
Fractional Weak Discrepancy and Split

Semiorders

Alan Shuchat
Department of Mathematics

Wellesley College
Wellesley, MA 02481 USA

Randy Shull
Department of Computer Science

Wellesley College
Wellesley, MA 02481 USA

Ann N. Trenk
Wellesley College

Wellesley, MA 02481 USA

April 13, 2010

Dedicated to Martin C. Golumbic
on the occasion of his 60th birthday

ABSTRACT

The fractional weak discrepancy wdF (P) of a poset P = (V,≺)
was introduced in [5] as the minimum nonnegative k for which there
exists a function f : V → R satisfying (i) if a ≺ b then f(a)+1 ≤ f(b)
and (ii) if a ‖ b then |f(a) − f(b)| ≤ k. In this paper we generalize
results in [6, 7] on the range of wdF for semiorders to the larger class
of split semiorders. In particular, we prove that for such posets the
range is the set of rationals that can be represented as r/s for which
0 ≤ s− 1 ≤ r < 2s.

1 Introduction

In this paper we will consider irreflexive posets P = (V,≺), and write x ‖ y
when elements x and y in V are incomparable. Of particular importance to us
will be the posets r + s consisting of two disjoint chains, one with r elements

1

2

Class of Posets Forbidden Subposets
linear order no 1 + 1
weak order no 2 + 1
semiorder no 3 + 1, no 2 + 2
interval order no 2 + 2

Table 1: Classes of posets characterized in terms of forbidden subposets.

and one with s elements, where x ‖ y whenever x and y are in different chains.
For example, the order 3 + 1 is shown in Figure 1 on Page 4.

We focus on the fractional weak discrepancy of split semiorders and begin
with some background on this and related classes of orders. For additional
background and context we refer the reader to [1] and [2].

1.1 Split semiorders and related classes

The four classes of posets: linear orders, weak orders, semiorders, and interval
orders, are important both because they arise in applications and also because
they have elegant characterizations. Each of these classes can be characterized
in terms of forbidden subposets of the form r + s as detailed in Table 1. Note
that this implies the following inclusions:

{linear orders} ⊆ {weak orders} ⊆ {semiorders} ⊆ {interval orders}.

These classes also have alternative definitions in terms of interval represen-
tations. Such representations are useful in constructions as well is in proofs by
contradiction. A poset P = (V,≺) is an interval order if each element v ∈ V can
be assigned an interval I(v) = [L(v), R(v)] in the real line so that x ≺ y precisely
when I(x) is completely to the left of I(y), that is R(x) < L(y). A semiorder
(unit interval order) is an interval order with a representation in which each in-
terval has the same length. By appropriate scaling, we may assume each interval
has length 1.

Linear orders and weak orders can also be defined in this way where each
element is assigned a real number (i.e., a degenerate interval). A poset P =
(V,≺) is a linear order if each v ∈ V can be assigned a distinct real number
f(v) so that x ≺ y if and only if f(x) < f(y). A weak order is defined similarly
except that the values f(v) need not be distinct, so incomparabilities may occur.
These representational definitions are illustrated in Table 2.

Observe that for the first three classes in Table 1, the forbidden subposets
are those r + s where r ≥ 1, s ≥ 1, and r + s = M for M = 2, 3, 4, respectively.
Such orders are called (M, 2)-free in [10]. More generally, an order is (M, t)-free
if it contains no poset of the form r1 +r2 + · · ·+rt where r1 +r2 + · · ·+rt = M .

A next natural class to consider is the class of (5, 2)-free posets, that is, the
posets characterized as having no induced 4 + 1 and no induced 3 + 2. This

3

Class of Posets v assigned Iv = [L(v), R(v)] x ≺ y iff
interval order R(x) < L(y)
semiorder R(v) = L(v) + 1 R(x) < L(y)
weak order f(v) = L(v) = R(v) f(x) < f(y)
linear order f(v) = L(v) = R(v), f(x) 6= f(y) for x 6= y f(x) < f(y)

Table 2: Classes of posets characterized in terms of representations.

class is called the subsemiorders in [1]. Unfortunately, the class of subsemiorders
has no known characterization in terms of representations, thus we instead con-
sider a subclass called split semiorders.

Definition 1 A poset P = (V,≺) is a split semiorder if each v ∈ V can be
assigned an interval I(v) = [L(v), R(v)] of unit length u (with R(v) = L(v) +u)
and a point C(v) ∈ I(v) so that x ≺ y if and only C(x) < L(y) and R(x) < C(y).
The point C(v) is called the point core or splitting point of the interval I(v) and
the representation is called a unit point-core representation.

Given a unit point-core representation of a split semiorder, a comparability
occurs between elements x and y precisely when neither interval I(x), I(y) con-
tains the other interval’s splitting point. In the literature on tolerance graphs,
split semiorders are also referred to as unit point-core bitolerance orders [4].

Any representation of a poset by real intervals is said to be unit if all the
intervals in the representation have the same length and proper if no interval
properly contains another. Sometimes a proper representation is more conve-
nient to construct than a unit representation and thus the following remark can
be helpful. Its proof follows from Theorem 10.3 of [4].

Remark 2 A poset P is a split semiorder if and only if it satisfies Definition 1
with a proper representation by intervals I(v) and splitting points C(v) rather
than a unit representation.

Every semiorder P has a unit point-core representation obtained by sup-
plementing any unit interval representation P with a point-core assignment C
such that C(v) = L(v) for all v ∈ V . Thus, every semiorder is a split semiorder.
However the containment is proper since 3 + 1 is a split semiorder that is not a
semiorder (see Figure 1). The posets 4 + 1 and 3 + 2 are not split semiorders.
The details of these proofs appear in [2] and also in Chapter 10 of [4]. Thus
split semiorders are indeed (5, 2)-free.

We will need the following basic facts about split semiorders in the proof of
Proposition 14, in Section 2.3.

4

a

b

c

d

I(a)

I(b)

I(c)

I(d)

Figure 1: The order 3 + 1 and a representation of it as a split semiorder.

Lemma 3 Let P be a split semiorder with a unit point-core representation and
let v ‖ w in P .

(a) L(v) ≤ R(w) and L(w) ≤ R(v).
(b) If t ≺ u ≺ v ‖ w in P , then R(t) < R(w) and C(t) < C(w).
(c) If t ≺ u ≺ v ‖ w ≺ x, then t ≺ x.

Proof. Since w 6≺ v, by Definition 1 either (i) C(v) ≤ R(w) or (ii) L(v) ≤
C(w).

(a) In case (i) we have L(v) ≤ C(v) ≤ R(w). In case (ii) we have L(v) ≤
C(w) ≤ R(w). So L(v) ≤ R(w) is true in both cases and L(w) ≤ R(v) follows
by symmetry.

(b) In case (i) we have R(t) < C(v) ≤ R(w). Similarly, R(u) < C(v) ≤ R(w)
and since this is a unit representation, L(u) < L(w). Thus

C(t) < L(u) < L(w) ≤ C(w).

