Linear algebra in your daily (digital) life

Andrew Schultz

Wellesley College

March 6, 2012

Alternate title

A TIME-TRAVELER'S GUIDE TO BECOMING A BILLIONAIRE

Alternate title

A TIME-TRAVELER'S GUIDE TO BECOMING A BILLIONAIRE

- Largest lottery payout is less than $\$ 400$ million

Alternate title

A TIME-TRAVELER'S GUIDE TO BECOMING A BILLIONAIRE

- Largest lottery payout is less than $\$ 400$ million
- Google founders Brin and Page each worth about \$17.5 billion

Alternate title

A TIME-TRAVELER'S GUIDE TO BECOMING A BILLIONAIRE

- Largest lottery payout is less than $\$ 400$ million
- Google founders Brin and Page each worth about \$17.5 billion

Note: the value of this talk has significantly depreciated since 1990

Outline of the talk

- Letting directed graphs vote

Outline of the talk

- Letting directed graphs vote
- Google's PageRank algorithm

Outline of the talk

- Letting directed graphs vote
- Google's PageRank algorithm
- Approximating matrices with rank 1 summands - (SVD)

Outline of the talk

- Letting directed graphs vote
- Google's PageRank algorithm
- Approximating matrices with rank 1 summands - (SVD)
- Filtering noise
- Image compression

Outline of the talk

- Letting directed graphs vote
- Google's PageRank algorithm
- Approximating matrices with rank 1 summands - (SVD)
- Filtering noise
- Image compression
- Changing basis

Outline of the talk

- Letting directed graphs vote
- Google's PageRank algorithm
- Approximating matrices with rank 1 summands - (SVD)
- Filtering noise
- Image compression
- Changing basis
- Image compression
- Sound compression

Outline of the talk

- Letting directed graphs vote
- Google's PageRank algorithm
- Approximating matrices with rank 1 summands - (SVD)
- Filtering noise
- Image compression
- Changing basis
- Image compression
- Sound compression

Thanks to Brian White, Jerry Uhl, Bruce Carpenter, Bill Davis, Dan Boyd, ...

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G

Want to rank vertices (using $R: V \rightarrow \mathbb{R}$)

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G Want to rank vertices (using $R: V \rightarrow \mathbb{R}$)
- should depend only on structure of G

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G Want to rank vertices (using $R: V \rightarrow \mathbb{R}$)
- should depend only on structure of G
- shouldn't produce many ties

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G

Want to rank vertices (using $R: V \rightarrow \mathbb{R}$)

- should depend only on structure of G
- shouldn't produce many ties

- should be equitable

Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G

Want to rank vertices (using $R: V \rightarrow \mathbb{R}$)

- should depend only on structure of G
- shouldn't produce many ties

- should be equitable
- should be stable under "attack"

The general constraints

Suppose that G is a directed graph

- V is the vertex set for G
- $A \subseteq V \times V$ is the set of arcs of G Want to rank vertices (using $R: V \rightarrow \mathbb{R}$)
- should depend only on structure of G
- shouldn't produce many ties

- should be equitable
- should be stable under "attack"
- should be computable

Voting in Directed Graphs

The first approach

(j) \longrightarrow (i) is a vote for (i) from (j)

Form matrix L so that

$$
L_{i, j}= \begin{cases}1, & \text { if }(j) \longrightarrow(i) \\ 0, & \text { else }\end{cases}
$$

Voting in Directed Graphs

The first approach

Form matrix L so that

$$
L_{i, j}= \begin{cases}1, & \text { if }(j) \longrightarrow(i) \\ 0, & \text { else }\end{cases}
$$

Voting in Directed Graphs

The first approach

(j) \longrightarrow (i) is a vote for (i) from (j

Form matrix L so that

$$
L_{i, j}= \begin{cases}1, & \text { if }(j) \longrightarrow \text { i } \\ 0, & \text { else }\end{cases}
$$

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Voting in Directed Graphs

The first approach

(j) \longrightarrow (i) is a vote for (i) from (j

Form matrix L so that

$$
L_{i, j}= \begin{cases}1, & \text { if }(j) \longrightarrow(i) \\ 0, & \text { else }\end{cases}
$$

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Voting in Directed Graphs

The first approach

Form matrix L so that

$$
L_{i, j}= \begin{cases}1, & \text { if }(j) \longrightarrow \text { (i) } \\ 0, & \text { else }\end{cases}
$$

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Voting in Directed Graphs

The first approach

Form matrix L so that

$$
L_{i, j}= \begin{cases}1, & \text { if }(j) \longrightarrow(i) \\ 0, & \text { else }\end{cases}
$$

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Voting in Directed Graphs

The first approach

Form matrix L so that

$$
L_{i, j}= \begin{cases}1, & \text { if }(j) \longrightarrow \text { (i) } \\ 0, & \text { else }\end{cases}
$$

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Voting in Directed Graphs

The first approach

(j) \longrightarrow (i) is a vote for (i) from (j

Form matrix L so that

$$
L_{i, j}= \begin{cases}1, & \text { if }(j) \longrightarrow(i) \\ 0, & \text { else }\end{cases}
$$

Scheme 1: $R(i)=\sum_{j=1}^{n} L_{i, j}$

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Voting in Directed Graphs

The first approach

(j) \longrightarrow (i) is a vote for (i) from (j

Form matrix L so that

$$
L_{i, j}= \begin{cases}1, & \text { if }(j) \longrightarrow(i) \\ 0, & \text { else }\end{cases}
$$

Scheme 1: $R(i)=\sum_{j=1}^{n} L_{i, j}$
Page 3 wins (score 3), Pages 1,2,5 tie for second (score 2), Page 4 loses

