Linear algebra in your daily (digital) life

Andrew Schultz

Wellesley College

March 6, 2012

・ロト ・回ト ・ヨト ・ヨト

Change of Basis

Alternate title

A TIME-TRAVELER'S GUIDE TO BECOMING A BILLIONAIRE

Andrew Schultz Linear algebra in your daily (digital) life

- 4 回 2 - 4 □ 2 - 4 □

Change of Basis

Alternate title

A TIME-TRAVELER'S GUIDE TO BECOMING A BILLIONAIRE

• Largest lottery payout is less than \$400 million

・ 同 ト ・ ヨ ト ・ ヨ ト

Change of Basis

Alternate title

A TIME-TRAVELER'S GUIDE TO BECOMING A BILLIONAIRE

- Largest lottery payout is less than \$400 million
- Google founders Brin and Page each worth about \$17.5 billion

・ 同 ト ・ ヨ ト ・ ヨ ト

Change of Basis

Alternate title

A TIME-TRAVELER'S GUIDE TO BECOMING A BILLIONAIRE

- Largest lottery payout is less than \$400 million
- Google founders Brin and Page each worth about \$17.5 billion

Note: the value of this talk has significantly depreciated since 1990

・ 同 ト ・ ヨ ト ・ ヨ ト

Change of Basis

Outline of the talk

• Letting directed graphs vote

- 4 回 2 - 4 □ 2 - 4 □

Change of Basis

Outline of the talk

• Letting directed graphs vote

• Google's PageRank algorithm

(4回) (4回) (4回)

Change of Basis

Outline of the talk

- Letting directed graphs vote
 - Google's PageRank algorithm
- Approximating matrices with rank 1 summands (SVD)

(4回) (4回) (4回)

Change of Basis

Outline of the talk

- Letting directed graphs vote
 - Google's PageRank algorithm
- Approximating matrices with rank 1 summands (SVD)
 - Filtering noise
 - Image compression

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Outline of the talk

- Letting directed graphs vote
 - Google's PageRank algorithm
- Approximating matrices with rank 1 summands (SVD)
 - Filtering noise
 - Image compression
- Changing basis

個 と く ヨ と く ヨ と

Outline of the talk

- Letting directed graphs vote
 - Google's PageRank algorithm
- Approximating matrices with rank 1 summands (SVD)
 - Filtering noise
 - Image compression
- Changing basis
 - Image compression
 - Sound compression

Outline of the talk

- Letting directed graphs vote
 - Google's PageRank algorithm
- Approximating matrices with rank 1 summands (SVD)
 - Filtering noise
 - Image compression
- Changing basis
 - Image compression
 - Sound compression

Thanks to Brian White, Jerry Uhl, Bruce Carpenter, Bill Davis, Dan Boyd, ...

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

- 4 回 2 - 4 □ 2 - 4 □

Change of Basis

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G

A (1) > (1)

3 ×

Change of Basis

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G

Want to rank vertices (using $R: V \to \mathbb{R}$)

∃ >

Change of Basis

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G
- Want to rank vertices (using $R: V \to \mathbb{R}$)
 - should depend only on structure of G

A⊒ ▶ ∢ ∃

Change of Basis

Voting in Directed Graphs

The general constraints

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G
- Want to rank vertices (using $R: V \to \mathbb{R}$)
 - should depend only on structure of G
 - shouldn't produce many ties

Change of Basis

Voting in Directed Graphs

The general constraints

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G
- Want to rank vertices (using $R: V \to \mathbb{R}$)
 - should depend only on structure of G
 - shouldn't produce many ties
 - should be equitable

Voting in Directed Graphs

The general constraints

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G
- Want to rank vertices (using $R: V \to \mathbb{R}$)
 - should depend only on structure of G
 - shouldn't produce many ties
 - should be equitable
 - should be stable under "attack"

Voting in Directed Graphs

The general constraints

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G
- Want to rank vertices (using $R: V \to \mathbb{R}$)
 - should depend only on structure of G
 - shouldn't produce many ties
 - should be equitable
 - should be stable under "attack"
 - should be computable

Change of Basis

Voting in Directed Graphs

The first approach

$$(j) \longrightarrow (i)$$
 is a vote for (i) from (j)

Form matrix L so that

$$L_{i,j} = \begin{cases} 1 & , \text{ if } (j) \longrightarrow (j) \\ 0 & , \text{ else} \end{cases}$$

イロン 不同と 不同と 不同と

Change of Basis

Voting in Directed Graphs

The first approach

$$(j) \longrightarrow (i)$$
 is a vote for (i) from (j)

Form matrix L so that

$$L_{i,j} = \begin{cases} 1 & , \text{ if } (j) \longrightarrow (j) \\ 0 & , \text{ else} \end{cases}$$

イロン イヨン イヨン イヨン

Change of Basis

Voting in Directed Graphs

The first approach

$$(j) \longrightarrow (i)$$
 is a vote for (i) from (j)

Form matrix L so that

$$L_{i,j} = \begin{cases} 1 & , \text{ if } (j) \longrightarrow (j) \\ 0 & , \text{ else} \end{cases}$$

イロン イヨン イヨン イヨン

Change of Basis

Voting in Directed Graphs

The first approach

$$(j) \longrightarrow (i)$$
 is a vote for (i) from (j)

Form matrix L so that

$$L_{i,j} = \begin{cases} 1 & , \text{ if } (j) \longrightarrow (j) \\ 0 & , \text{ else} \end{cases}$$

イロン イヨン イヨン イヨン

Change of Basis

Voting in Directed Graphs

The first approach

$$(j) \longrightarrow (i)$$
 is a vote for (i) from (j)

Form matrix L so that

$$L_{i,j} = \begin{cases} 1 & , \text{ if } (j) \longrightarrow (j) \\ 0 & , \text{ else} \end{cases}$$

イロン イヨン イヨン イヨン

Change of Basis

Voting in Directed Graphs

The first approach

$$(j) \longrightarrow (i)$$
 is a vote for (i) from (j)