In case (ii), again by Definition 1, we have

C(t) ≤ R(t) < C(u) < L(v) ≤ C(w) ≤ R(w).

So in both cases R(t) < R(w) and C(t) < C(w).
(c) Now suppose we also have w ≺ x. If x ≺ t then w ≺ v, which contradicts

v ‖ w. If t ‖ x then it is straightforward to check that the chains t ≺ u ≺ v and
w ≺ x form a 3 + 2 in P . Since P is a split semiorder it is (5, 2)-free, so this is
a contradiction. Thus t ≺ x. �

1.2 Fractional Weak Discrepancy

For a weak order P = (V,≺), we can think of the function f : V → R as ranking
the elements in a way that respects the ordering ≺ and gives incomparable ele-
ments equal rank. For posets in general, we can try to minimize the discrepancy

5

d 2/3

e 5/3

a 0

b 1

c 2

f 1/3

g 4/3

Figure 2: The poset Z with a labeling satisfying the conditions of Definition 4
with k = 4/3.

in ranks between incomparable elements. This notion is made more formal in
the following definition.

Definition 4 The fractional weak discrepancy wdF (P) of a poset P = (V,≺)
is the minimum nonnegative real number k for which there exists a function
f : V → R satisfying

(i) if a ≺ b then f(a) + 1 ≤ f(b) (“up” constraints)
(ii) if a ‖ b then |f(a)− f(b)| ≤ k. (“side” constraints)

Such a function is called an optimal labeling of P .

To illustrate this definition, Figure 2 shows a poset Z with a labeling function
that satisfies conditions (i) and (ii) for k = 4/3, thus wdF (Z) ≤ 4/3. We will
show later that this is indeed an optimal labeling and thus wdF (Z) = 4/3.

Fractional weak discrepancy was first defined in [5] and studied further in
[6, 7, 8]. The integer version of the problem (where each function value f(v) must
be an integer) was introduced in [10] as the weakness of a poset, and studied
further as weak discrepancy in [3, 9]. The poset 3 + 1 shown in Figure 1 has
weak discrepancy and fractional weak discrepancy equal to 1 with the following
optimal labeling: f(a) = 0, f(b) = 1, f(c) = 2, f(d) = 1. Furthermore, any
poset P containing an induced 3 + 1 will have wdF (P) ≥ 1.

The existence of a labeling of a poset P satisfying conditions (i) and (ii) of
Definition 4 for a particular k shows that wdF (P) ≤ k. We seek a certificate
to demonstrate that a labeling is optimal in the form of a substructure that
ensures wdF (P) ≥ k.

Forcing cycles, which we define now, provide our main tool for proving re-
sults about fractional weak discrepancy. Theorem 6 shows that wdF (P) can be
calculated from an appropriate forcing cycle.

Definition 5 A forcing cycle C of poset P = (V,≺) is a sequence C : x0, x1, . . . ,
xm = x0 of m ≥ 2 elements of V for which xi ≺ xi+1 (an up step) or
xi ‖ xi+1 (a side step) for each i : 0 ≤ i < m. If C is a forcing cycle, we
write up(C) = |{i : xi ≺ xi+1}| and side(C) = |{i : xi ‖ xi+1}|.

6

Note that all forcing cycles C have up(C) ≥ 0 and side(C) ≥ 2.

Theorem 6 [5] Let P = (V,≺) be a poset with at least one incomparable pair.
Then wdF (P) = maxC

up(C)

side(C)
, where the maximum is taken over all forcing

cycles C in P .

Definition 7 If wdF (P) = up(C)

side(C)
, we call C an optimal forcing cycle of P .

For example, it easy to check that the poset P = 3 + 1 of Figure 1 has three
forcing cycles. The cycle a ≺ b ≺ c ‖ d ‖ a gives the maximum ratio up(C)

side(C)

and is thus optimal, with wdF (P) = 2/2 = 1.
In general, the up-to-side ratio for any forcing cycle gives a lower bound

for the fractional weak discrepancy. For example, the poset Z of Figure 2 has
many forcing cycles. The cycle a ≺ b ≺ c ‖ d ≺ e ‖ f ≺ g ‖ a shows that
wdF (Z) ≥ 4/3. The labeling in the figure shows that wdF (Z) ≤ 4/3. Thus this
forcing cycle is optimal and wdF (Z) = 4/3.

Once a starting point is specified, a forcing cycle can be described as p
alternating sequences Uj of uj consecutive up steps and Sj of sj consecutive
side steps for j = 1, 2, . . . , p. Thus up(C) =

∑p
1 uj and side(C) =

∑p
1 sj . For

example, the optimal forcing cycle we found for Z has p = 3 with u1 = 2, s1 = 1,
u2 = 1, s2 = 1, u3 = 1, and s3 = 1. This notation will be useful in Section 2.

Theorem 6 implies that the fractional weak discrepancy of any poset will be
a rational number, but which rational numbers are actually achieved? In this
paper we fully answer this question for split semiorders.

2 An upper bound for wdF of a split semiorder

In this section we give an upper bound for the fractional weak discrepancy of
a split semiorder. In [6] we proved that wdF (P) < 1 if and only if P is a
semiorder. In Corollary 9, we prove a similar result for split semiorders.

Theorem 8 Let P be a split semiorder and C be a forcing cycle in P . Then
up(C) ≤ 2(side(C)− 1).

Corollary 9 For any split semiorder P , we have wdF (P) < 2.

Corollary 9 will follow from Theorem 8, since by applying Theorem 6 to
an optimal forcing cycle C we find wdF (P) = up(C)

side(C)
≤ 2

(
1− 1

side(C)

)
< 2.

We will see by results in Section 3 that the upper bounds in Theorem 8 and
Corollary 9 are the best possible ones for split semiorders.

The rest of this section is devoted to proving Theorem 8. We will assume an
instance where it is false for some C. We then apply an algorithm that moves
along the cycle through successive sequences of up steps and of side steps and
builds a stack K of elements of C. Finally we derive a contradiction from K,
thus completing the proof of the theorem.

7

Throughout the remainder of Section 2 we will make the following background
assumptions (BA) for the algorithm:

P is a split semiorder with a fixed unit point-core representation,
C is a forcing cycle in P, (BA)
r = up(C), s = side(C), and r > 2(s− 1).

2.1 The algorithm

The algorithm consists of three stages; in expressing them we make several
assertions, which we prove in Sections 2.2 and 2.3. The stages are:

1. Preprocessing: Let C consist of p alternating sequences of uj consecutive
up steps and sj consecutive side steps, j = 1, 2, . . . , p. If necessary, relabel
C to start the cycle at the beginning of a sequence of up steps for which
the partial sums of Σp

j=1(uj − λj) are nonnegative, where

λj =

{
2sj − 1, if j = p

2sj , otherwise.
. (1)

2. Initialization: (phase 0) Initialize the stack K with the first element of C.

3. Iteration: For each j = 1, 2, . . . , p,

jth up-step phase: Add (push) the next uj elements of C, corresponding
to the next sequence Uj of up steps, to the top of K.

jth side-step phase: Remove (pop) the top λj elements from K.

