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1. Complex Numbers

The prevalence of the complex numbers throughout the scientific world today belies their long and rocky
history. Much like the negative numbers, complex numbers were originally viewed with mistrust and skepticism.
In fact, the term “imaginary number” was a derogatory term coined by René Descartes, who found such numbers
unsettling. Just as with the negative numbers, however, history has shown that not only are the complex
numbers immensely useful, they can also have physical meaning, and hence are no less “real” than the real
numbers. Perhaps more importantly, they have given deep insight into a broad range of problems and become
an indispensable tool both for mathematicians and scientists in general.

Complex numbers first gained prominence in the 16th century, when Italian mathematicians Niccolo Tartaglia
and Gerolamo Cardano discovered formulas for the roots of general cubic and quartic polynomials. Surpisingly,
their formulas required the use of square roots of negative numbers, even when using the formulas to find real
roots of polynomials. You’ve likely encountered similar situations in your own studies when trying to find roots
of quadratic polynomials. Recall the following familiar theorem:

Quadratic Formula. Suppose f(x) = ax2 + bx + c with a, b, c ∈ R and a 6= 0. If b2 − 4ac < 0, then f has
no real roots. If b2 − 4ac ≥ 0, then the roots of f are precisely

x =
−b ±

√
b2 − 4ac

2a
.

The quantity b2 − 4ac is sometimes called the discriminant of f , and written disc(f).

Example.

Suppose f(x) = x2 + 1. Then disc(f) = −4 < 0, so f has no real roots.

This example is not purely artificial. In fact, you might have come across this scenario when searching for
eigenvalues of linear transformations.

Example.

Suppose T : R2 → R2 is the linear transformation which rotates the plane 90o counterclockwise about the
origin. The matrix for T with respect to the standard basis is

A =

[

0 −1
1 0

]

.

The characteristic polynomial of this matrix is p(λ) = λ2 + 1. By the previous example, it follows that A

has no real eigenvalues.

If we restrict ourselves to the real numbers, we see that not every polynomial has a root (and hence not every
linear transformation has an eigenvalue). This seems quite unfortunate, especially since the quadratic formula
seems to suggest what the roots (or eigenvalues) “should” be. To remedy this situation, we will enlarge our
collection of numbers to include some of these “imaginary” roots. We’ll start by simply adding

√
−1.
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Definition. Let i represent a “number” which satisfies i2 = −1. We call i the imaginary unit.

We’ll now add i to our collection of numbers.

Definition. We define the complex numbers to be the set

C = {a + ib | a, b ∈ R}.
We define addition and multiplication of complex numbers using the relation i2 = −1. That is, given complex
numbers a1 + ib1, a2 + ib2, we define

(a1 + ib1) + (a2 + ib2) := (a1 + a2) + i(b1 + b2)

and

(a1 + ib1)(a2 + ib2) := (a1a2 − b1b2) + i(a1b2 + a2b1).

Examples.

(1) Suppose f(x) = x2 + 4. We claim the roots of f are x = ±2i. Indeed, observe that

f(±2i) = (±2i)2 + 4 = 4i2 + 4 = 4(−1) + 4 = 0.

Note that this agrees with the roots predicted by the quadratic formula: x = ±
√
−16
2 = ±

√
16

√
−1

2 =
±2i.

(2) Suppose f(x) = x2+2x+3. Using the quadratic formula, the predicted roots of f are x = −2±
√
−8

2 =

−1 ± i
√

2. As a check, we compute

f(−1 + i
√

2) = (−1 + i
√

2)2 + 2(−1 + i
√

2) + 3 =
(

(1 − 2) + i(−2
√

2)
)

− 2 + i2
√

2 + 3 = 0.

MatLab can natively work with complex numbers. For example, the above computation is entered
as follows:

>> (-1+sqrt(2)*i)^2+2*(-1+sqrt(2)*i)+3

ans =

-4.4409e-016

Notice that MatLab has introduced a small rounding error, outputting a result of −4.4409x10−16 ≈ 0.

Exercise 1. Use MatLab to compute (1 − 2i)5.