Form matrix L so that

$$L_{i,j} = \begin{cases} 1 & , \text{ if } (j) \longrightarrow (j) \\ 0 & , \text{ else} \end{cases}$$

イロン イヨン イヨン イヨン

Change of Basis

Voting in Directed Graphs

The first approach

$$(j) \longrightarrow (i)$$
 is a vote for (i) from (j)

Form matrix L so that

$$L_{i,j} = \begin{cases} 1 & , \text{ if } (j) \longrightarrow (j) \\ 0 & , \text{ else} \end{cases}$$

イロン イヨン イヨン イヨン

Change of Basis

Voting in Directed Graphs

The first approach

$$(j) \longrightarrow (i)$$
 is a vote for (i) from (j)

Form matrix L so that

$$L_{i,j} = \begin{cases} 1 & , \text{ if } (j) \longrightarrow (j) \\ 0 & , \text{ else} \end{cases}$$

Scheme 1: $R((i)) = \sum_{j=1}^{n} L_{i,j}$

・ 回 と ・ ヨ と ・ モ と

Change of Basis

Voting in Directed Graphs

The first approach

$$(j) \longrightarrow (i)$$
 is a vote for (i) from (j)

Form matrix L so that

$$L_{i,j} = \begin{cases} 1 & , \text{ if } (j) \longrightarrow (j) \\ 0 & , \text{ else} \end{cases}$$

Scheme 1: $R\left(j\right) = \sum_{j=1}^{n} L_{i,j}$

Page 3 wins (score 3), Pages 1,2,5 tie for second (score 2), Page 4 loses

_∢ ≣ ≯

Voting in Directed Graphs

Rank 1 Matrix Approximations

Change of Basis

Problems with first approach

• Potential for lots of ties

・ロン ・回 と ・ ヨ と ・ ヨ と

Voting in Directed Graphs

Rank 1 Matrix Approximations

Change of Basis

Problems with first approach

Potential for lots of ties

・ 回 ト ・ ヨ ト ・ ヨ ト

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Problems with first approach

- Potential for lots of ties
- Evil users can manipulate results

- < ≣ →

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Problems with first approach

- Potential for lots of ties
- Evil users can manipulate results

- 4 回 2 - 4 □ 2 - 4 □

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Problems with first approach

- Potential for lots of ties
- Evil users can manipulate results
- Not equitable

・ 回 と ・ ヨ と ・ ヨ と …

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Problems with first approach

- Potential for lots of ties
- Evil users can manipulate results
- Not equitable

・ 回 と ・ ヨ と ・ ヨ と …

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$\ell(j) = \sum_{i} L_{i,j}$$

・ 母 と ・ ヨ と ・ ヨ と

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$\ell(j) = \sum_{i} L_{i,j}$$

Form matrix W so that

$$W_{i,j} = \begin{cases} \frac{1}{\ell(j)} &, \text{ if } (j) \longrightarrow (i) \\ 0 &, \text{ else} \end{cases}$$

(0	0.5	0.33	0	0	
	0	0	0.33	0	0.5	
	0	0.5	0	1	0.5	
	0	0	0	0	0	
ĺ	1	0	0.33	0	0	Ϊ

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$\ell(j) = \sum_{i} L_{i,j}$$

Form matrix W so that

$$W_{i,j} = \begin{cases} \frac{1}{\ell(j)} &, \text{ if } (j) \longrightarrow (i) \\ 0 &, \text{ else} \end{cases}$$

< 67 ▶

< ≣ >

< ≣ >

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$\ell(j) = \sum_{i} L_{i,j}$$

Form matrix W so that

$$W_{i,j} = \begin{cases} \frac{1}{\ell(j)} &, \text{ if } (j) \longrightarrow (i) \\ 0 &, \text{ else} \end{cases}$$

< 67 ▶

< ≣ >

< ≣ >

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$\ell(j) = \sum_{i} L_{i,j}$$

Form matrix W so that

$$W_{i,j} = \begin{cases} \frac{1}{\ell(j)} &, \text{ if } (j) \longrightarrow (i) \\ 0 &, \text{ else} \end{cases}$$

1	0	0.5	0.33	0	0	
	0	0	0.33	0	0.5	
	0	0.5	0	1	0.5	
	0	0	0	0	0	
$\left(\right)$	1	0	0.33	0	0	Ϊ

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$\ell(j) = \sum_{i} L_{i,j}$$

Form matrix W so that

$$W_{i,j} = \begin{cases} \frac{1}{\ell(j)} &, \text{ if } (j) \longrightarrow (i) \\ 0 &, \text{ else} \end{cases}$$

1	0	0.5	0.33	0	0	
	0	0	0.33	0	0.5	
	0	0.5	0	1	0.5	
	0	0	0	0	0	
$\left(\right)$	1	0	0.33	0	0	Ϊ

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$\ell(j) = \sum_{i} L_{i,j}$$

Form matrix W so that

$$W_{i,j} = \begin{cases} \frac{1}{\ell(j)} &, \text{ if } (j) \longrightarrow (i) \\ 0 &, \text{ else} \end{cases}$$

(0	0.5	0.33	0	0	
	0	0	0.33	0	0.5	
	0	0.5	0	1	0.5	
	0	0	0	0	0	
$\left(\right)$	1	0	0.33	0	0	Ϊ

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$\ell(j) = \sum_{i} L_{i,j}$$

Form matrix W so that

$$W_{i,j} = \begin{cases} \frac{1}{\ell(j)} & , \text{ if } (j) \longrightarrow (j) \\ 0 & , \text{ else} \end{cases}$$

Scheme 2: $R\left((j)\right) = \sum_{j=1}^{n} W_{i,j}$

(0	0.5	0.33	0	0	
	0	0	0.33	0	0.5	
	0	0.5	0	1	0.5	
	0	0	0	0	0	
ĺ	1	0	0.33	0	0	Ϊ

・ 回 ト ・ ヨ ト ・ ヨ ト

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Problems with second approach

• Evil users can really manipulate results

<ロ> (日) (日) (日) (日) (日)

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Problems with second approach

- Evil users can really manipulate results
- Gives importance to links from unimportant pages

| 4 回 2 4 U = 2 4 U =

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Problems with second approach

- Evil users can really manipulate results
- Gives importance to links from unimportant pages

A ■

-≣->

Stochastic	Matrices
00000000	00

Change of Basis

Voting in Directed Graphs

Weighting votes

Importance of $(j) \longrightarrow (i)$ should depend on R((j)).