We iterate these phases until we return to the beginning of C. We first prove
(Proposition 12) that there exists a starting point for C as described in the
preprocessing step. We use this to prove (Proposition 13) that the stack never
empties during the iteration. We then use the unit point-core representation of
P to prove (Proposition 14) that after each step of the algorithm, the order of
elements on the stack K respects the partial order of P . Finally, we use this
structural property of K to prove Theorem 8 by showing that C is not a forcing
cycle, which contradicts our background assumptions (BA).

2.2 Preprocessing to obtain a good starting point

We must show that there exists a labeling of the forcing cycle C for which the
partial sums of

∑p
j=1(uj − λj), as defined in Section 2.1, are all nonnegative.

Lemma 10 Under the background assumptions in (BA),
∑p

j=1(uj − λj) ≥ 0.

8

Proof. Since r > 2(s− 1) and s =
∑p

j=1 sj , equation (1) implies

p∑
j=1

(uj − λj) =
p∑

j=1

uj −
p∑

j=1

λj = r −
p∑

j=1

2sj + 1

> 2(s− 1)− 2s+ 1
= −1.

Since both sides are integers the result follows. �

We will also need the fact that whenever the sum of a finite number of real
numbers is nonnegative, there is a cyclic permutation of the terms that makes
all the partial sums nonnegative. This fact is a variant of a result proved in [8].

Lemma 11 [8] Let t1, t2, . . . , tp be a finite sequence of real numbers with∑p
j=1 tj ≥ 0. There exists an index q with 1 ≤ q ≤ p so that the partial sums of

the sequence tq+1, tq+2, . . . , tp, t1, t2, . . . , tq are all nonnegative.

We may choose to start the cycle at an element x0 that is the beginning of a
sequence of up steps, i.e., if C contains m elements then xm−1 ‖ xm = x0 ≺ x1.
We call x0 an upward starting point for C.

The existence of the required labeling now follows by applying Lemma 11 to
the sequence {uj−λj} and letting the new starting point of C be xu1+s1+···+uq+sq .
This proves the following result and completes the preprocessing step of the al-
gorithm.

Proposition 12 Under the background assumptions in (BA), there is an up-
ward starting point for C for which the partial sums of

∑p
j=1(uj − λj) are all

nonnegative.

2.3 Initialization and iteration

We initialize the stack K with the upward starting point x0 and then for j =
1, 2, . . . , p we push the next sequence of uj elements and then pop λj elements.

We will use the following notation to help describe the evolution of the
stack K during the algorithm. This is summarized in Table 3 along with other
notation from this section. Let βj be the first element added to the stack
during the jth up-step phase and let αj be the top element of the stack after
the jth side-step phase. Denote the elements on the stack after the jth up-step
phase, from the top of the stack down, by b1, b2, Then buj = βj and the
top uj elements of K correspond to the jth sequence of up steps in C, namely
Uj : βj = buj

≺ · · · ≺ b2 ≺ b1.
In the forcing cycle C, Uj is followed by sj elements corresponding to the

next sequence of side steps, Sj : d1 ‖ d2 ‖ · · · ‖ dsj
. We remark that b1 and d1

depend on j, but we have suppressed this dependence in the notation. At the
two ends of Sj we have

b1 ‖ d1 for 1 ≤ j ≤ p, (2)

9

dsj
≺ βj+1 for 1 ≤ j ≤ p− 1. (3)

Proposition 13 Under the background assumptions in (BA), the stack K never
empties during the algorithm.

Proof. The number of elements on the stack after the jth up-step phase of
the algorithm is 1 +

∑j−1
l=1 (ul − λl) + uj . The number after the succeeding jth

side-step phase is 1+
∑j

l=1(ul−λl). By Proposition 12, there are always at least
two elements on the stack after the jth up-step phase and at least one after the
jth side-step phase. Thus the stack never empties during the algorithm. �

Proposition 14 Under the background assumptions in (BA), after each phase
of the algorithm the elements of the stack K form a chain that respects the
partial order in P .

Proof. Since in the initialization phase only one element is placed on the stack
and during side-step phases the algorithm only pops elements, it is enough to
prove the result just for the jth up-step phase. We will do this by induction on
j.

For the case j = 1, the result is true since x0 is an upward starting point
for C. Now suppose the result is true for 1, 2, . . . , j, where 1 ≤ j ≤ p − 1, and
prove it is true for j + 1. We consider the (j + 1)st up-step phase. It suffices to
prove that

αj ≺ βj+1. (4)

By the induction assumption for j, after the jth up-step phase the stack K
is a chain

· · · ≺ b3 ≺ b2 ≺ b1. (5)

Since we then popped λj = 2sj elements in the jth side-step phase and the
stack never empties, the chain (5) contains at least three elements. We popped
b1, b2, . . . , b2sj

, so the next element on the stack is

αj = b2sj+1. (6)

We can think of this process as removing sj pairs of elements, one pair at a
time. If we remove only sj = 1 pair then αj = b3 ≺ b2 ≺ b1 ‖ d1 ≺ βj+1, by
(2) and (3). By Lemma 3(c), relation (4) follows. This completes the induction
step when sj = 1.

Now suppose sj ≥ 2. When we have removed i pairs, 1 ≤ i ≤ sj , we let
ei = b2i+1 denote the element at the top of the stack at that point. In order
to prove (4), we will compare the endpoints and splitting points of the intervals
I(ei) and I(di) as we pop pairs from the stack. In particular, we will prove by
a second induction on i that

R(ei) < R(di) and C(ei) < C(di) for 1 ≤ i ≤ sj . (7)

10

jth sequence of up steps in C Uj : buj ≺ · · · ≺ b2 ≺ b1
jth sequence of side steps in C Sj : d1 ‖ d2 ‖ · · · ‖ dsj

After sequence Uj is processed
the top of stack K is βj = buj

≺ · · · ≺ b2 ≺ b1
After sequence Sj is processed
the top of stack K is αj

Definition of ei ei = b2i+1

From (6) and the definition of ei αj = b2sj+1 = esj
for 1 ≤ j ≤ p− 1

Table 3: Summary of notation used in Section 2.

When i = 1, e1 = b3 ≺ b2 ≺ b1 ‖ d1. So Lemma 3(b) proves that (7) is true
in this base case.

Now suppose that i ≥ 2 and that (7) is true for 1, 2, . . . , i− 1. We will prove
it is true for i. Since di−1 ‖ di, we know di 6≺ di−1. So by Definition 1 either (i)
C(di−1) ≤ R(di) or (ii) L(di−1) ≤ C(di).

In case (i), the induction assumption (7) for i−1 together with ei = b2i+1 ≺
b2i ≺ b2i−1 = ei−1 imply that

R(ei) < C(b2i) ≤ R(b2i) < C(ei−1) < C(di−1) ≤ R(di).

