Consider the following elements of S_7 :

$\alpha =$	1	2	3	4	5	6	7]	$, \beta =$	1	2	3	4	5	6	7]	[1	2	3	4	5	6	7	1
	3	2	4	1	5	6	7	,		6	5	2	4	7	1	3	$\gamma = \gamma$	5	4	7	1	2	3	6	ŀ

- (1) Write α, β and γ in disjoint cycle notation.
- (2) Calculate $\alpha\beta, \beta\alpha, \beta^{-1}, \gamma\alpha^{-1}\beta, \gamma\beta\gamma^{-1}$. Express your answers in disjoint cycle notation.
- (3) Calculate the order of α, β and γ .
- (4) Compute $\langle \alpha \rangle$ and $\langle \gamma \rangle$.
- (5) Find all generators for $\langle \gamma^8 \rangle$.
- (6) What is the β -conjugate of $\langle \alpha \rangle$?
- (7) List all of the subgroups of $\langle \gamma \rangle$ and all the subgroups of $\langle \beta \rangle$. Does $\langle \alpha \rangle$ have any interesting subgroups?
- (8) Find 3 elements in S_7 that have order 3. Can S_7 be cyclic? Explain.
- (9) Write α, β and γ as products of transpositions. Is each even or odd?

(10) Is $\beta \in Z(S_7)$?

(11) Find an element in $C(\alpha)$ that is not in $\langle \alpha \rangle$.