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Voting in Directed Graphs

Problems with first approach

- Potential for lots of ties

Voting in Directed Graphs

Problems with first approach

- Potential for lots of ties

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Voting in Directed Graphs

Problems with first approach

- Potential for lots of ties
- Evil users can manipulate results

Voting in Directed Graphs

Problems with first approach

- Potential for lots of ties
- Evil users can manipulate results

Problems with first approach

- Potential for lots of ties
- Evil users can manipulate results
- Not equitable

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Problems with first approach

- Potential for lots of ties
- Evil users can manipulate results
- Not equitable

$$
\left(\begin{array}{lllll}
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$
\ell(j)=\sum_{i} L_{i, j}
$$

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$
\ell(j)=\sum_{i} L_{i, j}
$$

Form matrix W so that

$$
W_{i, j}=\left\{\begin{array}{ll}
\frac{1}{\ell(j)} & , \text { if }(j \longrightarrow \text { i } \\
0 & , \text { else }
\end{array}\left(\begin{array}{ccccc}
0 & 0.5 & 0.33 & 0 & 0 \\
0 & 0 & 0.33 & 0 & 0.5 \\
0 & 0.5 & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0.33 & 0 & 0
\end{array}\right)\right.
$$

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$
\ell(j)=\sum_{i} L_{i, j}
$$

Form matrix W so that

$$
W_{i, j}=\left\{\begin{array}{ll}
\frac{1}{\ell(j)} & , \text { if }(j \longrightarrow \text { i } \\
0 & , \text { else }
\end{array}\left(\begin{array}{ccccc}
0 & 0.5 & 0.33 & 0 & 0 \\
0 & 0 & 0.33 & 0 & 0.5 \\
0 & 0.5 & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0.33 & 0 & 0
\end{array}\right)\right.
$$

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$
\ell(j)=\sum_{i} L_{i, j}
$$

Form matrix W so that

$$
W_{i, j}=\left\{\begin{array}{ll}
\frac{1}{\ell(j)} & , \text { if }(j) \\
0 & , \text { else }
\end{array} \text { i }\left(\begin{array}{ccccc}
0 & 0.5 & 0.33 & 0 & 0 \\
0 & 0 & 0.33 & 0 & 0.5 \\
0 & 0.5 & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0.33 & 0 & 0
\end{array}\right)\right.
$$

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$
\ell(j)=\sum_{i} L_{i, j}
$$

Form matrix W so that

$$
W_{i, j}=\left\{\begin{array}{ll}
\frac{1}{\ell(j)} & , \text { if }(j \longrightarrow \text { i } \\
0 & , \text { else }
\end{array}\left(\begin{array}{ccccc}
0 & 0.5 & 0.33 & 0 & 0 \\
0 & 0 & 0.33 & 0 & 0.5 \\
0 & 0.5 & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0.33 & 0 & 0
\end{array}\right)\right.
$$

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$
\ell(j)=\sum_{i} L_{i, j}
$$

Form matrix W so that

$$
W_{i, j}=\left\{\begin{array}{ll}
\frac{1}{\ell(j)} & , \text { if }(j \longrightarrow \text { i } \\
0 & , \text { else }
\end{array}\left(\begin{array}{ccccc}
0 & 0.5 & 0.33 & 0 & 0 \\
0 & 0 & 0.33 & 0 & 0.5 \\
0 & 0.5 & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0.33 & 0 & 0
\end{array}\right)\right.
$$

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$
\ell(j)=\sum_{i} L_{i, j}
$$

Form matrix W so that

$$
W_{i, j}=\left\{\begin{array}{ll}
\frac{1}{\ell(j)} & , \text { if }(j \longrightarrow \text { i } \\
0 & , \text { else }
\end{array}\left(\begin{array}{ccccc}
0 & 0.5 & 0.33 & 0 & 0 \\
0 & 0 & 0.33 & 0 & 0.5 \\
0 & 0.5 & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0.33 & 0 & 0
\end{array}\right)\right.
$$

Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

$$
\ell(j)=\sum_{i} L_{i, j}
$$

Form matrix W so that

$$
W_{i, j}= \begin{cases}\frac{1}{\ell(j)}, & \text { if }(j) \longrightarrow(i) \\ 0, & \text { else }\end{cases}
$$

$$
\left(\begin{array}{ccccc}
0 & 0.5 & 0.33 & 0 & 0 \\
0 & 0 & 0.33 & 0 & 0.5 \\
0 & 0.5 & 0 & 1 & 0.5 \\
0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0.33 & 0 & 0
\end{array}\right)
$$

Scheme 2: $R(i)=\sum_{j=1}^{n} W_{i, j}$

Voting in Directed Graphs

Problems with second approach

- Evil users can really manipulate results

Problems with second approach

- Evil users can really manipulate results
- Gives importance to links from unimportant pages

Voting in Directed Graphs

Problems with second approach

- Evil users can really manipulate
results
- Gives importance to links from
unimportant pages
results
- Gives importance to links from
unimportant pages
results
- Gives importance to links from
unimportant pages

$\left(\begin{array}{ccccc}0 & 0.5 & 0.33 & 0 & 0 \\ 0 & 0 & 0.33 & 0 & 0.5 \\ 0 & 0.5 & 0 & 1 & 0.5 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0.33 & 0 & 0\end{array}\right)$

Voting in Directed Graphs

Weighting votes

Importance of $(j) \longrightarrow$ (i) should depend on $R(j)$.