In particular R(b2i) < R(di), and since the representation is unit we also
have L(b2i) < L(di). Thus,

C(ei) < L(b2i) < L(di) ≤ C(di).

So for case (i), this proves i satisfies (7).
In case (ii), again note that (7) for i − 1 implies R(ei−1) < R(di−1) and

therefore L(ei−1) < L(di−1). Thus using Definition 1,

C(ei) < L(ei−1) < L(di−1) ≤ C(di).

Also,
R(ei) < C(b2i) < L(ei−1) ≤ C(di) ≤ R(di).

This proves i satisfies (7) for case (ii) and completes the induction on i, the
number of pairs popped in the jth side-step phase.

We now return to the induction on j, where it remains to prove (4), i.e.,
αj ≺ βj+1. Recall from (6) that esj

= αj and from (3) that dsj
≺ βj+1. Thus

using (7), we have R(esj
) < R(dsj

) < C(βj+1) and C(esj
) < C(dsj

) < L(βj+1).
We conclude that αj ≺ βj+1 as required. �

Note that in the preceding argument we proved (7) for 1 ≤ i ≤ sj when
1 ≤ j ≤ p − 1. In fact the argument is equally valid when j = p provided
1 ≤ i ≤ sp − 1, since then we pop sp − 1 pairs of elements from the stack and
then one final element. We will make use of this fact in the proof of Theorem 8.

11

2.4 Proof of Theorem 8

Now that we have verified the algorithm has the desired properties, we go on
to prove Theorem 8 by contradiction. Let x0, x1, . . . , xm be the elements of the
forcing cycle C. We have assumed r > 2(s−1) in the algorithm, where r = up(C)
and s = side(C). We now consider the possible forms of the stack K after the
final (pth) side-step phase. By the initialization phase and Proposition 13, the
bottom element of K is x0. We consider the cases sp = 1 and sp ≥ 2 separately.

Suppose sp = 1, that is, the last sequence Sp of side steps consists of exactly
one side step. Since x0 is an upward starting point for C we then have xm−2 ≺
xm−1 ‖ xm = x0. After the pth up-step phase, the element at the top of K is
xm−1 and the element on the bottom is x0. By Proposition 14, it follows that
x0 ≺ xm−1, a contradiction.

Now suppose sp ≥ 2, that is, Sp contains at least two side steps. In the pth
side-step phase we remove λp = 2sp − 1 elements from the top of K without
emptying it, sp − 1 pairs of elements b1, . . . , b2sp−2 and then the single element
b2sp−1 = esp−1 that is still at the top. So after the pth up-step phase that
precedes it, the stack K consists of at least the top 2sp elements listed in (5).

In addition, x0 is on the bottom of the stack (and may equal b2sp). By (7)
applied in the case j = p and i = sp − 1, it must be the case that

R(esp−1) < R(dsp−1) and C(esp−1) < C(dsp−1).

Because the representation is unit, the first inequality implies L(esp−1) < L(dsp−1).
Since b2sp ≺ b2sp−1 = esp−1, we have C(b2sp) < L(esp−1) < L(dsp−1).

Similarly, R(b2sp
) < C(esp−1) < C(dsp−1). Thus, b2sp

≺ dsp−1 ‖ dsp
= x0. This

contradicts the fact that either x0 = b2sp
or x0 ≺ b2sp

.
Since all possible forms of K after the last (pth) side-step phase lead to

a contradiction, it follows that r ≤ 2(s − 1). This completes the proof of
Theorem 8. �

3 The range of wdF for split semiorders

In the preceding section, Theorem 8 gave an upper bound for the range of the
wdF function for split semiorders. Our goal in this section is to determine the
values that make up the range. In particular, we will prove (Theorem 16) that
for each rational number r/s for which r is in an interval determined by s, there
exists a split semiorder whose fractional weak discrepancy equals r/s and an
optimal forcing cycle C with up(C) = r, side(C) = s. The proof is constructive.

It is possible for wdF (P) to be equal to some fraction r/s in lowest terms
but for there to be no optimal forcing cycle C with up(C) = r, side(C) = s. In
this case each optimal C will have up(C) = lr, side(C) = ls for some integer
l > 1. We will give an example of this after the proof of Corollary 18.

In the proofs of Theorem 16 and Corollary 18 we will refer to the following,
which combines results proved in [6].

12

Theorem 15 [6] A poset P is a semiorder if and only if wdF (P) < 1. If P is
a semiorder then wdF (P) = r

r+1 for some integer r ≥ 0. Moreover, for each
integer r ≥ 0 there exists a semiorder P with wdF (P) = r

r+1 and an optimal
forcing cycle C with up(C) = r, side(C) = r + 1.

Theorem 16 Let r, s be integers for which s ≥ 2 and s − 1 ≤ r ≤ 2(s − 1).
There exists a split semiorder P with wdF (P) = r/s and an optimal forcing
cycle C having up(C) = r, side(C) = s.

Proof. Let s ≥ 2. For r = s − 1, Theorem 15 implies that there exists a
semiorder P with wdF (P) = r/s and the desired forcing cycle. Since P is also
a split semiorder we have proved the theorem for the case r = s− 1.

Now assume that s ≤ r ≤ 2(s− 1). We begin by constructing a unit point-
core representation for a split semiorder P = (V,≺) possessing a forcing cycle
C with up(C) = r, side(C) = s. After that, we will show C is optimal.

Constructing a split semiorder P and forcing cycle C. Begin by setting
V = {x0, x1, . . . , xr, y1, y2, . . . , ys−1}. Define

q =
r

2s− r − 1
. (8)

Notice that 2s − r − 1 = 2(s − 1) − r + 1 ≥ 1, since we have assumed
2(s− 1) ≥ r. Also 2s− r − 1 ≤ 2r − r − 1 = r − 1 since s ≤ r. Thus,

1 <
r

r − 1
≤ r

2s− r − 1
= q ≤ r.

For 0 ≤ i ≤ r, define I(xi) = [L(xi), R(xi)] with splitting point C(xi) by

L(xi) = i(q + 1), C(xi) = i(q + 1) + q, R(xi) = i(q + 1) + 2q. (9)

Similarly, for 1 ≤ j ≤ s− 1 define I(yj) by

L(yj) = 2jq, C(yj) = 2jq, R(yj) = 2(j + 1)q. (10)

This collection of intervals I(xi), I(yj) and splitting points C(xi), C(yj) gives
a representation of a split semiorder P = (V,≺). Note that all the intervals have
length 2q > 2, and that the splitting point of I(xi) is at its midpoint while that
of I(yj) is at its left endpoint.

Figure 3 shows a Hasse diagram for P when r = 6, s = 4, so q = 6, and
Figure 4 illustrates the unit point-core representation we have constructed for
it. The function g shown in the figure is an auxiliary function that will be used
on Page 14 to obtain an optimal labeling of P .