・ロト ・回ト ・ヨト ・ヨト

æ

Stochastic	Matrices
00000000	00

Change of Basis

Voting in Directed Graphs

Weighting votes

Importance of $(j) \longrightarrow (i)$ should depend on R((j)). Want

 $R(i) = \sum_{j} R(j) W_{i,j}$

イロン イ部ン イヨン イヨン 三日

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Weighting votes

Importance of $(j) \longrightarrow (i)$ should depend on R((j)). Want

$$R\left((j)\right) = \sum_{j} R(j) W_{i,j}$$

$$W\begin{pmatrix} R(\underline{1})\\ \vdots\\ R(\underline{n}) \end{pmatrix} = \begin{pmatrix} R(\underline{1})\\ \vdots\\ R(\underline{n}) \end{pmatrix}$$

・ロト ・回ト ・ヨト ・ヨト

æ

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Weighting votes

$$\begin{array}{l} \text{Importance of } (j) \longrightarrow (i) \text{ should} \\ \text{depend on } R((j)). \text{ Want} \\ R((i)) = \sum_{j} R((j)) W_{i,j} \end{array} \qquad \qquad \begin{pmatrix} 0 & 0.5 & 0.33 & 0 & 0 \\ 0 & 0 & 0.33 & 0 & 0.5 \\ 0 & 0.5 & 0 & 1 & 0.5 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0.33 & 0 & 0 \end{pmatrix} \\ W \begin{pmatrix} R(1) \\ \vdots \\ R(n) \end{pmatrix} = \begin{pmatrix} R(1) \\ \vdots \\ R(n) \end{pmatrix} \qquad \qquad \begin{pmatrix} 0.41 \\ 0.47 \\ 0.52 \\ 0 \\ 0.58 \end{pmatrix} \text{ is 1-eigenvector} \end{array}$$

・ロ・ ・ 日・ ・ 日・ ・ 日・

æ

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Some slight modifications

This system satisfies most of the properties that we're interested in.

- 4 回 2 4 三 2 4 三 2 4

Voting in Directed Graphs

Rank 1 Matrix Approximations

Change of Basis

Some slight modifications

This system satisfies most of the properties that we're interested in.

One small problem: what if $\dim(E_1) > 1$?

Voting in Directed Graphs

Rank 1 Matrix Approximations

Change of Basis

Some slight modifications

This system satisfies most of the properties that we're interested in.

One small problem: what if $\dim(E_1) > 1$?

Theorem

If an $n \times n$ matrix has positive entries and columns sum to 1, then dim $(E_1) = 1$.

- 4 同 6 4 日 6 4 日 6

Rank 1 Matrix Approximations

Change of Basis

Some slight modifications

This system satisfies most of the properties that we're interested in.

One small problem: what if $\dim(E_1) > 1$?

Theorem

If an $n \times n$ matrix has positive entries and columns sum to 1, then dim $(E_1) = 1$.

Let
$$PR = dW + (1 - d) \begin{pmatrix} \frac{1}{n} & \cdots & \frac{1}{n} \\ \vdots & \ddots & \vdots \\ \frac{1}{n} & \cdots & \frac{1}{n} \end{pmatrix}$$

(4回) (4回) (日)

Change of Basis

3 ×

Row reduction is a bad idea:

• would take about $(10^{13})^3 = 10^{39}$ computations.

イロト イポト イヨト イヨト

Row reduction is a bad idea:

- would take about $(10^{13})^3 = 10^{39}$ computations.
- the fastest super computer runs about 2.5×10^{15} computations per second.

- 4 同 6 4 日 6 4 日 6

Row reduction is a bad idea:

- would take about $(10^{13})^3 = 10^{39}$ computations.
- the fastest super computer runs about 2.5×10^{15} computations per second.
- this row reduction would take about 10¹⁷ years.

Row reduction is a bad idea:

- would take about $(10^{13})^3 = 10^{39}$ computations.
- the fastest super computer runs about 2.5×10^{15} computations per second.
- this row reduction would take about 10¹⁷ years.
 - Current age of the universe is about 10¹⁰ years.

イロン イヨン イヨン イヨン

Row reduction is a bad idea:

- would take about $(10^{13})^3 = 10^{39}$ computations.
- the fastest super computer runs about 2.5×10^{15} computations per second.
- this row reduction would take about 10¹⁷ years.
 - Current age of the universe is about 10¹⁰ years.
 - If a supercomputer started at the dawn of the universe, then today it would be 0.0000001% done.

イロン イヨン イヨン イヨン

Rank 1 Matrix Approximations

Change of Basis

Voting in Directed Graphs

Approximation is our friend

Suppose that we have an eigenbasis $\{\overrightarrow{v_1}, \cdots, \overrightarrow{v_{10^{13}}}\}$ for *PR*.