Voting in Directed Graphs

Weighting votes

Importance of $(j) \longrightarrow$ (i) should depend on $R(j)$. Want

$$
\left.R(\mathrm{i})=\sum_{j} R(\mathrm{j})\right) W_{i, j}
$$

Voting in Directed Graphs

Weighting votes

Importance of $(j) \longrightarrow$ (i) should depend on $R(j)$. Want

$$
R(i))=\sum_{j} R((j)) W_{i, j}
$$

$$
W\left(\begin{array}{c}
R(\mathbb{1}) \\
\vdots \\
R(\mathbb{B})
\end{array}\right)=\left(\begin{array}{c}
R(\mathbb{1}) \\
\vdots \\
R(\mathbb{B})
\end{array}\right)
$$

Weighting votes

Importance of $(j) \longrightarrow$ (i) should depend on $R(j)$. Want

$$
R(\mathrm{i})=\sum_{j} R((\mathrm{j})) W_{i, j}
$$

$$
W\left(\begin{array}{c}
R((1)) \\
\vdots \\
R(\mathbb{\square})
\end{array}\right)=\left(\begin{array}{c}
R(1)) \\
\vdots \\
R(\mathbb{\square})
\end{array}\right) \quad\left(\begin{array}{c}
0.41 \\
0.47 \\
0.52 \\
0 \\
0.58
\end{array}\right) \text { is 1-eigenvector }
$$

Some slight modifications

This system satisfies most of the properties that we're interested in.

Some slight modifications

This system satisfies most of the properties that we're interested in.

One small problem: what if $\operatorname{dim}\left(E_{1}\right)>1$?

Some slight modifications

This system satisfies most of the properties that we're interested in.

One small problem: what if $\operatorname{dim}\left(E_{1}\right)>1$?

Theorem

If an $n \times n$ matrix has positive entries and columns sum to 1 , then $\operatorname{dim}\left(E_{1}\right)=1$.

Some slight modifications

This system satisfies most of the properties that we're interested in.

One small problem: what if $\operatorname{dim}\left(E_{1}\right)>1$?

Theorem

If an $n \times n$ matrix has positive entries and columns sum to 1 , then $\operatorname{dim}\left(E_{1}\right)=1$.

$$
\text { Let } P R=d W+(1-d)\left(\begin{array}{ccc}
\frac{1}{n} & \cdots & \frac{1}{n} \\
\vdots & \ddots & \vdots \\
\frac{1}{n} & \cdots & \frac{1}{n}
\end{array}\right)
$$

Voting in Directed Graphs

Computability

There are lots of webpages! How can we feasibly compute an eigenvector for $10^{13} \times 10^{13}$ matrix?

Computability

There are lots of webpages! How can we feasibly compute an eigenvector for $10^{13} \times 10^{13}$ matrix?

Row reduction is a bad idea:

- would take about $\left(10^{13}\right)^{3}=10^{39}$ computations.

Computability

There are lots of webpages! How can we feasibly compute an eigenvector for $10^{13} \times 10^{13}$ matrix?

Row reduction is a bad idea:

- would take about $\left(10^{13}\right)^{3}=10^{39}$ computations.
- the fastest super computer runs about 2.5×10^{15} computations per second.

Computability

There are lots of webpages! How can we feasibly compute an eigenvector for $10^{13} \times 10^{13}$ matrix?

Row reduction is a bad idea:

- would take about $\left(10^{13}\right)^{3}=10^{39}$ computations.
- the fastest super computer runs about 2.5×10^{15} computations per second.
- this row reduction would take about 10^{17} years.

Computability

There are lots of webpages! How can we feasibly compute an eigenvector for $10^{13} \times 10^{13}$ matrix?

Row reduction is a bad idea:

- would take about $\left(10^{13}\right)^{3}=10^{39}$ computations.
- the fastest super computer runs about 2.5×10^{15} computations per second.
- this row reduction would take about 10^{17} years.
- Current age of the universe is about 10^{10} years.

Computability

There are lots of webpages! How can we feasibly compute an eigenvector for $10^{13} \times 10^{13}$ matrix?

Row reduction is a bad idea:

- would take about $\left(10^{13}\right)^{3}=10^{39}$ computations.
- the fastest super computer runs about 2.5×10^{15} computations per second.
- this row reduction would take about 10^{17} years.
- Current age of the universe is about 10^{10} years.
- If a supercomputer started at the dawn of the universe, then today it would be 0.0000001% done.

Voting in Directed Graphs

Approximation is our friend

Suppose that we have an eigenbasis $\left\{\overrightarrow{v_{1}}, \cdots, \overrightarrow{v_{10} 13}\right\}$ for $P R$.

Approximation is our friend

Suppose that we have an eigenbasis $\left\{\overrightarrow{v_{1}}, \cdots, \overrightarrow{v_{10} 13^{13}}\right\}$ for $P R$. Then a random vector \vec{v} can be expressed in the form

$$
\vec{v}=c_{1} \overrightarrow{v_{1}}+\cdots+c_{10^{13}} \overrightarrow{v_{10^{13}}} .
$$

Voting in Directed Graphs

Approximation is our friend

Suppose that we have an eigenbasis $\left\{\overrightarrow{v_{1}}, \cdots, \overrightarrow{v_{10} 13}\right\}$ for $P R$. Then a random vector \vec{v} can be expressed in the form

$$
\vec{v}=c_{1} \overrightarrow{v_{1}}+\cdots+c_{10^{13}} \overrightarrow{v_{10^{13}}} .
$$

Then

$$
P R^{k} \vec{v}=c_{1} \lambda_{1}^{k} \overrightarrow{v_{1}}+\cdots+c_{10^{13}} \lambda_{10^{13}}^{k} \overrightarrow{v_{10} 13} .
$$

Voting in Directed Graphs

Approximation is our friend

Suppose that we have an eigenbasis $\left\{\overrightarrow{v_{1}}, \cdots, \overrightarrow{v_{10} 13}\right\}$ for $P R$. Then a random vector \vec{v} can be expressed in the form

$$
\vec{v}=c_{1} \overrightarrow{v_{1}}+\cdots+c_{10^{13}} \overrightarrow{v_{10} 13} .
$$

Then

$$
P R^{k} \vec{v}=c_{1} \lambda_{1}^{k} \overrightarrow{v_{1}}+\cdots+c_{10^{13}} \lambda_{10^{13}}^{k} \overrightarrow{v_{10} 0^{13}} .
$$

Fact: If an $n \times n$ matrix has positive entries and columns sum to 1 , then 1 is the largest eigenvalue (in absolute value).