You might be worried we will need to keep adding new “numbers” to our collection as we attempt to find
roots of polynomials of higher degrees. The following theorem, known as the Fundamental Theorem of Algebra,
ensures we won’t need to extend our collection any further.

Theorem. Let p(x) = anxn + · · · + a1x + a0 be a polynomial, with ai ∈ C and an 6= 0. Then

p(x) = an(x − r1) · · · (x − rn)

for some r1, . . . , rn ∈ C.

In other words, when working with the complex numbers, every polynomial of degree n has n (not necessarily
distinct) roots. This theorem may seem more amazing in light of the fact there do not exist formulas for the
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roots of general polynomials of degree five or more; that is, we can’t prove the theorem by simply writing down
the roots of a general polynomial and checking they’re all in our set C.

Example.

The roots of x2 + 1 are x = ±i, which we can express as

x2 + 1 = (x − i)(x + i).

In general, finding the roots of a polynomial is quite difficult. Fortunately, MatLab can do this for us. First
we must define our polynomial. MatLab stores polynomials as row vectors, with components given by the
coefficients of the monomials. For example, to store the polynomial p(x) = x5 − 2x + 3, we enter

>> p=[1 0 0 0 -2 3];

To find the roots of p we use the roots command:

>> r=roots(p)

r =

-1.4236

-0.2467 + 1.3208i

-0.2467 - 1.3208i

0.9585 + 0.4984i

0.9585 - 0.4984i

As predicted by the previous theorem, the degree five polynomial p has five complex roots.

Exercise 2. Use MatLab to find the roots of the polynomial p(x) = x4 − 2x3 + 1.

Since we’ll be working with the complex numbers, it will be useful to have a few additional definitions.

Definition. Suppose z ∈ C is given by z = a + ib, with a, b ∈ R. We make the following definitions:

(1) The real number a is called the real part of z, and is denoted Re(z). A complex number z with Re(z) = 0
is called purely imaginary.

(2) The real number b is called the imaginary part of z, and is denoted Im(z). A complex number z with
Im(z) = 0 is called purely real.

(3) The complex conjugate of z, denoted by z̄, is given by

z̄ = a − ib = Re(z) − iIm(z).

Example. MatLab has a built-in function for conjugation, called conj. For example:

>> conj(-1+2*i)

ans =

-1.0000 - 2.0000i

Exercise 3. Prove that Re(z) = 1
2 (z + z̄) and Im(z) = 1

2i
(z − z̄).
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By the above exercise, any equation involving the real and imaginary parts of z can be written in terms of z

and z̄. This observation will be useful to remember when we discuss complex functions in Section 2.

It is often helpful to picture the complex numbers as lying in the plane, with the real part along the horizontal
axis and the imaginary part along the vertical axis.

−1 0 1

−1

0

1

Re(z)

Im
(z

)

The Complex Plane

z = 1+ i 

Unsurprisingly, this plane is called the complex plane. It was first described by Caspar Wessel in 1799,
although it is also sometimes referred to as the Argand plane and credited to Jean-Robert Argand. Use of
the complex plane was later popularized by Carl Gauss, and it was only after this geometric interpretation
was introduced that the complex numbers became widely accepted. The complex plane can be used to give
polar coordinates for z, with which one can deduce many beautiful relations. Unfortunately, this would take us
beyond the scope of the current assignment.

2. Complex Functions

Now that we’ve extended our collection of numbers to the field of complex numbers, we can begin studying
complex-valued functions. The attempt to extend the theory of calculus to such functions is the branch of
mathematics known as complex analysis. In the complex world, both differentiation and integration gain new
depth and significance. As a sacrifice, however, we must severely limit the class of functions we can analyze,
restricting to so-called analytic (or holomorphic) functions. For a rough definition, suppose f(x, y) is any
complex-valued function of two real variables. Let z = x + iy. We call z the complex variable. By Exercise 3,
we can use the identities x = 1

2 (z + z̄) and y = 1
2i

(z − z̄) to express f(x, y) as a function of z and z̄. Morally,
the function f is analytic if it does not depend on z̄. The analytic functions are exactly the complex functions
for which a derivative exists.

