y5. Denote the elements
on the stack after step ju, from the top of the stack down, by b1, b2, . . . . Then
buj

= βj and the top uj elements of K correspond to the jth sequence of up
steps in C, namely Uj : βj = buj

≺ · · · ≺ b2 ≺ b1.
In the forcing cycle C, Uj is followed by sj elements corresponding to the

next sequence of side steps, Sj : d1 ‖ d2 ‖ · · · ‖ dsj . At the ends of this sequence
we have

b1 ‖ d1 for 1 ≤ j ≤ p
dsj ≺ βj+1 for 1 ≤ j ≤ p− 1. (3)

Proof of (a). The number of elements on the stack after step ju of the algorithm
is 1 +

∑j−1
l=1 (ul − σl) + uj . The number after the succeeding step js is 1 +∑j

l=1(ul − σl). Since the partial sums of
∑p

j=1(uj − σj) are all nonnegative,
there are always at least two elements on the stack after ju and at least one
after js. Thus the stack never empties during the algorithm.

Proof of (b). Suppose P does not contain an n + 1. Since no elements are added
to the stack during js, it suffices to prove (b) only for ju. We will do this by
induction on j.

For step 1u, (b) is true since y0 is an upward starting point for C. Now
suppose (b) is true for 1, 2, . . . , j, where 1 ≤ j ≤ p− 1, and prove it is true for
j + 1. We seek to show αj ≺ βj+1, i.e., the top element αj of K after step js
precedes the first element βj+1 to be added to K in step (j + 1)u.

In the preceding step js we removed the top σj = (n−2)(sj−1)+1 elements
from the stack K, so that αj = b(n−2)(sj−1)+2. We consider the cases sj = 1
and sj ≥ 2 separately.

If sj = 1 then we removed only the top element, b1. So we have αj = b2 and
b1 ‖ d1 ≺ βj+1. Also, b2 ≺ b1 by the induction assumption for j. Thus in any
interval representation of P we have R(αj) = R(b2) < L(b1) ≤ R(d1) < L(βj+1),
which implies αj ≺ βj+1 as desired. Figure 4 illustrates this reasoning for
Example 6 where j = 1 and αj = y1, βj = y1, d1 = y3 and βj+1 = y4. Since
step (j + 1)u consists of adding Uj+1 to the stack on top of αj , (b) is true for
j + 1.

Now suppose sj ≥ 2. We can think of step js as having removed first b1 and
then groups of n − 2 elements, one group at a time, until we have removed σj

elements. If we have removed i groups then define ei to be the element at the
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top of the stack, ei = b(n−2)i+2. We will prove by induction on i that

ei ≺ di for 1 ≤ i ≤ sj − 1. (4)

For i = 1 we need to show e1 = bn ≺ d1. By the induction assumption for j
we have bn ≺ bn−1 ≺ . . . ≺ b1. If bn ‖ d1, then since b1 ‖ d1, Remark 10 implies
that this chain and d1 form an n + 1, a contradiction. If d1 ≺ bn then we have
d1 ≺ bn ≺ b1, which contradicts b1 ‖ d1. Thus e1 ≺ d1.

Suppose (4) is true for 1, 2, . . . , i − 1. We will prove it is true for i. By the
induction assumptions for j and for i− 1, we have

ei = b(n−2)i+2 = b(n−2)(i−1)+n ≺ b(n−2)(i−1)+n−1 ≺ . . .
≺ b(n−2)(i−1)+2 = ei−1 ≺ di−1. (5)

If ei ‖ di then by Remark 10, di and the chain in (5) form an n + 1, a contra-
diction. If di ≺ ei then di ≺ ei ≺ ei−1 ≺ di−1, contradicting di ‖ di−1. Thus
ei ≺ di, which completes the induction on i.