Approximation is our friend

Suppose that we have an eigenbasis $\left\{\overrightarrow{v_{1}}, \cdots, \overrightarrow{v_{10} 13}\right\}$ for $P R$. Then a random vector \vec{v} can be expressed in the form

$$
\vec{v}=c_{1} \overrightarrow{v_{1}}+\cdots+c_{10^{13}} \overrightarrow{v_{10^{13}}} .
$$

Then

$$
P R^{k} \vec{v}=c_{1} \lambda_{1}^{k} \overrightarrow{v_{1}}+\cdots+c_{10^{13}} \lambda_{10^{13}}^{k} \overrightarrow{v_{10} 13} .
$$

Fact: If an $n \times n$ matrix has positive entries and columns sum to 1 , then 1 is the largest eigenvalue (in absolute value).

Hence $\lim _{k \rightarrow \infty} P R^{k} \vec{v}$ is an eigenvalue with eigenvalue 1 .

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any $r \times c$ matrix A with real entries, there exist

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any $r \times c$ matrix A with real entries, there exist orthonormal bases $\left\{\vec{v}_{1}, \cdots, \vec{v}_{r}\right\} \subseteq \mathbb{R}^{r}$ and $\left\{\vec{w}_{1}, \cdots, \vec{w}_{c}\right\} \subseteq \mathbb{R}^{c}$

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any $r \times c$ matrix A with real entries, there exist
orthonormal bases $\left\{\vec{v}_{1}, \cdots, \vec{v}_{r}\right\} \subseteq \mathbb{R}^{r}$ and
$\left\{\vec{w}_{1}, \cdots, \vec{w}_{c}\right\} \subseteq \mathbb{R}^{c}$, and scalars $\sigma_{1} \geq \cdots \geq \sigma_{\ell} \geq 0$ such that

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any $r \times c$ matrix A with real entries, there exist orthonormal bases $\left\{\vec{v}_{1}, \cdots, \vec{v}_{r}\right\} \subseteq \mathbb{R}^{r}$ and $\left\{\vec{w}_{1}, \cdots, \vec{w}_{c}\right\} \subseteq \mathbb{R}^{c}$, and scalars $\sigma_{1} \geq \cdots \geq \sigma_{\ell} \geq 0$ such that

$$
A=\left(\begin{array}{l|l|l}
\vec{v}_{1} & \ldots & \vec{v}_{r} \\
& &
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \sigma_{2} & \\
& & \ddots
\end{array}\right)\left(\begin{array}{c}
\vec{w}_{1} \\
\hline \vdots \\
\hline \\
\\
\\
\vec{w}_{c}
\end{array}\right) .
$$

What SVD captures

This decomposition encodes loads of info for A

What SVD captures

This decomposition encodes loads of info for A

- $\operatorname{rank}(\mathrm{A})$ is number of non-zero σ_{i} 's

What SVD captures

This decomposition encodes loads of info for A

- rank(A) is number of non-zero σ_{i} 's
- Orthonormal bases for $\operatorname{im}(A), \operatorname{ker}(A), \operatorname{im}\left(A^{T}\right), \operatorname{ker}\left(A^{T}\right)$

What SVD captures

This decomposition encodes loads of info for A

- rank(A$)$ is number of non-zero σ_{i} 's
- Orthonormal bases for $\operatorname{im}(A), \operatorname{ker}(A), \operatorname{im}\left(A^{T}\right), \operatorname{ker}\left(A^{T}\right)$
- if A is square, $|\operatorname{det}(A)|=\prod \sigma_{i}$

What SVD captures

This decomposition encodes loads of info for A

- $\operatorname{rank}(\mathrm{A})$ is number of non-zero σ_{i} 's
- Orthonormal bases for $\operatorname{im}(A), \operatorname{ker}(A), \operatorname{im}\left(A^{T}\right), \operatorname{ker}\left(A^{T}\right)$
- if A is square, $|\operatorname{det}(A)|=\prod \sigma_{i}$
- simple expression for Psuedolnverse

What SVD captures

This decomposition encodes loads of info for A

- $\operatorname{rank}(\mathrm{A})$ is number of non-zero σ_{i} 's
- Orthonormal bases for $\operatorname{im}(A), \operatorname{ker}(A), \operatorname{im}\left(A^{T}\right), \operatorname{ker}\left(A^{T}\right)$
- if A is square, $|\operatorname{det}(A)|=\prod \sigma_{i}$
- simple expression for Psuedolnverse
- Quick test for numerical stability of matrix

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1 matrices:

Singular Value Decomposition

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1 matrices:

$$
A=\sum_{i=1}^{r(A)} \underbrace{\sigma_{i}\left(\vec{v}_{1} \mid \ldots\right.}_{A_{i}} \mid \vec{v}_{r}) E(i, i)\left(\begin{array}{c}
\left.\frac{\vec{w}_{1}}{\vdots} \begin{array}{|c}
\vec{w}_{c}
\end{array}\right) \\
\hline
\end{array}\right.
$$

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1 matrices:

$$
A=\sum_{i=1}^{r(A)} \underbrace{\sigma_{i}\left(\vec{v}_{1} \mid \ldots\right.}_{A_{i}} \mid \vec{v}_{r}) E(i, i)\left(\begin{array}{c}
\left.\frac{\vec{w}_{1}}{\vdots} \begin{array}{|l|l}
\frac{\vec{w}_{c}}{c}
\end{array}\right) \\
.
\end{array}\right.
$$