・ 同 ト ・ 臣 ト ・ 臣 ト

Approximation is our friend

Suppose that we have an eigenbasis $\{\overrightarrow{v_1}, \cdots, \overrightarrow{v_{10^{13}}}\}\$ for *PR*. Then a random vector \overrightarrow{v} can be expressed in the form

$$\overrightarrow{v} = c_1 \overrightarrow{v_1} + \cdots + c_{10^{13}} \overrightarrow{v_{10^{13}}}.$$

Approximation is our friend

Suppose that we have an eigenbasis $\{\overrightarrow{v_1}, \cdots, \overrightarrow{v_{10^{13}}}\}$ for *PR*. Then a random vector \overrightarrow{v} can be expressed in the form

$$\overrightarrow{v} = c_1 \overrightarrow{v_1} + \cdots + c_{10^{13}} \overrightarrow{v_{10^{13}}}.$$

Then

$$PR^{k}\overrightarrow{v} = c_{1}\lambda_{1}^{k}\overrightarrow{v_{1}} + \cdots + c_{10^{13}}\lambda_{10^{13}}^{k}\overrightarrow{v_{10^{13}}}$$

Approximation is our friend

Suppose that we have an eigenbasis $\{\overrightarrow{v_1}, \cdots, \overrightarrow{v_{10^{13}}}\}$ for *PR*. Then a random vector \overrightarrow{v} can be expressed in the form

$$\overrightarrow{v} = c_1 \overrightarrow{v_1} + \cdots + c_{10^{13}} \overrightarrow{v_{10^{13}}}.$$

Then

$$PR^{k}\overrightarrow{v} = c_{1}\lambda_{1}^{k}\overrightarrow{v_{1}} + \cdots + c_{10^{13}}\lambda_{10^{13}}^{k}\overrightarrow{v_{10^{13}}}$$

Fact: If an $n \times n$ matrix has positive entries and columns sum to 1, then 1 is the largest eigenvalue (in absolute value).

(4 回) (4 回) (4 回)

Approximation is our friend

Suppose that we have an eigenbasis $\{\overrightarrow{v_1}, \cdots, \overrightarrow{v_{10^{13}}}\}$ for *PR*. Then a random vector \overrightarrow{v} can be expressed in the form

$$\overrightarrow{v} = c_1 \overrightarrow{v_1} + \cdots + c_{10^{13}} \overrightarrow{v_{10^{13}}}.$$

Then

$$PR^{k}\overrightarrow{v} = c_{1}\lambda_{1}^{k}\overrightarrow{v_{1}} + \cdots + c_{10^{13}}\lambda_{10^{13}}^{k}\overrightarrow{v_{10^{13}}}$$

Fact: If an $n \times n$ matrix has positive entries and columns sum to 1, then 1 is the largest eigenvalue (in absolute value).

Hence $\lim_{k\to\infty} PR^k \overrightarrow{v}$ is an eigenvalue with eigenvalue 1.

回 と く ヨ と く ヨ と

Singular Value Decomposition

Rank 1 Matrix Approximations

Change of Basis

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any $r \times c$ matrix A with real entries, there exist

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

Change of Basis

Singular Value Decomposition

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any $r \times c$ matrix A with real entries, there exist orthonormal bases $\{\overrightarrow{v}_1, \cdots, \overrightarrow{v}_r\} \subseteq \mathbb{R}^r$ and $\{\overrightarrow{w}_1, \cdots, \overrightarrow{w}_c\} \subseteq \mathbb{R}^c$

< 同 > < 臣 > < 臣 >

Change of Basis

Singular Value Decomposition

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any $r \times c$ matrix A with real entries, there exist orthonormal bases $\{\overrightarrow{v}_1, \cdots, \overrightarrow{v}_r\} \subseteq \mathbb{R}^r$ and $\{\overrightarrow{w}_1, \cdots, \overrightarrow{w}_c\} \subseteq \mathbb{R}^c$, and scalars $\sigma_1 \geq \cdots \geq \sigma_\ell \geq 0$ such that

・ 同 ト ・ ヨ ト ・ ヨ ト

Change of Basis

Singular Value Decomposition

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any $r \times c$ matrix A with real entries, there exist orthonormal bases $\{\overrightarrow{v}_1, \cdots, \overrightarrow{v}_r\} \subseteq \mathbb{R}^r$ and $\{\overrightarrow{w}_1, \cdots, \overrightarrow{w}_c\} \subseteq \mathbb{R}^c$, and scalars $\sigma_1 \geq \cdots \geq \sigma_\ell \geq 0$ such that

イロン イヨン イヨン イヨン

Rank 1 Matrix Approximations

Change of Basis

Singular Value Decomposition

What SVD captures

This decomposition encodes loads of info for A

イロン 不同と 不同と 不同と

æ

Rank 1 Matrix Approximations

Change of Basis

Singular Value Decomposition

What SVD captures

This decomposition encodes loads of info for A

• rank(A) is number of non-zero σ_i 's

▲圖▶ ▲屋▶ ▲屋▶

Change of Basis

Singular Value Decomposition

What SVD captures

This decomposition encodes loads of info for A

- rank(A) is number of non-zero σ_i 's
- Orthonormal bases for im(A), ker(A), $im(A^{T})$, $ker(A^{T})$

(4 回) (4 回) (4 回)

What SVD captures

This decomposition encodes loads of info for A

- rank(A) is number of non-zero σ_i 's
- Orthonormal bases for im(A), ker(A), $im(A^{T})$, $ker(A^{T})$
- if A is square, $|\det(A)| = \prod \sigma_i$

What SVD captures

This decomposition encodes loads of info for A

- rank(A) is number of non-zero σ_i 's
- Orthonormal bases for im(A), ker(A), $im(A^{T})$, $ker(A^{T})$
- if A is square, $|\det(A)| = \prod \sigma_i$
- simple expression for PsuedoInverse

(1) マン・ション・

What SVD captures

This decomposition encodes loads of info for A

- rank(A) is number of non-zero σ_i 's
- Orthonormal bases for im(A), ker(A), $im(A^{T})$, $ker(A^{T})$
- if A is square, $|\det(A)| = \prod \sigma_i$
- simple expression for PsuedoInverse
- Quick test for numerical stability of matrix

(4 回) (4 回) (4 回)

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1 matrices:

▲圖▶ ▲屋▶ ▲屋▶

2

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1 matrices:

$$A = \sum_{i=1}^{\mathsf{rk}(A)} \sigma_i \left(\begin{array}{c} \overrightarrow{v}_1 \\ \end{array} \right| \cdots \\ \left| \begin{array}{c} \overrightarrow{v}_r \\ \end{array} \right) E(i,i) \left(\begin{array}{c} \overrightarrow{w}_1 \\ \hline \vdots \\ \hline \overrightarrow{w}_c \end{array} \right) .$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶

2

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1 matrices:

$$A = \sum_{i=1}^{\mathsf{rk}(A)} \sigma_i \left(\begin{array}{c} \overrightarrow{v}_1 \\ \end{array} \right| \cdots \\ \left| \begin{array}{c} \overrightarrow{v}_r \\ \end{array} \right) E(i,i) \left(\begin{array}{c} \overrightarrow{w}_1 \\ \hline \vdots \\ \hline \overrightarrow{w}_c \end{array} \right) .$$

Since $\sigma_1 \geq \cdots \geq \sigma_\ell \geq 0$, A_{i+1} is "less significant" than A_i

イロト イポト イヨト イヨト

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1 matrices:

$$A = \sum_{i=1}^{\mathsf{rk}(A)} \underbrace{\sigma_i}_{i} \left(\begin{array}{c} \overrightarrow{v}_1 \\ \end{array} \right) \cdots \\ \underbrace{\overrightarrow{v}_r}_{A_i} \right) E(i,i) \left(\begin{array}{c} \overrightarrow{w}_1 \\ \hline \vdots \\ \hline \overrightarrow{w}_c \end{array} \right)}_{A_i}$$

Since $\sigma_1 \geq \cdots \geq \sigma_\ell \geq 0$, A_{i+1} is "less significant" than A_i

If $\sum_{i>s} \sigma_i$ is "insignificant," then we have $A \approx \sum_{i=1}^{s} A_i$

Rank 1 Matrix Approximations

Change of Basis

Application to noise filtering

Noise Filtering

Andrew Schultz Linear algebra in your daily (digital) life

Э

Rank 1 Matrix Approximations

Change of Basis

Image compression through SVD

Matrix representations of images

You can think of an image as a matrix.

- Each pixel contains a gray value
- Gray values range from 0 to 255

A⊒ ▶ ∢ ∃

Rank 1 Matrix Approximations

Change of Basis

Image compression through SVD

Matrix representations of images

You can think of an image as a matrix.

- Each pixel contains a gray value
- Gray values range from 0 to 255

A ₽

∃ >

Rank 1 Matrix Approximations

Change of Basis

< ≣⇒

Image compression through SVD

Matrix representations of images

You can think of an image as a matrix.

- Each pixel contains a gray value
- Gray values range from 0 to 255

< A > < 3

Rank 1 Matrix Approximations

Change of Basis

Image compression through SVD

Matrix representations of images

You can think of an image as a matrix.

- Each pixel contains a gray value
- Gray values range from 0 to 255

153	153	153	152	152	152
153	153	150	145	144	141
153	151	145	137	129	125
153	149	140	128	117	115
152	148	137	123	115	117
154	152	145	132	126	130

(4回) (4回) (4回)

Rank 1 Matrix Approximations

Change of Basis

Image compression through SVD

Keeping only "significant" terms

According to our theory, if there are s-many significant singular values, then

$$M \approx \sum_{i=1}^{s} M_i$$

・ 同 ト ・ 臣 ト ・ 臣 ト

Rank 1 Matrix Approximations

Change of Basis

Image compression through SVD

Keeping only "significant" terms

According to our theory, if there are s-many significant singular values, then

$$M \approx \sum_{i=1}^{s} M_i$$

- 4 同 6 4 日 6 4 日 6

Change of Basis

Image compression through SVD

Some approximations

Let's see what our truncated matrix "looks like"

- s=1
- Compression: 0.18%

and the second se

- 4 回 2 - 4 □ 2 - 4 □

Change of Basis

Image compression through SVD

Some approximations

Let's see what our truncated matrix "looks like"

- s=5
- Compression: 0.9%

・ 同・ ・ ヨ・

< ≣⇒

Change of Basis

Image compression through SVD

Some approximations

Let's see what our truncated matrix "looks like"

- s=10
- Compression: 1.8%

A (10) > (10)

.⊒ .⊳

Change of Basis

Image compression through SVD

Some approximations

Let's see what our truncated matrix "looks like"

- s=25
- Compression: 4.5%

- 4 回 2 - 4 □ 2 - 4 □

Change of Basis

Image compression through SVD

Some approximations

Let's see what our truncated matrix "looks like"

- s=100
- Compression: 18%

- 4 回 2 - 4 □ 2 - 4 □

Rank 1 Matrix Approximations

Change of Basis

Image compression through SVD

Problems in this approach

This technique has some problems

イロト イヨト イヨト イヨト

Rank 1 Matrix Approximations

Change of Basis

Image compression through SVD

Problems in this approach

This technique has some problems

• ad hoc method for determining when we're done

- 4 回 2 - 4 □ 2 - 4 □

Problems in this approach

This technique has some problems

- ad hoc method for determining when we're done
- requires we keep track of singular values and basis elements (1 + r + c pieces of data for each singular value!)

< A > < B > <

Problems in this approach

This technique has some problems

- ad hoc method for determining when we're done
- requires we keep track of singular values and basis elements (1 + r + c pieces of data for each singular value!)

Would be nice to find something more systematic

Problems in this approach

This technique has some problems

- ad hoc method for determining when we're done
- requires we keep track of singular values and basis elements (1 + r + c pieces of data for each singular value!)

Would be nice to find something more systematic

controlling quality of compressed image

< A > < B > <

Problems in this approach

This technique has some problems

- ad hoc method for determining when we're done
- requires we keep track of singular values and basis elements (1 + r + c pieces of data for each singular value!)

Would be nice to find something more systematic

- controlling quality of compressed image
- doesn't require us to keep track of a basis

< A > < B > <

Problems in this approach

This technique has some problems

- ad hoc method for determining when we're done
- requires we keep track of singular values and basis elements (1 + r + c pieces of data for each singular value!)