We will now prove that C : x0, x1, · · · , xr, ys−1, ys−2, · · · , y1, x0 is a forcing
cycle. By Definition 1, equations (9) and (10) imply directly that xi ≺ xi+1

13

x0

x1

x2

x3

x4

x5

x6

y1

y2

y3

Figure 3: A Hasse diagram for the poset P with r = 6, s = 4, q = 6. Figure 4
gives a unit point-core representation for P , showing it is a split semiorder.

g(x0) = 0
0 6 12

g(x1) = 4
7 13 19

g(x2) = 8
14 20 26

g(x3) = 12
21 27 33

g(x4) = 16
28 34 40

g(x5) = 20
35 41 47

g(x6) = 24
42 48 54

g(y3) = 18
36 48

g(y2) = 12
24 36

g(y1) = 6
12 24

Figure 4: A unit point-core representation for the poset P in Figure 3. Here g
is an auxiliary function used to obtain an optimal labeling.

14

for 0 ≤ i < r and yj ‖ yj+1 for 1 ≤ j ≤ s − 2. Furthermore, y1 ‖ x0 since
R(x0) = 2q = C(y1). Finally, xr ‖ ys−1 because by (8) we have

C(xr) = r(q + 1) + q = (r + 1)q + r =
(r + 1)r

2s− r − 1
+ r

=
2sr

2s− r − 1
= 2sq = R(ys−1). (11)

Thus x0 ≺ x1 ≺ · · · ≺ xr ‖ ys−1 ‖ ys−2 ‖ · · · ‖ y1 ‖ x0, and C is a forcing
cycle with up(C) = r and side(C) = s. In particular, Theorem 6 implies that
wdF (P) ≥ r/s.

Before we define a labeling and prove it is optimal, it will be useful to express
the endpoints and splitting points of the x- and y-intervals terms of r and s.
By (8), we have

L(xi) = i(q + 1) = i

(
r

2s− r − 1
+ 1
)

=
2is− i

2s− r − 1

C(xi) = i(q + 1) + q =
2is− i+ r

2s− r − 1

R(xi) = i(q + 1) + 2q =
2is− i+ 2r
2s− r − 1

(12)

L(yj) = C(yj) = 2jq =
2jr

2s− r − 1

R(yj) = 2(j + 1)q =
2jr + 2r

2s− r − 1
.

An optimal labeling f . We require a labeling of the elements of P that
satisfies Definition 4 with k = r/s. Let

g(xi) = is, i = 0, 1, . . . , r
g(yj) = jr, j = 1, 2, . . . , s− 1.

Then define the labeling f : V → Q by f(u) = g(u)/s, i.e.,

f(xi) = i

f(yj) = j
r

s
.

For example, in the split semiorder P shown in Figures 3 and 4, C : x0 ≺
x1 ≺ · · · ≺ x6 ‖ y3 ‖ y2 ‖ y1 ‖ x0 is a forcing cycle. Since up(C) = 6, side(C) =
4, Theorem 6 implies wdF (P) ≥ 6/4. The values of g(u) are shown in Figure 4
and f(u) = g(u)/4 satisfies Definition 4 with k = 6/4. Thus wdF (P) ≤ 6/4 and
by combining the two inequalities we see wdF (P) = 6/4 = 3/2.

We will prove that f satisfies Definition 4 in general, with k = r/s. This
will show wdF (P) ≤ r/s and thus that wdF (P) = r/s. So it suffices to prove

(i) if a ≺ b then g(a) + s ≤ g(b) (“up” constraints)

15

(ii) if a ‖ b then |g(a)− g(b)| ≤ r. (“side” constraints)
There are several cases to consider, and we will see that it may be neces-

sary to modify the construction of P and its interval representation in order to
complete the proof.

We start with the “side” constraints (ii), as they are easier to prove. Since
xi ‖ xj if and only if i = j, there are only two cases to consider.

Case yi ‖ yj. It is straightforward to check that when i ≤ j, then yi ‖ yj

if and only if j = i+ 1 and that |g(yi+1)− g(yi)| = r

Case xi ‖ yj. Let xi ‖ yj . We will prove that |g(xi) − g(yj)| ≤ r. By
Lemma 3(a),

2jq = L(yj) ≤ R(xi) = i(q + 1) + 2q. (13)

Also, either L(xi) ≤ C(yj) = L(yj) or C(xi) ≤ R(yj). Thus, either

i(q + 1) ≤ 2jq or i(q + 1) + q ≤ 2(j + 1)q = 2jq + 2q

and so in any case
i(q + 1) ≤ 2jq + q.

Combining this with (13) we obtain

i(q + 1) ≤ (2j + 1)q ≤ i(q + 1) + 3q = (i+ 3)q + i.

Substituting q = r
2s−r−1 from (8) and noting that i ≤ r, we find

i

(
r

2s− r − 1
+ 1
)
≤ (2j + 1)

r

2s− r − 1
≤ (i+ 3)

r

2s− r − 1
+ i

ir + 2is− ir − i ≤ (2j + 1)r ≤ (i+ 3)r + 2is− ir − i
2is− i ≤ 2jr + r ≤ 3r + 2is− i
−r − i ≤ 2jr − 2is ≤ 2r − i

−r ≤ −r + i

2
≤ jr − is ≤ r − i

2
≤ r.

This proves |g(xi)− g(yj)| = |is− jr| ≤ r, as desired.
We now return to the “up” constraints (i), where we want to show that if

a ≺ b then g(a) + s ≤ g(b).

Case xi ≺ xj. Let xi ≺ xj , i.e., i < j. Then g(xi) + s = (i + 1)s ≤ js =
g(xj).

Case yi ≺ yj. Let yi ≺ yj , i.e., i ≤ j − 2. Since s ≤ r,

g(yi) + s = ir + s ≤ (j − 2)r + r = (j − 1)r < jr = g(yj).

16

The remaining cases; modifying the order P . In the remaining two “up”
cases, xi ≺ yj and yj ≺ xi, constraint (i) may not always be true, and it may
therefore be necessary to alter slightly some of the intervals in the representa-
tion. This will change the poset P = (V,≺) by removing some comparabilities
between pairs of elements and may also destroy the unit property of the rep-
resentation. However, we will show that the new representation is proper, so
Remark 2 will imply that the resulting poset P ′ = (V,≺′) is a split semiorder.
We will remove comparabilities in a way that will not affect any other pair of
elements, so the conclusions we drew in the four cases considered so far will
remain valid. This will not change the forcing cycle C. We will see that P ′

satisfies properties (i) and (ii) of Definition 4 for all pairs of elements, so it will
have the properties required by Theorem 16. We now consider the two “up”
cases that remain.

Case xi ≺ yj. We must now consider all relations of the form xi ≺ yj .
We proceed by sweeping through the intervals I(xi) from right to left, i.e., with
i = r, r − 1, . . . , 1, 0. For a given i, suppose xi ≺ yj for some yj . Either we will
prove that (i) is true or else we will redefine L(yj) and C(yj) by moving them
to the left in a way that satisfies the constraints. This change will not affect
the validity of the constraints for any i previously considered, i.e., for any larger
value of i, so we may continue moving from right to left even when we modify
the representation.