Since $\sigma_{1} \geq \cdots \geq \sigma_{\ell} \geq 0, A_{i+1}$ is "less significant" than A_{i}

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1 matrices:

$$
A=\sum_{i=1}^{r(A)} \underbrace{\sigma_{i}\left(\vec{v}_{1} \mid \ldots\right.}_{A_{i}} \mid \vec{v}_{r}) E(i, i)\binom{\frac{\vec{w}_{1}}{\vdots}}{\frac{\vec{w}_{c}}{c}} .
$$

Since $\sigma_{1} \geq \cdots \geq \sigma_{\ell} \geq 0, A_{i+1}$ is "less significant" than A_{i}
If $\sum_{i>s} \sigma_{i}$ is "insignificant," then we have $A \approx \sum_{i=1}^{s} A_{i}$

Application to noise filtering

Noise Filtering

Andrew Schultz
 Linear algebra in your daily (digital) life

Matrix representations of images

You can think of an image as a matrix.

- Each pixel contains
a gray value
- Gray values range from 0 to 255

Matrix representations of images

You can think of an image as a matrix.

- Each pixel contains a gray value
- Gray values range from 0 to 255

Matrix representations of images

You can think of an image as a matrix.

- Each pixel contains
a gray value
- Gray values range from 0 to 255

Matrix representations of images

You can think of an image as a matrix.

- Each pixel contains a gray value
- Gray values range from 0 to 255
$153 \quad 153153152152152$
$153 \quad 153150145144141$
$\begin{array}{llllll}153 & 151 & 145 & 137 & 129 & 125\end{array}$
$153149140 \quad 128117 \quad 115$
$152 \quad 148 \quad 137 \quad 123115117$
$154 \quad 152 \quad 145 \quad 132 \quad 126 \quad 130$

Keeping only "significant" terms

According to our theory, if there are s-many significant singular values, then

$$
M \approx \sum_{i=1}^{s} M_{i}
$$

Keeping only "significant" terms

According to our theory, if there are s-many significant singular values, then

$$
M \approx \sum_{i=1}^{s} M_{i}
$$

Some approximations

Let's see what our truncated matrix "looks like"

- $\mathrm{s}=1$
- Compression: 0.18\%

Some approximations

Let's see what our truncated matrix "looks like"

- $s=5$
- Compression: 0.9\%

Some approximations

Let's see what our truncated matrix "looks like"

- $\mathrm{s}=10$
- Compression: 1.8\%

Some approximations

Let's see what our truncated matrix "looks like"

- $s=25$
- Compression: 4.5\%

Some approximations

Let's see what our truncated matrix "looks like"

- $\mathrm{s}=100$
- Compression: 18\%

Problems in this approach

This technique has some problems

Problems in this approach

This technique has some problems

- ad hoc method for determining when we're done

Problems in this approach

This technique has some problems

- ad hoc method for determining when we're done
- requires we keep track of singular values and basis elements ($1+r+c$ pieces of data for each singular value!)

Problems in this approach

This technique has some problems

- ad hoc method for determining when we're done
- requires we keep track of singular values and basis elements ($1+r+c$ pieces of data for each singular value!)

Would be nice to find something more systematic

Problems in this approach

This technique has some problems

- ad hoc method for determining when we're done
- requires we keep track of singular values and basis elements ($1+r+c$ pieces of data for each singular value!)

Would be nice to find something more systematic

- controlling quality of compressed image

Problems in this approach

This technique has some problems

- ad hoc method for determining when we're done
- requires we keep track of singular values and basis elements ($1+r+c$ pieces of data for each singular value!)

Would be nice to find something more systematic

- controlling quality of compressed image
- doesn't require us to keep track of a basis

Problems in this approach

This technique has some problems

- ad hoc method for determining when we're done
- requires we keep track of singular values and basis elements ($1+r+c$ pieces of data for each singular value!)

Would be nice to find something more systematic

- controlling quality of compressed image
- doesn't require us to keep track of a basis
- takes advantage of properties of images

The "usual" way of thinking about a matrix

Typically we think of a matrix in terms of its entries.

$$
A=\sum_{i, j} a_{i j} E(i, j)
$$

where $E(i, j)$ is the matrix with a 1 in the i th row, j th column.

The "usual" way of thinking about a matrix

Typically we think of a matrix in terms of its entries.

$$
A=\sum_{i, j} a_{i j} E(i, j)
$$

where $E(i, j)$ is the matrix with a 1 in the i th row, j th column.

- Each $E(i, j)$ solely responsible for its local behavior.

The "usual" way of thinking about a matrix

Typically we think of a matrix in terms of its entries.

$$
A=\sum_{i, j} a_{i j} E(i, j)
$$

where $E(i, j)$ is the matrix with a 1 in the i th row, j th column.

- Each $E(i, j)$ solely responsible for its local behavior.
- Deleting an $a_{i j}$ completely wipes out pixel info.

Rewriting the matrix

What if we chose a different basis for $n \times n$ matrices?

$$
A=\sum_{i, j} c_{i j} B(i, j)
$$

Rewriting the matrix

What if we chose a different basis for $n \times n$ matrices?

$$
A=\sum_{i, j} c_{i j} B(i, j)
$$

Would be nice if

Rewriting the matrix

What if we chose a different basis for $n \times n$ matrices?

$$
A=\sum_{i, j} c_{i j} B(i, j)
$$

Would be nice if

- basis weren't so "local"

Rewriting the matrix

What if we chose a different basis for $n \times n$ matrices?

$$
A=\sum_{i, j} c_{i j} B(i, j)
$$

Would be nice if

- basis weren't so "local"
- deleting $c_{i, j}$ has gradual (though global) effect

