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Voting in Directed Graphs

The general constraints

Suppose that G is a directed graph

V is the vertex set for G

A ⊆ V × V is the set of arcs of G

Want to rank vertices (using R : V → R)

should depend only on structure of G

shouldn’t produce many ties

should be equitable

should be stable under “attack”

should be computable
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Voting in Directed Graphs

The first approach

j // i is a vote for i from j

Form matrix L so that

Li ,j =

{
1 , if j // i
0 , else

Scheme 1: R
(
i
)

=
∑n

j=1 Li ,j

Page 3 wins (score 3), Pages 1,2,5
tie for second (score 2), Page 4 loses
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Potential for lots of ties

Evil users can manipulate
results

Not equitable
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Voting in Directed Graphs

Updating our approach

Each page gets a total of 1 vote:

`(j) =
∑
i

Li ,j

Form matrix W so that

Wi ,j =


1

`(j)
, if j // i

0 , else

Scheme 2: R
(
i
)

=
∑n

j=1 Wi ,j
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Voting in Directed Graphs

Problems with second approach

Evil users can really manipulate
results

Gives importance to links from
unimportant pages
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Voting in Directed Graphs

Weighting votes

Importance of j // i should

depend on R( j ).

Want

R
(
i
)

=
∑

j R( j )Wi ,j

W

 R( 1 )
...

R( n )

 =

 R( 1 )
...

R( n )




0 0.5 0.33 0 0
0 0 0.33 0 0.5
0 0.5 0 1 0.5
0 0 0 0 0
1 0 0.33 0 0




0.41
0.47
0.52

0
0.58

 is 1-eigenvector
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Voting in Directed Graphs

Some slight modifications

This system satisfies most of the properties that we’re
interested in.

One small problem: what if dim(E1) > 1?

Theorem

If an n × n matrix has positive entries and columns sum to 1,
then dim(E1) = 1.

Let PR = dW + (1− d)


1
n
· · · 1

n
...

. . .
...

1
n
· · · 1

n
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If an n × n matrix has positive entries and columns sum to 1,
then dim(E1) = 1.

Let PR = dW + (1− d)
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Voting in Directed Graphs

Computability

There are lots of webpages! How can we feasibly compute an
eigenvector for 1013 × 1013 matrix?

Row reduction is a bad idea:

would take about (1013)3 = 1039 computations.

the fastest super computer runs about 2.5× 1015

computations per second.

this row reduction would take about 1017 years.

Current age of the universe is about 1010 years.
If a supercomputer started at the dawn of the universe,
then today it would be 0.0000001% done.
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Voting in Directed Graphs

Approximation is our friend

Suppose that we have an eigenbasis {−→v1 , · · · ,−−→v1013} for PR .

Then a random vector −→v can be expressed in the form

−→v = c1
−→v1 + · · ·+ c1013

−−→v1013 .

Then
PRk−→v = c1λ

k
1
−→v1 + · · ·+ c1013λ

k
1013
−−→v1013 .

Fact: If an n × n matrix has positive entries and columns
sum to 1, then 1 is the largest eigenvalue (in absolute value).

Hence limk→∞ PRk−→v is an eigenvalue with eigenvalue 1.
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Singular Value Decomposition

The Singular Value Decomposition

An often overlooked gem in linear algebra is

The Singular Value Decomposition

For any r × c matrix A with real entries, there exist

orthonormal bases {−→v 1, · · · ,−→v r} ⊆ Rr and
{−→w 1, · · · ,−→w c} ⊆ Rc , and scalars σ1 ≥ · · · ≥ σ` ≥ 0 such that

A =

 −→v 1 · · · −→v r


 σ1

σ2
. . .




−→w 1
...
−→w c

 .
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Singular Value Decomposition

What SVD captures

This decomposition encodes loads of info for A

rank(A) is number of non-zero σi ’s

Orthonormal bases for im(A), ker(A), im(AT ), ker(AT )

if A is square, | det(A)| =
∏
σi

simple expression for PsuedoInverse

Quick test for numerical stability of matrix

Andrew Schultz Linear algebra in your daily (digital) life



Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Singular Value Decomposition

What SVD captures

This decomposition encodes loads of info for A

rank(A) is number of non-zero σi ’s

Orthonormal bases for im(A), ker(A), im(AT ), ker(AT )

if A is square, | det(A)| =
∏
σi

simple expression for PsuedoInverse

Quick test for numerical stability of matrix

Andrew Schultz Linear algebra in your daily (digital) life



Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Singular Value Decomposition

What SVD captures

This decomposition encodes loads of info for A

rank(A) is number of non-zero σi ’s

Orthonormal bases for im(A), ker(A), im(AT ), ker(AT )

if A is square, | det(A)| =
∏
σi

simple expression for PsuedoInverse

Quick test for numerical stability of matrix

Andrew Schultz Linear algebra in your daily (digital) life



Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Singular Value Decomposition