By setting i = sj − 1 we conclude that αj = esj−1 ≺ dsj−1. To complete
the induction on j it suffices to show αj ≺ βj+1. In any interval representation
of P we must have R(αj) < L(dsj−1). We also know dsj−1 ‖ dsj , so L(dsj−1) ≤
R(dsj

). By (3), dsj
≺ βj+1, and so we have R(dsj

) < L(βj+1). Combining these
inequalities, we get R(αj) < L(βj+1), hence αj ≺ βj+1 as desired. Figure 5
illustrates this reasoning for Example 6 where j = 2 and αj = y5, dsj−1 = y9,
dsj

= y10 and βj+1 = y11. This completes the induction on j and the proof of
(b). �

We can now prove Theorem 5.

Proof of Theorem 5. When n = 3 the result follows from Theorems 3 and
4(i). Now let n ≥ 4 and let P be an interval order with a forcing cycle C with
r = up(C), and s = side(C) and for which r > (n−2)(s−1). Suppose P does not
contain an induced n + 1. Apply the algorithm to C : y0, y1, . . . , ym−1, ym = y0.

Now consider the possible forms of the stack K after the final step ps. By
the initialization step and Proposition 11(a), the bottom element of K is y0.
Suppose sp = 1. Since y0 is an upward starting point for C we then have
ym−2 ≺ ym−1 ‖ ym = y0. By equation (2) we have σp = 0, so we remove no
elements from the stack during ps and the top element of K is αp = ym−1. By
Proposition 11(b) with j = p, it follows that y0 ≺ ym−1, a contradiction.

Now suppose sp ≥ 2. The top element of K after ps is now αp = esp−1. By
(4) with j = p, we have αp = esp−1 ≺ dsp−1. Since y0 is on the bottom of K,
either y0 ≺ αp or y0 = αp. Each contradicts dsp−1 ‖ dsp

= ym = y0.
Since all possible forms of K after step ps lead to a contradiction, the poset

P must contain an induced n + 1 and the proof of Theorem 5 is complete. �



14

3 The range of wdF for interval orders with no
n + 1

Theorem 5, together with Theorem 3, implies that if P is an interval order with
no n + 1 (for n ≥ 3) and if wdF (P ) = r/s for integers r ≥ 0 and s ≥ 2, with an
optimal forcing cycle C where r = up(C), s = side(C), then r ≤ (n− 2)(s− 1).

In this section we show that this bound is achieved and determines the range
of wdF (P ) for such interval orders. Indeed, we can construct interval orders P
with no n + 1 and having wdF (P ) = r/s for each value of r between s − 1
and (n − 2)(s − 1). After stating this formally in Theorem 12, we outline the
construction and give some preliminary lemmas before proving the theorem.
The range of wdF (P ) for interval orders with no n + 1 is given in Corollary 18.

Theorem 12 Let n, s be positive integers with n ≥ 2. There exists an interval
order P with no induced n + 1 and with wdF (P ) = r

s , for all integers r such
that s − 1 ≤ r ≤ (n − 2)(s − 1). If s ≥ 2 there is an optimal forcing cycle C
with up(C) = r, side(C) = s.

When n = 2 or s = 1, the only value of r satisfying the inequalities is r = 0.
We may let P be any weak order (no 2 + 1), since wd(P ) = dwdF (P )e and P
is a weak order if and only if wd(P ) = 0 (e.g., [6]). When either n = 3 or when
n ≥ 4 and r = s− 1, the theorem asserts there exists an interval order P with
wdF (P ) = r

r+1 . By [10], this is true for all integers r ≥ 0 and in fact P is a
semiorder.

We now assume n ≥ 4, r ≥ s ≥ 2, and r ≤ (n−2)(s−1). We will construct a
partial order P = (V,≺) by giving an interval representation for it. The ground
set V will consist of r + s elements of two kinds, xi corresponding to singleton
sets of real numbers and yj corresponding to intervals of positive length. The
construction will guarantee that P is an interval order with no induced n + 1.
Then we will prove that wdF (P ) = r

s and give an optimal forcing cycle with r
up arcs and s side arcs.