A potential basis

We'll choose an orthornomal basis of \mathbb{R}^{n} from Fourier series

$$
\vec{f}_{i}=\alpha_{i}\left\{\cos \left[\frac{\pi}{n}\left(\frac{2 j+1}{2}\right) i\right]\right\}_{j=0}^{n-1}
$$

A potential basis

We'll choose an orthornomal basis of \mathbb{R}^{n} from Fourier series

$$
\vec{f}_{i}=\alpha_{i}\left\{\cos \left[\frac{\pi}{n}\left(\frac{2 j+1}{2}\right) i\right]\right\}_{j=0}^{n-1}
$$

We'll simply change basis to $\mathcal{B}=\left\{\vec{f}_{0}, \cdots, \vec{f}_{n-1}\right\}$

A potential basis

We'll choose an orthornomal basis of \mathbb{R}^{n} from Fourier series

$$
\vec{f}_{i}=\alpha_{i}\left\{\cos \left[\frac{\pi}{n}\left(\frac{2 j+1}{2}\right) i\right]\right\}_{j=0}^{n-1}
$$

We'll simply change basis to $\mathcal{B}=\left\{\vec{f}_{0}, \cdots, \vec{f}_{n-1}\right\}$

$$
B(i, j)=\left(\frac{\vec{f}_{0}}{\frac{\vdots}{\vec{f}_{n-1}}}\right) E(i, j)\left(\begin{array}{c|c|c}
\vec{f}_{0} & \ldots & \vec{f}_{n-1}
\end{array}\right)
$$

Rank 1 Matrix Approximations 00000000

Seeing the new basis $(n=8)$

Computing the \mathcal{B}-matrix

Compute coefficients $c_{i, j}$ such that $A=\sum_{i, j} c_{i, j} B(i, j)$ by

Computing the \mathcal{B}-matrix

Compute coefficients $c_{i, j}$ such that $A=\sum_{i, j} c_{i, j} B(i, j)$ by

$$
\binom{\frac{\vec{f}_{0}}{\vdots}}{\vec{f}_{n-1}} A\left(\vec{f}_{0}|\cdots| \vec{f}_{n-1}\right)
$$

Why we chose this basis

This is a good basis because

Why we chose this basis

This is a good basis because

- Human eye only sees in "steps"; if distinguishable step size for $B(i, j)$ is $q_{i, j}$, then

$$
\sum_{i, j} c_{i, j} B(i, j) \approx \sum_{i, j} q_{i, j}\left[\frac{c_{i, j}}{q_{i, j}}\right] B(i, j)
$$

Why we chose this basis

This is a good basis because

- Human eye only sees in "steps"; if distinguishable step size for $B(i, j)$ is $q_{i, j}$, then

$$
\sum_{i, j} c_{i, j} B(i, j) \approx \sum_{i, j} q_{i, j}\left[\frac{c_{i, j}}{q_{i, j}}\right] B(i, j)
$$

- Images are "smooth" (small "high frequency" components)

Why we chose this basis

This is a good basis because

- Human eye only sees in "steps"; if distinguishable step size for $B(i, j)$ is $q_{i, j}$, then

$$
\sum_{i, j} c_{i, j} B(i, j) \approx \sum_{i, j} q_{i, j}\left[\frac{c_{i, j}}{q_{i, j}}\right] B(i, j)
$$

- Images are "smooth" (small "high frequency" components)

$$
\sum_{i, j} c_{i, j} B(i, j) \approx \sum_{\text {small } i, j} q_{i, j}\left[\frac{c_{i, j}}{q_{i, j}}\right] B(i, j)
$$

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

- Split image into 8×8 blocks

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

- Split image into 8×8 blocks
- Change coordinates for each 8×8 submatrix

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

- Split image into 8×8 blocks
- Change coordinates for each 8×8 submatrix
- Quantize

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

- Split image into 8×8 blocks
- Change coordinates for each 8×8 submatrix
- Quantize

Then decompression is

How JPEG compression works

Here's (roughly) how JPEG compression uses this idea:

- Split image into 8×8 blocks
- Change coordinates for each 8×8 submatrix
- Quantize

Then decompression is

- De-quantize
- Change back to standard coordinates
- Reassemble the 8×8 blocks

Working through an example

Extract an 8×8 block

The human eye and \mathcal{B}

Working through an example

Extract an 8×8 block

$\longrightarrow \quad\left(\begin{array}{llllllllll}115 & 100 & 98 & 153 & 154 & 142 & 143 & 130 \\ 131 & 118 & 101 & 157 & 156 & 146 & 156 & 149 \\ 137 & 115 & 100 & 163 & 148 & 147 & 153 & 130 \\ 135 & 113 & 101 & 163 & 152 & 149 & 150 & 127 \\ 140 & 111 & 102 & 156 & 152 & 152 & 155 & 142 \\ 157 & 132 & 116 & 153 & 150 & 151 & 159 & 160 \\ 164 & 155 & 138 & 152 & 144 & 141 & 151 & 161 \\ 152 & 146 & 145 & 143 & 135 & 132 & 142 & 159\end{array}\right)$

Working through an example

Change to \mathcal{B}-version

The human eye and \mathcal{B}

Working through an example

Change to $\mathcal{\mathcal { B }}$-version

$\left(\begin{array}{rrrrrrrr}115 & 100 & 98 & 153 & 154 & 142 & 143 & 130 \\ 131 & 118 & 101 & 157 & 156 & 146 & 156 & 149 \\ 137 & 115 & 100 & 163 & 148 & 147 & 153 & 130 \\ 135 & 113 & 101 & 163 & 152 & 149 & 150 & 127 \\ 140 & 111 & 102 & 156 & 152 & 152 & 155 & 142 \\ 157 & 132 & 116 & 153 & 150 & 151 & 159 & 160 \\ 164 & 155 & 138 & 152 & 144 & 141 & 151 & 161 \\ 152 & 146 & 145 & 143 & 135 & 132 & 142 & 159\end{array}\right) \quad \longrightarrow$