Example. MatLab can work directly with complex functions. For example, to find the roots of f(z) =
z2 + 2iz + 3, we compute:

>> p=[1 2*i 3];

>> r=roots(p)

r =

0 - 3.0000i

0.0000 + 1.0000i

Thus, the roots are z = −3i and z = i.
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Exercise 4. Find the roots of f(z) = z4 − iz3 + 2i.

It is a fact that all complex polynomials are analytic. We can use polynomials to construct more general

complex functions. For instance, consider a quotient of two complex polynomials, say f(z) = p(z)
q(z) . For simplicity,

assume p and q have distinct roots. It is then a fact that f is analytic away from the roots of q, which we call
the poles of f . More generally, we have the following definition:

Definition. Suppose f is a function which is analytic in a neighborhood of a point a, except perhaps at a itself.
If limz→a f(z) = ∞, then the point a is said to be a pole of f .

By the following fact, the nature of a general pole is exactly the same as in the case of a rational function:

Fact. If f has a pole at a, then there exists a positive integer n and analytic function g not vanishing at a such
that

f(z) =
g(z)

(z − a)n
.

The integer n is called the order of the pole. Poles of order one are called simple poles. A function which is
analytic away from a discrete set of poles is a called meromorphic. A function which is analytic everywhere is
sometimes called entire.

Example.

By the previous example, we know the function f(z) = 1
z2+2iz+3 is a meromorphic function with simple

poles at z = −3i and z = i.

Exercise 5. What are the poles of f(z) = z2−2z+1
z5+4z3+z−2?

Associated to every pole of a meromorphic function f is a special number called the residue of f at that pole.

Definition. Suppose f is a meromorphic function with a pole at a. The residue of f at a is the unique complex
number R such that

f(z) − R

z − a

is the derivative of an analytic function in a neighborhood of a, excluding a itself. We’ll usually denote this
number by Resz=af(z).

This definition may seem rather arbitrary, but in Section 3 we’ll see that residues are intimately linked with
integration.

Example.

Fortunately, MatLab can directly calculate residues of rational functions using the residue command. For
example, to compute the residues of f(z) = 1

z2+2iz+3 , we enter:
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Example (continued).

>> p=[1];

>> q=[1 2*i 3];

>> [r, a, k]=residue(p,q)

r =

-0.0000 + 0.2500i

0.0000 - 0.2500i

a =

0 - 3.0000i

0.0000 + 1.0000i

k =

[]

MatLab has outputted the residues r at the corresponding poles p. In this case, we see that Resz=−3if(z) =
0.25i and Resz=if(z) = −0.25i.

Exercise 6. Find the poles and corresponding residues of the function f(z) = z+1
z3−2z+2 .

3. Contour Integrals

A complex function can be integrated along a path in the complex plane much in the same way a real
function of two real variables can be integrated along a path in R2. In contrast to the real case, however, these
complex integrals (called contour integrals) are intimately linked with the poles of the integrand. Before stating
the precise relationship, let’s compute some contour integrals and make a few initial discoveries. We use the
following definition.

Definition. Suppose C is a path in the complex plane, and f(z) is a complex function. Given a parametric
representation z(t) of C, with t0 ≤ t ≤ t1, we define

∫

C

f(z) dz :=

∫ t1

t0

f(z(t))
dz

dt
(t) dt.
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Example. Let’s calculate
∫

C
z2 − 2z + 1 dz, where C is the contour given below:

0 1 3 5

−2

0

2

Re(z) = x

Im
(z

) 
=

 y

x = y2 + 1 

The curve C is given by the equation x = y2 + 1. We must first find a parameterization of C. Suppose we
introduce the parameter t, and let y = t for −2 ≤ t ≤ 2. Since x = y2 + 1, we then have x = t2 + 1. We
therefore have a parameterization of the curve C, given by

z(t) = (t2 + 1) + it

for −2 ≤ t ≤ 2.