We first show that i ≤ r−2, i.e., this case cannot occur in the first two steps
at the start of the sweeping process. Since the right endpoints of the x-intervals
and the splitting points of the y-intervals are strictly increasing, it suffices to
show that R(xr−1) ≥ C(ys−1) and thus xr−1 6≺ ys−1. By (12) we have

C(ys−1) = r

(
2s− 2

2s− r − 1

)
,

R(xr−1) =
(r − 1)(2s− 1) + 2r

2s− r − 1
=
r(2s− 2) + (3r − 2s+ 1)

2s− r − 1
.

Since we have assumed 2 ≤ s ≤ r we know 3r− 2s+ 1 ≥ s+ 1 ≥ 3. So i ≤ r− 2.
Next we establish that

g(xi) = is < jr = g(yj). (14)

Since xi ≺ yj we have R(xi) < C(yj) = L(yj), i.e. by (12)

R(xi) =
2is− i+ 2r
2s− r − 1

<
2jr

2s− r − 1
= C(yj).

Since 2s− r − 1 > 0 (see the sentence following (8)),

2is− i+ 2r < 2jr.

Dividing by 2 and noting that i < r, we obtain is < jr.

17

I(xi)

I(xi+1)

I(xi+2)

I(yj)

1︷︸︸︷ 1︷︸︸︷ ︸︷︷︸
q−1

︸︷︷︸
q−1

B2 B1

Figure 5: Case xi ≺ yj . If L(yj) ∈ B2 and g(xi) + s > g(yj), slide L(yj) and
C(yj) to the left to meet R(xi).

Since i ≤ r − 2, we know xi+2 is defined. There are now two subcases to
consider depending upon whether or not the left endpoint of I(yj) lies to the
right of the left endpoint of I(xi+2). These are illustrated in Figure 5 by the
regions B1, B2.

Subcase B1. Suppose L(yj) ≥ L(xi+2), i.e., the left endpoint of I(yj) is in
the interval B1 = [L(xi+2), L(ys−1)]. By (12),

2jr
2s− r − 1

≥ 2(i+ 2)s− (i+ 2)
2s− r − 1

=
(i+ 2)(2s− 1)

2s− r − 1
.

Thus
(i+ 2)(2s− 1) ≤ 2jr,

i.e.,
(2is+ 2s) + (2s− i− 2) ≤ 2jr.

Now i < r ≤ 2(s− 1) implies that 2s− i− 2 > 0, so

g(xi) + s = is+ s < jr = g(yj).

Subcase B2. Now suppose L(yj) < L(xi+2), as illustrated in Figure 5.
Since R(xi) < C(yj) = L(yj), the left endpoint of I(yj) is in the interval
B2 = (R(xi), L(xi+2)). If g(xi) + s ≤ g(yj), we are done with this subcase.
Otherwise, slide the left endpoint and splitting point of I(yj) to the left until
they meet the right endpoint of I(xi), i.e., replace I(yj) by the interval I ′(yj)
with L′(yj) = C ′(yj) = i(q + 1) + 2q and R′(yj) = R(yj).

We continue sweeping from right to left until we have considered each xi in
turn and modified the y-intervals in this way as needed. All other intervals in the
representation are unchanged, i.e., for all other u ∈ V, I ′(u) = [L′(u), R′(u)] =

18

I(u). Also, the labeling of all elements of V is unchanged. This defines a new
poset P ′ = (V,≺′) where ≺′ is defined as in Definition 1.

We need to determine which relations in P can change in moving to P ′.
Since C ′(yj) = R′(xi) when I(yj) is modified, the corresponding relation xi ≺ yj

becomes xi ‖′ yj . We will show these are the only relations that change.
First, by (9), the length of B2 is

L(xi+2)−R(xi) = (i+ 2)(q + 1)− (i(q + 1) + 2q) = 2.

Next, the intervals B2 are disjoint from one another for different xi because
when we compare them for i and i− 1 we find

R(xi)− L(xi+1) = i(q + 1) + 2q − (i+ 1)(q + 1) = q − 1 > 0.

Also, the length of each y-interval before modification is 2q > 2 and modifying
it extends it only as far as the left endpoint of the corresponding B2. So for
each xi at most one yj can fall into this subcase, and each yj falls into it for at
most one xi.

Remark 17 Since the open interval B2 does not contain the right endpoint of
any x-interval, if R(xk) ≤ L(yj) then R′(xk) ≤ L′(yj). That is, if we move the
left endpoint of a y-interval it does not pass the right endpoint of any x-interval.

Suppose we have modified I(yj) for some xi. The only intervals whose end-
points or splitting points lie inB2∪{R(xi)} = [R(xi), L(xi+2)) are I(xi), I(xi+1), I(yj),
and if j ≥ 2 also I(yj−1). So the only other relations that could change involve
xi+1 or yj−1 together with yj .

Before the move yj ‖ xi+1, since (12) implies

L(xi+1) < R(xi) < C(yj) = L(yj) < L(xi+2) < R(xi+1),

i.e., C(yj) ∈ I(xi+1). After the move yj ‖′ xi+1, since

L′(xi+1) = L(xi+1) < R(xi) = C ′(yj) < R(xi+1) = R′(xi+1),

i.e., C ′(yj) ∈ I ′(xi+1).
Now let j ≥ 2, so that yj−1 is defined. Before the move, yj−1 ‖ yj . The

splitting point C(yj) = R(yj−1) slides to the left at most 2 units but the length
of I(yj−1) is greater than 2, so after the move

L′(yj−1) < C ′(yj) < R′(yj−1).

Thus C ′(yj) ∈ I ′(yj−1) and so yj−1 ‖′ yj .
So there is only one kind of new relation in P ′, namely, xi ‖′ yj . We must

verify constraint (ii) for this new incomparability. We have g(xi) + s > g(yj) by
assumption and g(xi) < g(yj) by (14). Thus,

−r < 0 < g(yj)− g(xi) < s ≤ r.

19

Because the labeling has not changed, constraints (i) and (ii) remain valid for
all the pairs we have considered in this and the previous cases. Also, the forcing
cycle C in P remains a forcing cycle in P ′, with the same relations between
consecutive elements and thus the same values of up(C) and side(C).

If we redefined any intervals then we only changed the lengths of y-intervals,
so in this case the interval representation of P ′ is no longer unit. However we now
argue that it is a proper representation. It suffices to show that none of the new
intervals I ′(yj) properly contains any of the other representing intervals. Since
we do not shift L(yj) beyond L(yj−1) and L′(yj−1) ≤ L(yj−1), I ′(yj) cannot
properly contain any y-interval in P ′. Let k ≥ i+ 2. Since L(yj) < L(xi+2), we
have R′(yj) = R(yj) < R(xi+2) ≤ R(xk). Thus I ′(yj) cannot properly contain
I ′(xk) = I(xk). Similarly, for k ≤ i + 1, we have L(xk) ≤ L(xi+1) < R(xi) =
L′(yj). So I ′(yj) cannot properly contain I(xk) for any value of k. Thus, the
resulting representation is proper and so P ′ is a split semiorder.

