COURSE NOTES - 02/02/05

1. RECAP

In our last ‘real’ class period, we talked about linearization. Linearization is an application of
tangent lines which allow us to approximate the value of a function f(z) near a point a when we can
find the tangent line to f at a. We usually use this technique for function f(z) which are difficult
to evaluate (like f(x) = sin(z) or g(z) =/x).

2. THE DERIVATIVE AS A FUNCTION

So far we have considered the derivative of a function at a fixed point a. Today, we change our
perspectice slightly and instead speak of the derivative as a function itself. For a given input x, this
derivative function will return for us the derivative of f at the point x. Explicitly

d
Definition. For a function f(x), the derivative of f, written either f'(z) or . [f(z)], is the
T

function defined by
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Notice that in particular this derivative function is very much like the limits we have been
considering in the past few weeks. The only difference is that instead of having an explicit value
for x in the limit above, we leave this quantity as a variable.

Handout, #1 Using only that that derivative f’(a) is the slope of the tangent line to f at a,

(a) find the derivative of f(x) = ¢, where ¢ € R.

Solution. The graph of the function f(z) = c is a horizontal line which passes through
the point (0,c¢). What is the tangent to this graph at a point on the graph? One can
see this tangent line is another horizontal line, which of course has slope 0. This means
that for any point x we want, the slope of the tangent line through f at z is 0. In other
words, for all x we have f'(z) = 0.

We could also compute this derivative using the definition. Let’s try it out.
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Solution. If we sketch the graph of the line f(x) = max + b and consider the slope of the
tangent line to f at a point x, we see that the tangent line is the line f(x) itself! This
means that the slope of the tangent line at a point x (which we know is f’(z)) is the
slope of the original line (which we know is m). This gives f'(z) = m.

Again, if we wanted to we could compute this limit using the definition. Let’s do it:
flx+h)— f(x) m(x + h)+b— (mz +b)

= lim

f'(z) = lim
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(c) use the graph of f(z) = sin(z) to sketch f'(z); does this function look familiar?

s m

Solution. Using the graph of sin(z), we see first that f'(x) is 0 for x = =% and z = .
Hence, we can plot these values on the graph of f'(z) straightaway.
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What might we try next? If we look at x = 0, it appears that the slope of the tangent
line is 1. (To see this, try sketching the line y = x onto this graph. It should appear
tangent to the graph at 0.) Hence we can believe f'(0) = 1. Similarly, we can ‘eyeball’
that the slope of the tangent line through x = —m is —1 and that the slope of the tangent
line through x = 7 is also —1. So, we can plot f/(0) =1 and f'(—7) = f'(7) = —1.

-1

Using these 5 points, and noticing that the slope of the tangent stays fairly close to
1 near 0 and fairly close to —1 near —m and 7, it is not unthinkable that f’(z) look
something like this:
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Handout, #2 Use the definition of the derivatice to compute f’(x) where

(a) f(z) = 2>
Solution. Using the definition of the derivative,
St h) = fl@) (@t h)? -
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Note: Computing the derivative in this way is great, because it allows us to quickly
compute f’(a) for any value of a a person might give us. So, for instance, if you were
asked to find the slope of the tangent line to f at the points —1,0,1,2,3, and 4, you
could do so without evaluating 6 separate limits. Simply compute f’(x) first, then plug
—1,0,1,2,3, and 4 into f'(x) (in this case, we would get f'(—1) = =2, f'(0) = 0,
F(1)=2,f(2) =4, f'(3) =6, and f'(4) = 8). N

(b) f(x) =V.

Solution. Using the definition of the derivative,

F'(x) = lim f($+h})L—f(l“) :}Liif})vx+z_ﬁ
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Notice that in the last step we're assuming x # 0. [l

(©) f(x) = /7.

Solution. So far we've only done a handful of different types of limits. This one is a
bit different, and requires a new ‘trick.” You won’t be expected to improvise this kind
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of trick, so don’t be too scared by this example. I just want to show you we can do
different kinds of derivatives "with our bare hands.” Ok, let’s do it:
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Handout, #3 Use
e sin(z + h) = sin(x) cos(h) + cos(z) sin(h)
sin(h) 1

cos(h) — 1
h

to compute . [sin(x)].
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Solution. Again, this example won’t use any spectacular ideas except for the facts above. It
is our job to massage to put our limit in a form where we can use these facts. Anyway, let’s

proceed
) = }ZIL% flz+ h})L — f(z) _ ,1113(1) sin(x + h})L — sin(x)
— tim sin(x) cos(h) + cos(z) sin(h) — sin(x) _ lim sin(x)(cos(h) — 1) + cos(z) sin(h)
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.. (sin(z)(cos(h) —1)  cos(z)sin(h)
= ( h M )
.. sin(z)(cos(h) —1) . cos(x)sin(h)
B
o . cos(h)—1 . . sin(h)
= [imsine)] [ “=C=| -+ [ costo] [ =22

= sin(x) - 0 + cos(x) - 1 = cos(x)
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