Let x0 < x1 < · · · < xr be any increasing sequence of r + 1 real numbers
and let I(xi) = {xi}. We will choose some of these xi to serve as endpoints
for the intervals assigned to the yj . In particular, we select a subsequence
x0 = xh(0) < xh(1) < · · · < xh(s−2) < xr, which we write more simply as
x0 = z0 < z1 < · · · < zs−1 = xr, as follows.

Definition 13 For j = 0, 1, . . . , s− 1, let

h(0) = 0

h(j) = min
{
h(j − 1) + n− 2,

⌊
(j + 1)

r

s

⌋}
, j = 1, . . . , s− 1.

In the definition of h(j), the two expressions over which we take the mini-
mum will serve to guarantee that P contains no n + 1 and that the labels on
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j h(j − 1) + n− 2 b(j + 1)r/sc h(j) zj

0 0 x0

1 2 2 2 x2

2 4 4 4 x4

3 6 5 5 x5

4 7 7 7 x7

5 9 8 8 x8

6 10 10 10 x10

Table 4: The subsequence zj = xh(j) for n = 4, s = 7, r = 10.

x0 x1 x2

z0 z1

x3 x4

z2

x5

z3

x6 x7

z4

x8

z5

x9 x10

z6

I(y1)

I(y2)

I(y3)

I(y4)

I(y5)

I(y6)

Figure 6: An interval representation for a poset P with no induced 4 + 1. The
forcing cycle C : x0 ≺ · · · ≺ x10 ‖ y6 ‖ · · · ‖ y1 ‖ x0 and the labeling determined
from Table 5 show that wdF (P ) = 10/7.

incomparable elements are no more than r/s apart. We will show below that
the indices h(j) are strictly increasing for j ≥ 0 and that h(s− 1) = r. Taking
this for granted for now, we let zj = xh(j), j = 0, 1, 2, . . . , s− 1. We then define
I(yj) = [zj−1, zj ], j = 1, . . . , s− 1.

That is, the union of the intervals I(yj) is [x0, xr], their left and right end-
points are strictly increasing, adjacent intervals intersect in exactly one of the
xi, and non-adjacent intervals are disjoint. (We could have taken any intervals
with these properties instead of letting the zj be the endpoints.)

Now let V = {x0, x1, . . . , xr, y1, y2, . . . , ys−1}. We define a partial order
P = (V,≺) with u ≺ v if and only if I(u) is completely to the left of I(v). The
intervals I(xi), I(yj) then give a representation of P as an interval order. We
illustrate this construction in Table 4 for n = 4, wdF (P ) = r/s = 10/7. The
corresponding interval representation is shown in Figure 6.

We must show this representation is well-defined, i.e., the intervals I(yj) are
nonempty. We will need these two properties that are easy to verify and the
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i, j 0 1 2 3 4 5 6 7 8 9 10
g(xi) = is 0 7 14 21 28 35 42 49 56 63 70
g(yj) = jr 10 20 30 40 50 60

Table 5: The values of g for n = 4, s = 7, r = 10. These give rise to the labeling
f(u) = g(u)/s.

lemma that follows.

ba+ bc ≤ bac+ dbe (6)

If 2 ≤ a ≤ b, then
a− 1
b− 1

≤ a

b
. (7)

Lemma 14 For each j = 0, . . . , s− 1, we have h(j) ≥ bj r
s−1c.

Proof. We prove the lemma by induction on j. The inequality is immediate
for j = 0. Now take some j = 1, . . . , s− 1 and suppose the inequality is true for
j − 1. We prove it is true for j. The minimization in Definition 13 leads to two
cases.

Case 1. Suppose h(j) = h(j − 1) + n− 2. Since r ≤ (n− 2)(s− 1) and n− 2 is
an integer, we have r

s−1 ≤ d
r

s−1e ≤ n− 2. Thus

h(j) ≥ h(j − 1) +
⌈

r

s− 1

⌉
≥
⌊

(j − 1)
r

s− 1

⌋
+
⌈

r

s− 1

⌉
(by the induction assumption)

≥
⌊

(j − 1)
r

s− 1
+

r

s− 1

⌋
(by (6))

=
⌊
j

r

s− 1

⌋
.