To store this contour in MatLab we enter:

>> syms t real;

>> y = t;

>> x = t^2+1;

>> z = simple(x + i*y)

z =

t^2+1+i*t

Now that we have a parameterized path, MatLab can calculate the contour integral of any complex function
along this path (so long as that function doesn’t have a pole on the path). First we store the function and
integrand:

>> f = z^2-2*z+1;

>> Integrand = f*diff(z,t);

We calculate the contour integral using the int command, and convert the result to a numerical answer
using the double command:

>> F = int(Integrand, 't', -2, 2);

>> F = double(F)

F =

0 +58.6667i
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Example (continued).

Thus,
∫

C
z2 − 2z + 1 dz ≈ 58.6667i. Of course, we could also calculate this integral explicitly:

∫

C

z2 − 2z + 1 dz =

∫ 2

−2

(z(t)2 − 2z(t) + 1)z′(t) dt

=

∫ 2

−2

(

(t2 + 1 + it)2 − 2(t2 + 1 + it) + 1
)

(2t + i) dt

=

∫ 2

−2

2t5 + 5it4 − 4t3 − it2 dt

= 58
2

3
i.

As we will soon see, it is a theorem of complex analysis that the contour integral of an entire function depends
only on the endpoints of the path, and not on the path taken between them.

Example. To see this in action, let’s calculate
∫

C′
z2 − 2z + 1 dz using the contour below, given by the

equation x = 5, shown below:

0 1 3 5

−2

0

2

Re(z) = x

Im
(z

) 
=

 y

x = 5 

We repeat the same process used in the previous example:

>> syms t real;

>> y=t;

>> x=5;

>> z=simple(x+i*y);

>> f=z^2-2*z+1;

>> Integrand=f*diff(z,t);

>> F=int(Integrand, 't', -2, 2);

>> F=double(F)

F =

0 +58.6667i
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Example (continued).

Thus,
∫

C′
z2 − 2z + 1 dz ≈ 58.6667i, and so it indeed appears that

∫

C
z2 − 2z + 1 dz =

∫

C′
z2 − 2z + 1 dz.

Indeed, we can again manually compute
∫

C′

z2 − 2z + 1 dz =

∫ 2

−2

(

z(t)2 − 2z(t) + 1
)

z′(t) dt

=

∫ 2

−2

(16i − 8t − it2)(i) dt

= 58
2

3
i

=

∫

C

z2 − 2z + 1 dz.

It turns out that a contour integral of a meromorphic function f around a closed loop C only depends on
the poles of f contained inside C. More precisely, we have the following theorem:

Theorem. Suppose f is a meromorphic function and C is a simple closed loop (e.g. a circle). If p1, . . . , pk are
the poles of f lying in the interior of C, then

∫

C

f(z) dz = 2πi

k
∑

i=1

Resz=pi
f(z).

This remarkable theorem has several corollaries.

Corollary 1. If f is an entire function, then
∫

C
f(z) dz = 0 for any closed loop C.

Proof. For a simple closed curve C, the statement follows immediately from the theorem. For an arbitrary
closed loop C, it is a consequence of a slightly more general version of the theorem. �

Corollary 2. If f is an entire function, then
∫

C
f(z) dz depends only on the endpoints of C.

Proof. Suppose C1 and C2 are two different paths with the same endpoints. Let C be the loop given by C1−C2.
Then

∫

C

f(z) dz =

∫

C1

f(z) dz −
∫

C2

f(z) dz.

On the other hand, by Corollary 1 we have
∫

C

f(z) dz = 0,

since f doesn’t have any poles. The result follows.

�

Exercise 7. Let C be the contour given by x2 + y2 = 1, shown below. Observe that C can be parameterized
by x = cos(t), y = sin(t), for 0 ≤ t ≤ 2π.

For each of the functions f(z) given below, use MatLab to:

a) Compute
∫

C
f(z) dz using MatLab;

b) Find the poles of f contained inside C;
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c) Compute the residue of f at each of these poles; and
d) Compute 2πi

∑

p Resz=pf(z), and compare the result with your answer from part (a).

−1 0 1

−1

0

1

Re(z) = x

Im
(z

) 
=

 y

x2+y2 = 1 

i) f(z) = z3 + 2z2 + 1

ii) f(z) = z5 − z

iii) f(z) = 1
z2+ 1

4

iv) f(z) = 1
(z+2i)(z+5) dz

v) 1
(z− i

9
)3