Would be nice to find something more systematic

- controlling quality of compressed image
- doesn't require us to keep track of a basis
- takes advantage of properties of images

A (1) > (1) > (1)

New coordinate systems

The "usual" way of thinking about a matrix

Typically we think of a matrix in terms of its entries.

$$\mathsf{A} = \sum_{i,j} \mathsf{a}_{ij} \mathsf{E}(i,j)$$

where E(i, j) is the matrix with a 1 in the *i*th row, *j*th column.

イロン イヨン イヨン イヨン

New coordinate systems

The "usual" way of thinking about a matrix

Typically we think of a matrix in terms of its entries.

$$\mathsf{A} = \sum_{i,j} \mathsf{a}_{ij} \mathsf{E}(i,j)$$

where E(i, j) is the matrix with a 1 in the *i*th row, *j*th column.

• Each E(i, j) solely responsible for its local behavior.

소리가 소문가 소문가 소문가

New coordinate systems

The "usual" way of thinking about a matrix

Typically we think of a matrix in terms of its entries.

$$\mathsf{A} = \sum_{i,j} \mathsf{a}_{ij} \mathsf{E}(i,j)$$

where E(i, j) is the matrix with a 1 in the *i*th row, *j*th column.

- Each E(i, j) solely responsible for its local behavior.
- Deleting an *a_{ij}* completely wipes out pixel info.

・ 同 ト ・ ヨ ト ・ ヨ ト

New coordinate systems

Rewriting the matrix

What if we chose a different basis for $n \times n$ matrices?

$$A = \sum_{i,j} c_{ij} B(i,j)$$

・ロン ・回と ・ヨン ・ヨン

Change of Basis

New coordinate systems

Rewriting the matrix

What if we chose a different basis for $n \times n$ matrices?

$$A = \sum_{i,j} c_{ij} B(i,j)$$

Would be nice if

・ロト ・回ト ・ヨト ・ヨト

Change of Basis

New coordinate systems

Rewriting the matrix

What if we chose a different basis for $n \times n$ matrices?

$$A = \sum_{i,j} c_{ij} B(i,j)$$

Would be nice if

• basis weren't so "local"

・ロト ・回ト ・ヨト ・ヨト

Change of Basis ○●○○○○○○○○○

New coordinate systems

Rewriting the matrix

What if we chose a different basis for $n \times n$ matrices?

$$A = \sum_{i,j} c_{ij} B(i,j)$$

Would be nice if

- basis weren't so "local"
- deleting $c_{i,j}$ has gradual (though global) effect

イロン イヨン イヨン イヨン

Rank 1 Matrix Approximations

Change of Basis

New coordinate systems

A potential basis

We'll choose an orthornomal basis of \mathbb{R}^n from Fourier series

$$\overrightarrow{f}_{i} = \alpha_{i} \left\{ \cos \left[\frac{\pi}{n} \left(\frac{2j+1}{2} \right) i \right] \right\}_{j=0}^{n-1}$$

・ロト ・回ト ・ヨト ・ヨト

3

New coordinate systems

A potential basis

We'll choose an orthornomal basis of \mathbb{R}^n from Fourier series

$$\overrightarrow{f}_{i} = \alpha_{i} \left\{ \cos \left[\frac{\pi}{n} \left(\frac{2j+1}{2} \right) i \right] \right\}_{j=0}^{n-1}$$

We'll simply change basis to $\mathcal{B} = \{\overrightarrow{f}_0, \cdots, \overrightarrow{f}_{n-1}\}$

イロン イヨン イヨン イヨン

Rank 1 Matrix Approximations

Change of Basis

New coordinate systems

A potential basis

We'll choose an orthornomal basis of \mathbb{R}^n from Fourier series

$$\overrightarrow{f}_{i} = \alpha_{i} \left\{ \cos \left[\frac{\pi}{n} \left(\frac{2j+1}{2} \right) i \right] \right\}_{j=0}^{n-1}$$

We'll simply change basis to $\mathcal{B} = \{\overrightarrow{f}_0, \cdots, \overrightarrow{f}_{n-1}\}$

$$B(i,j) = \left(\underbrace{\frac{\overrightarrow{f}_{0}}{\vdots}}_{\overrightarrow{f}_{n-1}} \right) E(i,j) \left(\begin{array}{c} \overrightarrow{f}_{0} \\ \end{array} \right| \cdots \left| \begin{array}{c} \overrightarrow{f}_{n-1} \end{array} \right)$$

イロン イヨン イヨン イヨン

Rank 1 Matrix Approximations

Change of Basis

æ

New coordinate systems

Seeing the new basis (n = 8)

Andrew Schultz Linear algebra in your daily (digital) life

New coordinate systems

Rank 1 Matrix Approximations

Change of Basis

Computing the \mathcal{B} -matrix

Compute coefficients $c_{i,j}$ such that $A = \sum_{i,j} c_{i,j} B(i,j)$ by

イロン イヨン イヨン イヨン

Rank 1 Matrix Approximations

Change of Basis

New coordinate systems

Computing the \mathcal{B} -matrix

Compute coefficients $c_{i,j}$ such that $A = \sum_{i,j} c_{i,j} B(i,j)$ by

$$\begin{pmatrix} \overrightarrow{f}_{0} \\ \vdots \\ \hline \overrightarrow{f}_{n-1} \end{pmatrix} A \left(\begin{array}{c} \overrightarrow{f}_{0} \\ \vdots \\ \hline \end{array} \right)$$

イロン イヨン イヨン イヨン

Change of Basis

The human eye and \mathcal{B}

Why we chose this basis

This is a good basis because

イロト イヨト イヨト イヨト

The human eye and \mathcal{B}

Why we chose this basis

This is a good basis because

 Human eye only sees in "steps"; if distinguishable step size for B(i,j) is q_{i,j}, then

$$\sum_{i,j} c_{i,j} B(i,j) \approx \sum_{i,j} q_{i,j} \left[\frac{c_{i,j}}{q_{i,j}} \right] B(i,j)$$