The human eye and \mathcal{B}

Working through an example

Change to \mathcal{B}-version

$$
\left(\begin{array}{rrrrrrrr}
115 & 100 & 98 & 153 & 154 & 142 & 143 & 130 \\
131 & 118 & 101 & 157 & 156 & 146 & 156 & 149 \\
137 & 115 & 100 & 163 & 148 & 147 & 153 & 130 \\
135 & 113 & 101 & 163 & 152 & 149 & 150 & 127 \\
140 & 111 & 102 & 156 & 152 & 152 & 155 & 142 \\
157 & 132 & 116 & 153 & 150 & 151 & 159 & 160 \\
164 & 155 & 138 & 152 & 144 & 141 & 151 & 161 \\
152 & 146 & 145 & 143 & 135 & 132 & 142 & 159
\end{array}\right) \longrightarrow\left(\begin{array}{rrrrrrrr}
1112 & -61 & -14 & 44 & 57 & 34 & -32 & -26 \\
-43 & -36 & -43 & 25 & 13 & 12 & -15 & -8 \\
2 & 12 & 12 & -26 & -8 & -16 & 7 & 10 \\
2 & -14 & 1 & 7 & 6 & -3 & 1 & 2 \\
-25 & -4 & -16 & 0 & -1 & 2 & 5 & 3 \\
-2 & 12 & -6 & 1 & -3 & 2 & -1 & -2 \\
-9 & -1 & -2 & 3 & 0 & 5 & 2 & 0 \\
-4 & 2 & -2 & 1 & -1 & 3 & 1 & -1
\end{array}\right)
$$

Working through an example

Quantize

The human eye and \mathcal{B}

Working through an example

Quantize

$\left[\begin{array}{c}\left(\begin{array}{rrrrrrrr}1112 & -61 & -14 & 44 & 57 & 34 & -32 & -26 \\ -43 & -36 & -43 & 25 & 13 & 12 & -15 & -8 \\ 2 & 12 & 12 & -26 & -8 & -16 & 7 & 10 \\ 2 & -14 & 1 & 7 & 6 & -3 & 1 & 2 \\ -25 & -4 & -16 & 0 & -1 & 2 & 5 & 3 \\ -2 & 12 & -6 & 1 & -3 & 2 & -1 & -2 \\ -9 & -1 & -2 & 3 & 0 & 5 & 2 & 0 \\ -4 & 2 & -2 & 1 & -1 & 3 & 1 & -1\end{array}\right) \\ \left(\begin{array}{lllllll}16 & 11 & 10 & 16 & 24 & 40 & 51 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 \\ 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 \\ 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 \\ 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 \\ 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 \\ 7101 \\ 71 & 92 & 95 & 98 & 112 & 100 & 103 \\ 99\end{array}\right)\end{array}\right]$
\qquad

The human eye and \mathcal{B}

Working through an example

Quantize

$$
\begin{aligned}
& \begin{array}{llllllll}
18 & 22 & 37 & 56 & 68 & 109 & 103 & 77
\end{array} \\
& \begin{array}{rrrrrrrr}
24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\
49 & 64 & 78 & 87 & 103 & 121 & 120 & 101
\end{array} \\
& \begin{array}{rrrrrrrr}
49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\
71 & 92 & 95 & 98 & 112 & 100 & 103 & 99
\end{array}
\end{aligned}
$$

The human eye and \mathcal{B}

Working through an example

Quantize

$$
\left[\begin{array}{rrrrrrrr}
1112 & -61 & -14 & 44 & 57 & 34 & -32 & -26 \\
-43 & -36 & -43 & 25 & 13 & 12 & -15 & -8 \\
2 & 12 & 12 & -26 & -8 & -16 & 7 & 10 \\
2 & -14 & 1 & 7 & 6 & -3 & 1 & 2 \\
-25 & -4 & -16 & 0 & -1 & 2 & 5 & 3 \\
-2 & 12 & -6 & 1 & -3 & 2 & -1 & -2 \\
-9 & -1 & -2 & 3 & 0 & 5 & 2 & 0 \\
-4 & 2 & -2 & 1 & -1 & 3 & 1 & -1
\end{array}\right)\left(\longrightarrow\left(\begin{array}{rrrrrrr}
70 & -6 & -1 & 3 & 2 & 1 & -1 \\
-4 & -3 & -3 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & -1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)\right.
$$

We're down to 16 pieces of information!

Reconstituting our image

Here's the result of reversing this process:

The human eye and \mathcal{B}

Reconstituting our image

Here's the result of reversing this process:

Original

$\left(\begin{array}{rrrrrrrr}115 & 100 & 98 & 153 & 154 & 142 & 143 & 130 \\ 131 & 118 & 101 & 157 & 156 & 146 & 156 & 149 \\ 137 & 115 & 100 & 163 & 148 & 147 & 153 & 130 \\ 135 & 113 & 101 & 163 & 152 & 149 & 150 & 127 \\ 140 & 111 & 102 & 156 & 152 & 152 & 155 & 142 \\ 157 & 132 & 116 & 153 & 150 & 151 & 159 & 160 \\ 164 & 155 & 138 & 152 & 144 & 141 & 151 & 161 \\ 152 & 146 & 145 & 143 & 135 & 132 & 142 & 159\end{array}\right)$

Compressed

$\left(\begin{array}{rrrrrrrr}114 & 103 & 101 & 144 & 149 & 136 & 154 & 135 \\ 125 & 111 & 106 & 150 & 156 & 142 & 57 & 134 \\ 133 & 115 & 107 & 151 & 160 & 146 & 157 & 130 \\ 134 & 114 & 104 & 147 & 158 & 146 & 157 & 129 \\ 139 & 118 & 106 & 148 & 156 & 146 & 163 & 139 \\ 151 & 132 & 118 & 153 & 155 & 145 & 169 & 153 \\ 162 & 144 & 129 & 155 & 147 & 135 & 165 & 158 \\ 166 & 150 & 132 & 152 & 137 & 122 & 157 & 154\end{array}\right)$