Case 2. Suppose h(j) = b(j+ 1) r
sc. Since 2 ≤ j+ 1 ≤ s, it follows from (7) that

j + 1
s
≥ j

s− 1
,

h(j) =
⌊
(j + 1)

r

s

⌋
≥
⌊
j

r

s− 1

⌋
.

This completes the proof of Lemma 14. �

Corollary 15 The function h(j) is strictly increasing for j = 0, 1, . . . , s−1 and
h(s− 1) = r. Thus the partial order ≺ is well-defined on V .
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Proof. Let j be any index with 1 ≤ j ≤ s − 1 and consider the two cases in
the proof of Lemma 14. In Case 1 it is immediate that h(j − 1) < h(j), since
we have assumed n ≥ 4. In Case 2, h(j − 1) ≤ bj r

sc ≤ b(j + 1) r
sc = h(j). Since

r ≥ s we have bj r
sc < b(j + 1) r

sc, and thus h(j − 1) < h(j). So in both cases
h(j) is strictly increasing.

Setting j = s − 1 in Lemma 14 implies h(s − 1) ≥ r, while doing this in
Definition 13 implies h(s− 1) ≤ r. So h(s− 1) = r. �

Lemma 14 gives a lower bound for h(j). It will also be useful to have the
following bound, which is tighter in some but not all cases.

Lemma 16 For each j = 0, . . . , s− 1, we have h(j) ≥ j r
s .

Proof. We prove the lemma by induction on j. The inequality is immediate
for j = 0. Now take some j = 1, . . . , s− 1 and suppose the inequality is true for
j − 1. Then h(j) is defined by one of the two cases in the proof of Lemma 14.

Case 1. Suppose h(j) = h(j − 1) + n− 2. In this case,

h(j) = h(j − 1) + n− 2

≥ (j − 1)
r

s
+ n− 2 (by the induction assumption)

≥ j r
s
− r

s
+

r

s− 1
(since n− 2 ≥ r

s− 1
)

> j
r

s
.

Case 2. Suppose h(j) = b(j + 1) r
sc. In this case, since r ≥ s we have

h(j) =
⌊
(j + 1)

r

s

⌋
≥ (j + 1)

r

s
− 1 = j

r

s
+
r

s
− 1 ≥ j r

s
.

This completes the proof of Lemma 16. �
We can describe the up and side relations for the poset P in four up and

two side cases:

Case (≺ xx): xi ≺ xk if and only if i < k
Case (≺ yy): yj ≺ yl if and only if j ≤ l − 2
Case (≺ xy): xi ≺ yj if and only if i < h(j − 1)
Case (≺ yx): yj ≺ xi if and only if h(j) < i
Case (‖ yy): yj ‖ yj+1

Case (‖ xy): xi ‖ yj if and only if h(j − 1) ≤ i ≤ h(j), i.e., zj−1 ≤ xi ≤ zj .

We now proceed to the proof of the main result of this section.
Proof of Theorem 12. We have reduced the proof to the case where n ≥ 4

and 2 ≤ s ≤ r ≤ (n− 2)(s− 1), and constructed an interval order P . First, we
show that P contains no induced n + 1. Since each xi is incomparable to at most
two elements, an n + 1 would consist of some yj and a chain of n elements, each
of which is incomparable to yj . See Figure 6 for examples. The chain is then a
subset of {yj−1, xh(j−1) = zj−1, xh(j−1)+1, . . . , xh(j) = zj , yj+1}. (If j = 1 there
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is no element y0 and if j = s−1 there is no ys.) Since yj−1 ‖ zj−1 and yj+1 ‖ zj ,
the chain contains at most one element from each of these pairs. By Definition
13, the chain thus contains at most h(j) − h(j − 1) + 1 ≤ n − 2 + 1 = n − 1
elements, so P contains no induced n + 1.