Case yj ≺ xi. For simplicity, we now let P = (V,≺) denote the poset
obtained at the end of the preceding case, i.e., the split semiorder given by a
proper representation.

We again sweep through the x-intervals from right to left. For a given xi,
suppose yj ≺ xi for some yj . Either we will prove that (i) is true or else we will
redefine C(xi) by moving it to the left. As before, for each xi this will be the
only relation that can change.

We first note that i ≥ 1, i.e., this case cannot occur with the leftmost x-
interval I(x0). This follows because for each yj we have C(yj) ≥ R(x0) > L(x0),
i.e., yj 6≺ x0.

We next show
g(yj) = jr < is = g(xi). (15)

Since R(yj) < C(xi) and these points were not modified in the preceding case,
it follows from (12) that

2jr + 2r
2s− r − 1

<
2is− i+ r

2s− r − 1
.

Thus
jr + r < is− i− r

2
,

and so
jr < jr +

r + i

2
< is.

There are once again two subcases to consider depending upon whether or
not the right endpoint of I(yj) lies to the left of the right endpoint of I(xi−1).
Note that since i ≥ 1, we know xi−1 is defined. As before, we will either prove
that the “up” constraint (i) is true or redefine the poset P accordingly. While
we omit the picture, this situation can be illustrated in a way analogous to
Figure 5.

20

Subcase D1. Suppose R(yj) ≤ R(xi−1), i.e., the right endpoint of I(yj) is
in the interval D1 = [R(y1), R(xi−1)]. By (12),

2jr + 2r
2s− r − 1

≤ (i− 1)(2s− 1) + 2r
2s− r − 1

and thus
2jr ≤ (i− 1)(2s− 1) = 2is− i− 2s+ 1.

Since i ≥ 1 we have 2jr+ 2s ≤ 2is− i+ 1 < 2is+ 1, and since both r and s are
integers this implies 2jr + 2s ≤ 2is. Therefore

g(yj) + s ≤ g(xi),

and (i) is true for this subcase.

Subcase D2. Now suppose R(yj) > R(xi−1). Since R(yj) < C(xi), the
right endpoint of I(yj) is in the interval D2 = (R(xi−1), C(xi)). If g(yj) + s ≤
g(xi), we are done with this subcase. Otherwise, redefine C(xi) by sliding it
to the left to equal R(yj), i.e., let C ′(xi) = R(yj). We continue sweeping from
right to left, taking each xi in turn and moving the splitting points C(xi) as
needed. All endpoints and labels remain unchanged. This defines a new poset
P ′ = (V,≺′). We will prove P ′ has the properties sought in Theorem 16.

For the relation ≺′ to define P ′ as a split semiorder, we must verify that
C ′(xi) ∈ I ′(xi) for each xi. First note that since q > 1, the assumptions of this
subcase and (12) imply that C(xi) = L(xi) + q is moved to the left by less than
|D2| = C(xi)−R(xi−1) = 1 < q and so is still in I(xi). That is, after the shift
we have C ′(xi) ∈ I ′(xi).

Since the representation in the preceding case was proper and only the split-
ting points in the intervals changed, this representation is also proper and P ′ is
a split semiorder. Since C ′(xi) ∈ I ′(yj), we know yj ‖′ xi. We will show these
are the only relations that change in moving to P ′.

By (12), the intervals D2 are disjoint from one another for different xi. The
right endpoints of consecutive y-intervals are 2q > 2 units apart whether or not
the left endpoints were changed in the preceding case. So for a given xi at most
one yj can fall into this subcase. Also, modifying C(xi) extends it only as far
as the left endpoint of the corresponding D2, so each yj falls into this subcase
for at most one xi.

Let some C(xi) be modified. The only intervals whose endpoints or splitting
points lie in D2 ∪ {R(xi−1)} = [R(xi−1), C(xi)) are I(xi−1), I(xi), I(yj), and if
j ≤ s − 2 also I(yj+1). So the only other relations that could change involve
xi−1 or yj+1 together with xi.

Since i ≥ 1, xi−1 is defined and xi−1 ≺ xi before the move. The splitting
point C(xi) slides to the left but not as far as the right endpoint of I(xi−1), so
after the move xi−1 ≺′ xi.

Now let j ≤ s − 2, so that yj+1 is defined. Whether or not we modified
L(yj+1) in Case (≺ xy), Remark 17 and (12) imply that in the current case

R(xi−1) ≤ L(yj+1) ≤ R(yj) < C(xi) = R(xi−1) + 1 ≤ L(yj+1) + 1 < R(yj+1).

21

Thus C(xi) ∈ I(yj+1) and so xi ‖ yj+1 before the move. Modifying C(xi) only
slides it as far as R(yj), so after the move C ′(xi) ∈ I ′(yj+1) and xi ‖′ yj+1.

Therefore, the only changes in the partial ordering can be from yj ≺ xi to
yj ‖′ xi.

Next, we must prove (ii) holds for yj ‖′ xi. Since g(yj) + s > g(xi) by the
assumptions of this subcase and g(yj) < g(xi) by (15), we have

−r < 0 < g(xi)− g(yj) < s ≤ r.

So the constraints (i) and (ii) hold for all the pairs we have considered in this
and the previous cases. The forcing cycle C in P remains a forcing cycle in P ′.

Finally, since up(C) = r, side(C) = s, Theorem 6 implies wdF (P ′) ≥ r/s. On
the other hand, the labeling f constructed in the proof shows wdF (P ′) ≤ r/s,
so we conclude wdF (P ′) = r/s. This completes the proof of Theorem 16. �

The following example shows that we may indeed need to modify the partial
ordering as we did in the final two cases in Theorem 16. Let r = 7, s = 6, so
that q = 7/4. In Case xi ≺ yj we have x5 ≺ y5, since

C(x5) =
62
4
<

70
4

= L(y5), R(x5) =
69
4
<

70
4

= C(y5).

When i = 5, the region B2 = (R(x5), L(x7)) = (69
4 ,

77
4) and contains L(y5) = 70

4 .
Since g(x5) + s = 36 > 35 = g(y5), we must redefine L(y5) = C(y5), sliding
them to the left from 70

4 to R(x5) = 69
4 . In the modified poset P ′, we then have

x5 ‖′ y5.
Similarly, in Case yj ≺ xi we have y1 ≺ x2 and must slide C(x2) to meet

R(y1). This change creates the relation y1 ‖′ x2 in P ′.

Finally, we can combine Theorems 8 and 16 to describe the range of the
fractional weak discrepancy function for split semiorders. We will see that the
way in which we represent wdF (P) as wdF (P) = q = r/s determines whether
there is an optimal forcing cycle C with r = up(C) and s = side(C).

Corollary 18 For any rational number q > 0, there exists a split semiorder P
with wdF (P) = q if and only if q can be written as q = r/s for some integers
r, s with 0 ≤ s− 1 ≤ r < 2s.