The human eye and \mathcal{B}

Reconstituting our image

Here's the result of reversing this process:

Original

$\left(\begin{array}{rrrrrrrr}115 & 100 & 98 & 153 & 154 & 142 & 143 & 130 \\ 131 & 118 & 101 & 157 & 156 & 146 & 156 & 149 \\ 137 & 115 & 100 & 163 & 148 & 147 & 153 & 130 \\ 135 & 113 & 101 & 163 & 152 & 149 & 150 & 127 \\ 140 & 111 & 102 & 156 & 152 & 152 & 155 & 142 \\ 157 & 132 & 116 & 153 & 150 & 151 & 159 & 160 \\ 164 & 155 & 138 & 152 & 144 & 141 & 151 & 161 \\ 152 & 146 & 145 & 143 & 135 & 132 & 142 & 159\end{array}\right)$

Compressed

$\left(\begin{array}{rrrrrrrr}114 & 103 & 101 & 144 & 149 & 136 & 154 & 135 \\ 125 & 111 & 106 & 150 & 156 & 142 & 57 & 134 \\ 133 & 115 & 107 & 151 & 160 & 146 & 157 & 130 \\ 134 & 114 & 104 & 147 & 158 & 146 & 157 & 129 \\ 139 & 118 & 106 & 148 & 156 & 146 & 163 & 139 \\ 151 & 132 & 118 & 153 & 155 & 145 & 169 & 153 \\ 162 & 144 & 129 & 155 & 147 & 135 & 165 & 158 \\ 166 & 150 & 132 & 152 & 137 & 122 & 157 & 154\end{array}\right)$

- Average difference $=5.73$
- Std Dev = 4.22

Rank 1 Matrix Approximations 00000000

Change of Basis

The human eye and \mathcal{B}

Seeing is believing

Original

Compressed

Image Processing

We can use these ideas to do some image processing as well

Image Processing

We can use these ideas to do some image processing as well

- "smooth" part of the image comes from low frequency Fourier coefficients

Image Processing

We can use these ideas to do some image processing as well

- "smooth" part of the image comes from low frequency Fourier coefficients
- "edges" come from the high frequency Fourier coefficients

Image Processing

We can use these ideas to do some image processing as well

- "smooth" part of the image comes from low frequency Fourier coefficients
- "edges" come from the high frequency Fourier coefficients

Note: Here I won't split the image into 8×8 blocks - I want all the information about the image simultaneously

Image Processing

Smooth Part: $B(i, j)$ components for small j, small i

The human eye and \mathcal{B}

Image Processing

Smooth Part: $B(i, j)$ components for small j, small i

Image Processing

Horizontal Edges: $B(i, j)$ components for small j, large i

Image Processing

Horizontal Edges: $B(i, j)$ components for small j, large i

Andrew Schultz
Linear algebra in your daily (digital) life

Image Processing

Vertical Edges: $B(i, j)$ components for small i, large j

The human eye and \mathcal{B}

Image Processing

Vertical Edges: $B(i, j)$ components for small i, large j

Image Processing

Scattered Edges: $B(i, j)$ components for large i, large j

The human eye and \mathcal{B}

Image Processing

Scattered Edges: $B(i, j)$ components for large i, large j

[^0]
How MP3 compression works

Similar ideas are used to compress music into mp3's

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
- Humans hear between 20 Hz and $20,000 \mathrm{~Hz}$

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
- Humans hear between 20 Hz and $20,000 \mathrm{~Hz}$
- Sample at $41,000 \mathrm{~Hz}$

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
- Humans hear between 20 Hz and $20,000 \mathrm{~Hz}$
- Sample at $41,000 \mathrm{~Hz}$
- 16bits per sample and 2 channels means 1.3 million bits per second

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
- Humans hear between 20 Hz and $20,000 \mathrm{~Hz}$
- Sample at $41,000 \mathrm{~Hz}$
- 16bits per sample and 2 channels means 1.3 million bits per second
- Break sample into smaller blocks

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
- Humans hear between 20 Hz and $20,000 \mathrm{~Hz}$
- Sample at $41,000 \mathrm{~Hz}$
- 16bits per sample and 2 channels means 1.3 million bits per second
- Break sample into smaller blocks
- Express these blocks in terms of \mathcal{B}-coordinates

How MP3 compression works

Similar ideas are used to compress music into mp3's

- Sample an audio source
- Humans hear between 20 Hz and $20,000 \mathrm{~Hz}$
- Sample at $41,000 \mathrm{~Hz}$
- 16bits per sample and 2 channels means 1.3 million bits per second
- Break sample into smaller blocks
- Express these blocks in terms of \mathcal{B}-coordinates
- Filter out "unnecessary" data using psychoacoustics

Psychoacoustics

- Simultaneous Masking - If two tones with near frequencies are played at the same time, your brain only hears the louder one

Psychoacoustics

- Simultaneous Masking - If two tones with near frequencies are played at the same time, your brain only hears the louder one
- Temporal Masking - Some weak sounds aren't heard if played right after (or right before!) a louder sound

Psychoacoustics

- Simultaneous Masking - If two tones with near frequencies are played at the same time, your brain only hears the louder one
- Temporal Masking - Some weak sounds aren't heard if played right after (or right before!) a louder sound
- Hass effect - If the same tone hits one ear just before another, then your brain perceives it as coming only from the first direction

The human ear and \mathcal{B}

Thanks!

Thank you!

[^0]: Andrew Schultz