・ 母 と ・ ヨ と ・ ヨ と

The human eye and \mathcal{B}

Why we chose this basis

This is a good basis because

 Human eye only sees in "steps"; if distinguishable step size for B(i,j) is q_{i,j}, then

$$\sum_{i,j} c_{i,j} B(i,j) \approx \sum_{i,j} q_{i,j} \left[\frac{c_{i,j}}{q_{i,j}} \right] B(i,j)$$

Images are "smooth" (small "high frequency" components)

イロト イポト イヨト イヨト

∢ 臣 ≯

The human eye and \mathcal{B}

Why we chose this basis

This is a good basis because

 Human eye only sees in "steps"; if distinguishable step size for B(i,j) is q_{i,j}, then

$$\sum_{i,j} c_{i,j} B(i,j) \approx \sum_{i,j} q_{i,j} \left[\frac{c_{i,j}}{q_{i,j}} \right] B(i,j)$$

Images are "smooth" (small "high frequency" components)

$$\sum_{i,j} c_{i,j} B(i,j) \approx \sum_{\text{small } i,j} q_{i,j} \left[\frac{c_{i,j}}{q_{i,j}} \right] B(i,j)$$

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

・ 母 と ・ ヨ と ・ ヨ と

Change of Basis

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

• Split image into 8×8 blocks

イロン イヨン イヨン イヨン

Change of Basis

The human eye and \mathcal{B}

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

- Split image into 8×8 blocks
- Change coordinates for each 8×8 submatrix

・ 同 ・ ・ ヨ ・ ・ ヨ ・

Change of Basis

The human eye and \mathcal{B}

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

- Split image into 8×8 blocks
- Change coordinates for each 8×8 submatrix
- Quantize

(4回) (1日) (日)

The human eye and ${\cal B}$

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

- Split image into 8×8 blocks
- Change coordinates for each 8×8 submatrix
- Quantize

Then decompression is

・ 同 ト ・ ヨ ト ・ ヨ ト

Change of Basis

The human eye and \mathcal{B}

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

- Split image into 8×8 blocks
- Change coordinates for each 8×8 submatrix
- Quantize

Then decompression is

- De-quantize
- Change back to standard coordinates
- Reassemble the 8×8 blocks

・ 同 ト ・ ヨ ト ・ ヨ ト

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

Working through an example

Extract an 8×8 block

・ロン ・回と ・ヨン・

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

Working through an example

Extract an 8×8 block

	_
_	

 $\longrightarrow \left(\begin{array}{c} 115\ 100\ 98\ 153\ 154\ 142\ 143\ 130\\ 131\ 118\ 101\ 157\ 156\ 146\ 156\ 149\\ 137\ 115\ 100\ 163\ 148\ 147\ 153\ 130\\ 135\ 113\ 101\ 163\ 152\ 149\ 150\ 127\\ 140\ 111\ 102\ 156\ 152\ 152\ 152\ 152\ 152\\ 157\ 132\ 116\ 153\ 150\ 151\ 159\ 160\\ 164\ 155\ 138\ 152\ 144\ 141\ 151\ 161\\ 152\ 146\ 145\ 143\ 135\ 132\ 142\ 159\\ \end{array}\right)$

- 4 回 2 - 4 □ 2 - 4 □

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

Working through an example

Change to \mathcal{B} -version

Andrew Schultz Linear algebra in your daily (digital) life

<ロ> (日) (日) (日) (日) (日)

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

Working through an example

Change to \mathcal{B} -version

131 137 135 140 157	118 115 113 111 132	101 100 101 102 116	157 163 163 156 153	156 148 152 152 150	146 147 149 152 151	156 153 150 155 159	127 142 160	\longrightarrow
164	155	138	152	144	141	151	160 161 159	

- 4 回 2 - 4 □ 2 - 4 □

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

Working through an example

Change to \mathcal{B} -version

	/115	100	98	153	154	142	143	130			/1112	-61	-14	44	57	34	-32	-26
	131	118	101	157	156	146	156	149	۱.		-43	-36	-43	25	13	12	$^{-15}$	-8
1	137	115	100	163	148	147	153	130	1		2	12	12	-26	-8	$^{-16}$	7	10
I	135	113	101	163	152	149	150	127		、 I	2	-14	1	7	6	-3	1	2
İ	140	111	102	156	152	152	155	142	i	\rightarrow	-25	-4	-16	0	$^{-1}$	2	5	3
1	157	132	116	153	150	151	159	160			-2	12	-6	1	-3	2	$^{-1}$	-2
	164	155	138	152	144	141	151	161	1		-9	-1	$^{-2}$	3	0	5	2	0
	152	146	145	143	135	132	142	159	/		\ −4	2	-2	1	$^{-1}$	3	1	-1/

- 4 回 2 4 三 2 4 三 2 4

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

Working through an example

Quantize

・ロン ・回と ・ヨン・

Change of Basis

The human eye and \mathcal{B}

Working through an example

Quantize

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Change of Basis

The human eye and \mathcal{B}

Working through an example

Quantize

・回 と く ヨ と く ヨ と

Change of Basis

The human eye and \mathcal{B}

Working through an example

Quantize

We're down to 16 pieces of information!

・ 同 ト ・ 三 ト

- < ∃ >

Change of Basis

The human eye and \mathcal{B}

Reconstituting our image

Here's the result of reversing this process:

- 4 回 2 - 4 □ 2 - 4 □

Change of Basis

The human eye and \mathcal{B}

Reconstituting our image

Here's the result of reversing this process:

Original

1	115	100	98	153	154	142	143	130
l	131	118	101	157	156	146	156	130 149
	137	115	100	163	148	147	153	130
	135	113	101	163	152	149	150	127
l		111						
		132						
l	164	155	138	152	144	141	151	161
١	152	146	145	143	135	132	142	161 159

Compressed

	/114	103	101	144	149	136	154	135
	125	111	106	150	156	142	57	135 134
	133	115	107	151	160	146	157	130
	134	114	104	147	158	146	157	129
İ			106					
			118					
	162	144	129	155	147	135	165	158
	166	150	132	152	137	122	157	158 154