Proof. First, suppose P is a split semiorder with wdF (P) = q. We must show
q = r/s for some r, s as stated in the theorem. If q = 0 we let r = 0, s = 1.
If 0 < q < 1, then Theorem 15 implies P is a semiorder and q = r

r+1 for some
integer r ≥ 1. So we can let s = r + 1 and then 1 ≤ s− 1 = r < 2(s− 1) < 2s.

Now suppose q ≥ 1. Since P has an incomparable pair, Theorem 6 implies it
has an optimal forcing cycle C. Let r = up(C) and s = side(C). Then 2 ≤ s ≤ r
and, by Theorem 8, r ≤ 2(s− 1). Thus 1 ≤ s− 1 < r ≤ 2(s− 1) < 2s. So in all
cases q has the desired representation.

Conversely, suppose q = r/s, where 0 ≤ s − 1 ≤ r < 2s. We must produce
an appropriate split semiorder P . If s = 1 and q = r = 0, we can let P be any

22

0

1/2 2/2 3/2

2/3 3/3 4/3 5/3

3/4 4/4 5/4 6/4 7/4

4/5 5/5 6/5 7/5 8/5 9/5

5/6 6/6 7/6 8/6 9/6 10/6 11/6

· ·
· ...

...
...

...
...

...

Figure 6: The range of values taken by wdF for split semiorders.

linear order. If s = 1 and q = r = 1, we can let P = 3 + 1, which is a split
semiorder (see Figure 1) and has wdF (P) = 1.

Now let s ≥ 2. First consider the case in which r ≤ 2(s − 1). Then by
Theorem 16 there is a split semiorder P with wdF (P) = q and having an
optimal forcing cycle C with up(C) = r, side(C) = s. Now consider the case
where r > 2(s − 1). Then r = 2s − 1 and by Theorem 8 there is no split
semiorder with such a forcing cycle. In this case we let r′ = 2r, s′ = 2s. We
will show that r′, s′ satisfy the hypotheses of Theorem 16. We have r ≥ s, since
otherwise r = 2s − 1 < s implies s = 0. So 2s − 1 ≤ 2r − 1 < 2r = 2(2s − 1).
Thus s′ − 1 < r′ = 2(s′ − 1). Now by Theorem 16 there is a split semiorder P
with wdF (P) = r′/s′ = q and having an optimal forcing cycle C with up(C) =
r′, side(C) = s′. �

Corollary 18 can be used to extend the scope of Theorems 8 and 16. For
example, by Theorem 8 there is no split semiorder P with wdF (P) = 3/2 that
has an optimal forcing cycle C with r = up(C) = 3, s = side(C) = 2. But by
Corollary 18 there is a split semiorder P with wdF (P) = 3/2 having an optimal
forcing cycle C with r′ = up(C) = 6 and s′ = side(C) = 4. In fact, Figures 3
and 4 gave an example of such a split semiorder.

Figure 6 illustrates Corollary 18. The solid boxes show the range of wdF

for semiorders. The dashed boxes show the r-s pairs (r ≥ 1, s ≥ 2) for which
there is a split semiorder P that is not a semiorder and has an optimal forcing
cycle C with up(C) = r, side(C) = s. For the unboxed pairs, wdF (P) = r/s
and there is an optimal forcing cycle with up(C) = 2r, side(C) = 2s.

23

•0

weak

orders
· [add’l

semiorders
)

•0.5 • ••.....•1 2

[
add’l split

semiorders
)

∞

[additional interval orders)

[non-interval orders)

Figure 7: The range of wdF for various classes of posets.

4 Conclusion.

In this section we place our results on the range of the fractional weak discrep-
ancy function for split semiorders in the context of earlier results about the
range for other classes of posets.

Linear orders have no incomparable pairs, so for them wdF (P) = 0. For
nonlinear orders, Theorem 6 implies that wdF (P) is always a rational number.
The simplest case is that of the weak orders, which include the linear orders:
wdF (P) = 0 if and only if P is a weak order [5]. Theorem 15, proved in [6],
describes the range of the wdF function over the semiorders, which include the
weak orders. In particular, {wdF (P) : P a semiorder} = {0, 1

2 ,
2
3 ,

3
4 ,

4
5 , . . .}.

Since every semiorder is also a split semiorder, this set is contained in the range
of wdF over all split semiorders. This is also the case for interval orders, since
each semiorder is an interval order.

So wdF (P) ≥ 1 for any P that is not a semiorder. Corollary 18 shows that
the additional values of wdF (P) that occur when P is a split semiorder but not
a semiorder are all the rational numbers in [1, 2).

Moreover, each rational q ≥ 1 is the fractional weak discrepancy of both
an interval order that is not a semiorder and of a poset that is not an interval
order [7]. Figure 7 combines this fact with the other results summarized in this
section, illustrating the range of wdF for successively larger classes of posets.

We close with two open questions. What is wdF (P) for a subsemiorder,
i.e., a poset having no induced 4 + 1 or 3 + 2? (See the paragraph before
Definition 1.) More generally, what is wdF (P) for an order containing no r + s
for r + s = M , where M ≥ 5?

Acknowledgements. The authors wish to thank the referees for their helpful
comments and suggestions.

24

References

[1] P.C. Fishburn. Generalizations of semiorders: A review note. J. of Math.
Psychology, 41:357–366, 1997.

[2] P.C. Fishburn and William T. Trotter. Split semiorders. Discrete Math.,
195:111-126, 1999.

[3] J.G. Gimbel and A.N. Trenk. On the weakness of an ordered set. SIAM J.
Discrete Math., 11:655–663, 1998.

[4] M.C. Golumbic and A.N. Trenk. Tolerance Graphs. Cambridge University
Press, Cambridge, 2004.

[5] A. Shuchat, R. Shull, and A. Trenk. The fractional weak discrepancy of a
partially ordered set. Discrete Applied Mathematics, 155:2227-2235, 2007.

[6] A. Shuchat, R. Shull, and A. Trenk. Range of the fractional weak discrepancy
function. ORDER, 23:51–63, 2006.

[7] A. Shuchat, R. Shull, and A. Trenk. Fractional weak discrepancy of posets
and certain forbidden configurations. In The Mathematics of Preference,
Choice, and Order: Essays in Honor of Peter C. Fishburn, eds. S.J. Brams,
W.V. Gehrlein and F.S. Roberts. Springer, New York, 2009, pp. 291-302.

[8] A. Shuchat, R. Shull, and A. Trenk. Fractional weak discrepancy of posets
and interval orders. Discrete Applied Mathematics,157:1873-1884, 2009.

[9] P.J. Tanenbaum, A.N. Trenk, and P.C. Fishburn. Linear discrepancy and
weak discrepancy of partially ordered sets. ORDER, 18:201–225, 2001.

[10] A.N. Trenk. On k-weak orders: Recognition and a tolerance result. Discrete
Math., 181:223–237, 1998.