What SVD captures

This decomposition encodes loads of info for A

rank(A) is number of non-zero σi ’s

Orthonormal bases for im(A), ker(A), im(AT ), ker(AT )

if A is square, | det(A)| =
∏
σi

simple expression for PsuedoInverse

Quick test for numerical stability of matrix

Andrew Schultz Linear algebra in your daily (digital) life



Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Singular Value Decomposition

What SVD captures

This decomposition encodes loads of info for A

rank(A) is number of non-zero σi ’s

Orthonormal bases for im(A), ker(A), im(AT ), ker(AT )

if A is square, | det(A)| =
∏
σi

simple expression for PsuedoInverse

Quick test for numerical stability of matrix

Andrew Schultz Linear algebra in your daily (digital) life



Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Singular Value Decomposition

What SVD captures

This decomposition encodes loads of info for A

rank(A) is number of non-zero σi ’s

Orthonormal bases for im(A), ker(A), im(AT ), ker(AT )

if A is square, | det(A)| =
∏
σi

simple expression for PsuedoInverse

Quick test for numerical stability of matrix

Andrew Schultz Linear algebra in your daily (digital) life



Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Singular Value Decomposition

SVD for approximating with rank 1 matrices

SVD also gives us a method for writing A as sum of rank 1
matrices:

A =

rk(A)∑
i=1

σi

 −→v 1 · · · −→v r

E (i , i)


−→w 1

...
−→w c


︸ ︷︷ ︸

Ai

.

Since σ1 ≥ · · · ≥ σ` ≥ 0, Ai+1 is “less significant” than Ai

If
∑

i>s σi is “insignificant,” then we have A ≈
s∑

i=1

Ai
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Application to noise filtering

Noise Filtering
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Image compression through SVD

Matrix representations of images

You can think of an
image as a matrix.

Each pixel contains
a gray value

Gray values range
from 0 to 255
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Image compression through SVD

Keeping only “significant” terms

According to our theory, if there are s-many significant
singular values, then

M ≈
s∑

i=1

Mi

σ1 ≈ 138, 000
σ2 ≈ 17, 000
σ50 ≈ 2, 200
σ200 ≈ 900
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Image compression through SVD

Some approximations

Let’s see what our truncated matrix “looks like”

s=1

Compression:
0.18%
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Image compression through SVD

Some approximations

Let’s see what our truncated matrix “looks like”

s=5

Compression:
0.9%
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Image compression through SVD

Some approximations

Let’s see what our truncated matrix “looks like”

s=10

Compression:
1.8%
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Image compression through SVD

Some approximations

Let’s see what our truncated matrix “looks like”

s=25

Compression:
4.5%
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Image compression through SVD

Some approximations

Let’s see what our truncated matrix “looks like”

s=100

Compression:
18%
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

Image compression through SVD

Problems in this approach

This technique has some problems

ad hoc method for determining when we’re done

requires we keep track of singular values and basis
elements (1 + r + c pieces of data for each singular value!)

Would be nice to find something more systematic

controlling quality of compressed image

doesn’t require us to keep track of a basis

takes advantage of properties of images
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

New coordinate systems

The “usual” way of thinking about a matrix

Typically we think of a matrix in terms of its entries.

A =
∑
i ,j

aijE (i , j)

where E (i , j) is the matrix with a 1 in the ith row, jth column.

Each E (i , j) solely responsible for its local behavior.

Deleting an aij completely wipes out pixel info.
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

New coordinate systems

Rewriting the matrix

What if we chose a different basis for n × n matrices?

A =
∑
i ,j

cijB(i , j)

Would be nice if

basis weren’t so “local”

deleting ci ,j has gradual (though global) effect
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

New coordinate systems

A potential basis

We’ll choose an orthornomal basis of Rn from Fourier series

−→
f i = αi

{
cos

[
π

n

(
2j + 1

2

)
i

]}n−1

j=0

We’ll simply change basis to B = {
−→
f 0, · · · ,

−→
f n−1}

B(i , j) =


−→
f 0
...