< 17 ×

< ≣ >

Change of Basis

The human eye and \mathcal{B}

Reconstituting our image

Here's the result of reversing this process:

Original

30
30
27
42
60
61 🖌
61 59

Compressed

	/114	103	101	144	149	136	154	135
	125	111	106	150	156	142	57	135 134
1	133	115	107	151	160	146	157	130
1	134	114	104	147	158	146	157	129
İ	139	118	106	148	156	146	163	139
					155			
	162	144	129	155	147	135	165	158
	166	150	132	152	137	122	157	158 154

(4回) (4回) (4回)

- Average difference = 5.73
- Std Dev = 4.22

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

Seeing is believing

Compressed

▲ 御 ▶ → ミ ▶

< ∃⇒

æ

Andrew Schultz Linear algebra in your daily (digital) life

Change of Basis

The human eye and \mathcal{B}

We can use these ideas to do some image processing as well

・ロト ・回ト ・ヨト ・ヨト

The human eye and \mathcal{B}

Image Processing

We can use these ideas to do some image processing as well

• "smooth" part of the image comes from low frequency Fourier coefficients

イロン 不同と 不同と 不同と

The human eye and \mathcal{B}

Image Processing

We can use these ideas to do some image processing as well

- "smooth" part of the image comes from low frequency Fourier coefficients
- "edges" come from the high frequency Fourier coefficients

イロト イポト イヨト イヨト

The human eye and \mathcal{B}

Image Processing

We can use these ideas to do some image processing as well

- "smooth" part of the image comes from low frequency Fourier coefficients
- "edges" come from the high frequency Fourier coefficients

Note: Here I won't split the image into 8×8 blocks – I want all the information about the image simultaneously

・ロン ・回と ・ヨン・

Change of Basis

The human eye and \mathcal{B}

Image Processing

Smooth Part: B(i,j) components for small j, small i

Andrew Schultz Linear algebra in your daily (digital) life

イロン イヨン イヨン イヨン

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

Image Processing

Smooth Part: B(i,j) components for small j, small i

・ロン ・回と ・ヨン・

Change of Basis

The human eye and \mathcal{B}

Image Processing

Horizontal Edges: B(i,j) components for small j, large i

Andrew Schultz Linear algebra in your daily (digital) life

イロン イヨン イヨン イヨン

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

Image Processing

Horizontal Edges: B(i,j) components for small j, large i

・ロン ・回と ・ヨン・

Change of Basis

The human eye and \mathcal{B}

Image Processing

Vertical Edges: B(i,j) components for small *i*, large *j*

イロン イヨン イヨン イヨン

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

Image Processing

Vertical Edges: B(i,j) components for small *i*, large *j*

The human eye and \mathcal{B}

Image Processing

Scattered Edges: B(i,j) components for large *i*, large *j*

イロン イヨン イヨン イヨン

æ

Stochastic Matrices

Rank 1 Matrix Approximations

Change of Basis

The human eye and \mathcal{B}

Image Processing

Scattered Edges: B(i,j) components for large *i*, large *j*

< //>
</

-

Stochastic Matrices

Rank 1 Matrix Approximations

Change of Basis

How MP3 compression works

Similar ideas are used to compress music into mp3's

Andrew Schultz Linear algebra in your daily (digital) life

・ロン ・回と ・ヨン・

The human ear and ${\cal B}$

How MP3 compression works

Similar ideas are used to compress music into mp3's

• Sample an audio source

・ロト ・回ト ・ヨト ・ヨト

Change of Basis

The human ear and \mathcal{B}

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
 - Humans hear between 20Hz and 20,000Hz

- 4 同 6 4 日 6 4 日 6

Change of Basis

The human ear and ${\cal B}$

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
 - Humans hear between 20Hz and 20,000Hz
 - Sample at 41,000Hz

- 4 回 2 - 4 □ 2 - 4 □

The human ear and ${\cal B}$

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
 - Humans hear between 20Hz and 20,000Hz
 - Sample at 41,000Hz
 - 16bits per sample and 2 channels means 1.3 million bits per second

(4 回) (4 回) (4 回)

The human ear and ${\cal B}$

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
 - Humans hear between 20Hz and 20,000Hz
 - Sample at 41,000Hz
 - 16bits per sample and 2 channels means 1.3 million bits per second
- Break sample into smaller blocks

・ 同 ト ・ ヨ ト ・ ヨ ト

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
 - Humans hear between 20Hz and 20,000Hz
 - Sample at 41,000Hz
 - 16bits per sample and 2 channels means 1.3 million bits per second
- Break sample into smaller blocks
- Express these blocks in terms of B-coordinates

(4月) (4日) (4日)

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
 - Humans hear between 20Hz and 20,000Hz
 - Sample at 41,000Hz
 - 16bits per sample and 2 channels means 1.3 million bits per second
- Break sample into smaller blocks
- Express these blocks in terms of \mathcal{B} -coordinates
- Filter out "unnecessary" data using psychoacoustics

(4月) (4日) (4日)

The human ear and \mathcal{B}

 Simultaneous Masking - If two tones with near frequencies are played at the same time, your brain only hears the louder one

- - 4 回 ト - 4 回 ト

- Simultaneous Masking If two tones with near frequencies are played at the same time, your brain only hears the louder one
- Temporal Masking Some weak sounds aren't heard if played right after (or right before!) a louder sound

・ 同 ト ・ ヨ ト ・ ヨ ト

Psychoacoustics

- Simultaneous Masking If two tones with near frequencies are played at the same time, your brain only hears the louder one
- Temporal Masking Some weak sounds aren't heard if played right after (or right before!) a louder sound
- Hass effect If the same tone hits one ear just before another, then your brain perceives it as coming only from the first direction

Stochastic Matrices

The human ear and ${\cal B}$

Rank 1 Matrix Approximations

Change of Basis

Thank you!

Andrew Schultz Linear algebra in your daily (digital) life

- 4 回 2 - 4 回 2 - 4 回 2 - 4

æ