It remains to show wdF (P ) = r/s. The cycle C = x0 ≺ x1 ≺ · · · ≺ xr ‖
ys−1 ‖ ys−2 ‖ · · · ‖ y1 ‖ x0 is a forcing cycle in P . Since up(C) = r, side(C) = s,
Theorem 3 implies wdF (P ) ≥ r

s . We now prove the reverse inequality.
We need to find a labeling of the elements of P that satisfies Definition 1

with k = r/s. Let

g(xi) = is for i = 0, 1, . . . , r
g(yj) = jr for j = 1, 2, . . . , s− 1.

Then define the labeling f : V → Q by f(u) = g(u)/s, i.e., f(xi) = i, f(yj) =
j r

s . For example, Table 5 shows the values of g(u) when n = 4, s = 7, r = 10.
To prove f satisfies Definition 1 it suffices to prove
(i) if a ≺ b then g(a) + s ≤ g(b) (“up” constraints)
(ii) if a ‖ b then |g(a)− g(b)| ≤ r. (“side” constraints)
To prove (i), we consider the four up cases stated earlier.

Case (≺ xx): Let xi ≺ xk, i.e., i < k. Then g(xi) + s = (i+ 1)s ≤ ks = g(xk).
Case (≺ yy): Let yj ≺ yl, i.e., j ≤ l − 2. Since s ≤ r,

g(yj) + s = jr + s ≤ (l − 2)r + r < lr = g(yl).

Case (≺ xy): Let xi ≺ yj , i.e., i < h(j − 1). Then i+ 1 ≤ h(j − 1), so

g(xi) + s = (i+ 1)s ≤ h(j − 1) · s ≤
⌊
j
r

s

⌋
s ≤ jr = g(yj).

Case (≺ yx): Let yj ≺ xi, i.e., h(j) < i. Since h(j) is an integer, we can say
i ≥ h(j) + 1. By Lemma 16,

g(xi) = is ≥ (h(j) + 1)s ≥
(
j
r

s

)
s+ s = jr + s = g(yj) + s.

To prove (ii), we consider the two side cases.

Case (‖ yy): Let yj ‖ yj+1. It follows immediately that |g(yj+1)− g(yj)| = r.
Case (‖ xy): Let xi ‖ yj , i.e., h(j − 1) ≤ i ≤ h(j). We will prove that
|g(xi) − g(yj)| ≤ r. Since g(xk) increases with k, it suffices to consider i =
h(j − 1), where xi = zj−1, and i = h(j), where xi = zj . When j = 1, . . . , s− 1
we must prove

−r ≤ h(j − 1)s− jr ≤ r
−r ≤ h(j)s− jr ≤ r.

Since h(j − 1) < h(j), this is equivalent to proving

(j − 1)
r

s
≤ h(j − 1) < h(j) ≤ (j + 1)

r

s
.
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The right-hand inequality follows from Definition 13 and the left hand-inequality
from Lemma 16.

The existence of such a labeling shows that wdF (P ) ≤ r
s , and so we conclude

that wdF (P ) = r
s . This completes the proof of Theorem 12. �

We next state a corollary giving the following interpretation of Theorem 12.
We wish to construct a poset having any desired fractional weak discrepancy
among the positive rationals r/s that can be achieved. When n is sufficiently
large, we can accomplish this with an interval order containing no n + 1. (If
s = 1, we can apply the corollary by taking the equivalent rational 2r

2s .)

Corollary 17 Let r, s be integers with s ≥ 2 and s − 1 ≤ r. For all integers
n ≥ 2 + r

s−1 there exists an interval order P with no induced n + 1 and with
wdF (P ) = r/s.

Finally, we can now describe the range of the fractional weak discrepancy
function over the set of posets containing no n + 1, for n ≥ 3.

Corollary 18 Let n ≥ 3. The range of wdF for interval orders containing
no induced n + 1 is the set W of rationals that can be expressed as r/s, where
0 ≤ s− 1 ≤ r < (n− 2)s.