−→
f n−1

E (i , j)

 −→f 0 · · ·
−→
f n−1
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

New coordinate systems

Seeing the new basis (n = 8)
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New coordinate systems

Computing the B-matrix
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

The human eye and B

Why we chose this basis

This is a good basis because

Human eye only sees in “steps”; if distinguishable step
size for B(i , j) is qi ,j , then∑

i ,j

ci ,jB(i , j) ≈
∑
i ,j

qi ,j

[
ci ,j
qi ,j

]
B(i , j)

Images are “smooth” (small “high frequency”
components)∑

i ,j

ci ,jB(i , j) ≈
∑

small i ,j

qi ,j

[
ci ,j
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]
B(i , j)
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

The human eye and B

How JPEG compression works

Here’s (roughly) how JPEG compression uses this idea:

Split image into 8× 8 blocks

Change coordinates for each 8× 8 submatrix

Quantize

Then decompression is

De-quantize

Change back to standard coordinates

Reassemble the 8× 8 blocks
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

The human eye and B

Working through an example

Extract an 8× 8 block

−→


115 100 98 153 154 142 143 130
131 118 101 157 156 146 156 149
137 115 100 163 148 147 153 130
135 113 101 163 152 149 150 127
140 111 102 156 152 152 155 142
157 132 116 153 150 151 159 160
164 155 138 152 144 141 151 161
152 146 145 143 135 132 142 159
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The human eye and B

Working through an example

Change to B-version


115 100 98 153 154 142 143 130
131 118 101 157 156 146 156 149
137 115 100 163 148 147 153 130
135 113 101 163 152 149 150 127
140 111 102 156 152 152 155 142
157 132 116 153 150 151 159 160
164 155 138 152 144 141 151 161
152 146 145 143 135 132 142 159

 −→


1112 −61 −14 44 57 34 −32 −26
−43 −36 −43 25 13 12 −15 −8

2 12 12 −26 −8 −16 7 10
2 −14 1 7 6 −3 1 2

−25 −4 −16 0 −1 2 5 3
−2 12 −6 1 −3 2 −1 −2
−9 −1 −2 3 0 5 2 0
−4 2 −2 1 −1 3 1 −1
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The human eye and B

Working through an example

Quantize




1112 −61 −14 44 57 34 −32 −26
−43 −36 −43 25 13 12 −15 −8

2 12 12 −26 −8 −16 7 10
2 −14 1 7 6 −3 1 2

−25 −4 −16 0 −1 2 5 3
−2 12 −6 1 −3 2 −1 −2
−9 −1 −2 3 0 5 2 0
−4 2 −2 1 −1 3 1 −1




16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
71 92 95 98 112 100 103 99




−→


70 −6 −1 3 2 1 −1 0
−4 −3 −3 1 0 0 0 0
0 1 1 −1 0 0 0 0
0 −1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



We’re down to 16 pieces of information!
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

The human eye and B

Reconstituting our image

Here’s the result of reversing this process:

Original Compressed
115 100 98 153 154 142 143 130
131 118 101 157 156 146 156 149
137 115 100 163 148 147 153 130
135 113 101 163 152 149 150 127
140 111 102 156 152 152 155 142
157 132 116 153 150 151 159 160
164 155 138 152 144 141 151 161
152 146 145 143 135 132 142 159




114 103 101 144 149 136 154 135
125 111 106 150 156 142 57 134
133 115 107 151 160 146 157 130
134 114 104 147 158 146 157 129
139 118 106 148 156 146 163 139
151 132 118 153 155 145 169 153
162 144 129 155 147 135 165 158
166 150 132 152 137 122 157 154



Average difference = 5.73

Std Dev = 4.22
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The human eye and B

Seeing is believing

Original Compressed
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

The human eye and B

Image Processing

We can use these ideas to do some image processing as well

“smooth” part of the image comes from low frequency
Fourier coefficients

“edges” come from the high frequency Fourier coefficients

Note: Here I won’t split the image into 8× 8 blocks – I want
all the information about the image simultaneously
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The human eye and B

Image Processing

Smooth Part: B(i , j) components for small j , small i
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Image Processing
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The human eye and B

Image Processing

Horizontal Edges: B(i , j) components for small j , large i
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Image Processing
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The human eye and B

Image Processing

Vertical Edges: B(i , j) components for small i , large j
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Image Processing

Vertical Edges: B(i , j) components for small i , large j
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The human eye and B

Image Processing

Scattered Edges: B(i , j) components for large i , large j
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Stochastic Matrices Rank 1 Matrix Approximations Change of Basis

The human ear and B

How MP3 compression works

Similar ideas are used to compress music into mp3’s

Sample an audio source

Humans hear between 20Hz and 20,000Hz
Sample at 41,000Hz
16bits per sample and 2 channels means 1.3 million bits
per second

Break sample into smaller blocks

Express these blocks in terms of B-coordinates

Filter out “unnecessary” data using psychoacoustics
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The human ear and B

Psychoacoustics

Simultaneous Masking - If two tones with near
frequencies are played at the same time, your brain only
hears the louder one

Temporal Masking - Some weak sounds aren’t heard if
played right after (or right before!) a louder sound

Hass effect - If the same tone hits one ear just before
another, then your brain perceives it as coming only from
the first direction
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The human ear and B

Thanks!

Thank you!
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