Consider the following elements of S_{7} :

$$
\alpha=\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
3 & 2 & 4 & 1 & 5 & 6 & 7
\end{array}\right], \quad \beta=\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
6 & 5 & 2 & 4 & 7 & 1 & 3
\end{array}\right], \quad \gamma=\left[\begin{array}{lllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 4 & 7 & 1 & 2 & 3 & 6
\end{array}\right]
$$

(1) Write α, β and γ in disjoint cycle notation.
(2) Calculate $\alpha \beta, \beta \alpha, \beta^{-1}, \gamma \alpha^{-1} \beta, \gamma \beta \gamma^{-1}$. Express your answers in disjoint cycle notation.
(3) Calculate the order of α, β and γ.
(4) Compute $\langle\alpha\rangle$ and $\langle\gamma\rangle$.
(5) Find all generators for $\left\langle\gamma^{8}\right\rangle$.
(6) What is the β-conjugate of $\langle\alpha\rangle$?
(7) List all of the subgroups of $\langle\gamma\rangle$ and all the subgroups of $\langle\beta\rangle$. Does $\langle\alpha\rangle$ have any interesting subgroups?
(8) Find 3 elements in S_{7} that have order 3. Can S_{7} be cyclic? Explain.
(9) Write α, β and γ as products of transpositions. Is each even or odd?
(10) Is $\beta \in Z\left(S_{7}\right)$?
(11) Find an element in $C(\alpha)$ that is not in $\langle\alpha\rangle$.