Proof. Let q ∈ W , i.e., q = r/s where 0 ≤ s − 1 ≤ r < (n − 2)s. Suppose
r ≤ (n− 2)(s− 1). By Theorem 12 there is an interval order P with no induced
n + 1 for which wdF (P ) = r/s. Otherwise, (n − 2)(s − 1) < r < (n − 2)s. In
particular, r ≥ s. We will show that the equivalent representation q = (n−2)r

(n−2)s

satisfies the hypotheses of Theorem 12, i.e. that

0 ≤ (n− 2)s− 1 ≤ (n− 2)r ≤ (n− 2)[(n− 2)s− 1].

First, since s ≤ r we have 0 ≤ (n− 2)s− 1 ≤ (n− 2)r− 1 < (n− 2)r. Next,
since r is an integer and r < (n− 2)s, we have (n− 2)r ≤ (n− 2)[(n− 2)s− 1].
We can thus apply Theorem 12 and conclude that in this case too there is an
interval order P with no induced n + 1 for which wdF (P ) = q.

Conversely, let P be an interval order with no n + 1. If wdF (P ) = 0 we
let r = 0 and s = 1, so wdF (P ) = r/s ∈ W . If wdF (P ) > 0, then P has an
incomparable pair and thus an optimal forcing cycle C. Let r = up(C), s =
side(C), so s ≥ 2 and wdF (P ) = r/s. By Theorem 5, r ≤ (n − 2)(s − 1). By
Theorem 4, either r = s− 1 or r ≥ s. Thus wdF (P ) ∈W . �

Figure 2 illustrates Corollary 18. The pairs in the solid boxes, where r = s−1
and P is a semiorder, clearly satisfy the inequalities in the corollary. Consider
one of the remaining r-s pairs in the figure, where r ≥ s, and let q = r/s. If
r ≤ (n − 2)(s − 1) then q is in the range W and this pair is in the dashed box
in row s, where we number the rows by the denominators of their entries.

If (n−2)(s−1) < r < (n−2)s, then we can still conclude that q ∈W because
q = (n−2)r

(n−2)s and this representation appears in the dashed box in row (n − 2)s.
However, if r ≥ (n− 2)s then no positive integer c satisfies cr ≤ (n− 2)(cs− 1).
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So no representation q = cr
cs satisfies the inequalities in the corollary and q /∈W

for the given value of n.
When n = 4, the case shown in Figure 2, the only pair with 2(s−1) < r < 2s

has r = 2s− 1 and we consider 2r
2s instead of r/s. For example, this shows that

3/2 ∈W and there is an interval order P with wdF (P ) = 3/2 that contains no
4 + 1 and has an optimal forcing cycle C with up(C) = 6, side(C) = 4.

4 Future directions

In this article we generalized results in [10, 11] about semiorders to interval
orders with no induced n + 1. We can generalize semiorders in a different way
by describing them as posets with no induced 2 + 2 or 3 + 1, i.e., no induced
m + n with m + n = 4. Posets having no induced m + n with m + n = M
are called (M, 2)-free [14], e.g., semiorders are (4, 2)-free. Orders that are (5, 2)-
free, i.e., contain no 4 + 1 or 3 + 2, are called subsemiorders [3]. A question
for future consideration is the extent to which the results in [10, 11] extend to
subsemiorders.

This problem is complicated by there being no known characterization of
subsemiorders in terms of representations. However, we have obtained partial
results in this direction by considering split semiorders [3, 5]. These are (5, 2)-
free orders P = (V,≺) for which each element v ∈ V is represented by a unit
interval I(v) = [L(v), R(v)] and a point C(v) ∈ I(v), such that x ≺ y if and
only C(x) < L(y) and R(x) < C(y). In particular, we prove in [12] that for any
rational number q > 0, there exists a split semiorder P with wdF (P ) = q if and
only if q = r/s for some integers r, s with 0 ≤ s− 1 ≤ r < 2s.
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