
COURSE NOTES - 02/02/05

1. Recap

In the last class period, we defined the derivative of a function. We saw that the derivative is
defined by the limit

lim
h→0

f(x + h)− f(x)

h
,

and at a point a the value of the derivative gives the slope of the tangent line to f at a. We also
saw how one might graph the derivative of a function when given the graph of the function itself.

2. Non-differentiability

We say that a function f is differentiable at a if the derivative of f is defined at a. That is to
say, f is differentiable at a if the following limit exists:

lim
h→0

f(a + h)− f(a)

h
.

Although we will be dealing mostly with differentiable functions in this class, there are a handful of
times we will encounter functions which have points which are not differentiable. Although there
are many ways a function could fail to be continuous at a point a, there are three typical types of
non-differentiability.

(1) Kinks. A function is not differentiable at a point where the graph of f has a kink or corner
(one might also call such a point on the graph a cusp). Essentially, these places fail to be
differentiable because the left and right hand limits

lim
h→0−

f(a + h)− f(a)

h
and lim

h→0+

f(a + h)− f(a)

h

do not match up. For instance, the absolute value function f(x) = |x| fails to be differentiable
at 0 because

lim
h→0−

f(a + h)− f(a)

h
= −1

and

lim
h→0+

f(a + h)− f(a)

h
= 1.

(2) Discontinuities. A function is not differentiable at a point where the graph of f is not
continuous. In this case, the limit

lim
h→0

f(a + h)− f(a)

h
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does not exist, because the denominator approaches 0 as h → 0, while the numerator
approaches some finite, nonzero number (remember that since f is not differentiable at a,
we have

lim
h→0

f(x) 6= f(a),

and hence limh→0 f(a + h)− f(a) 6= 0).
(3) Vertical Tangents. Finally, a function is not differentiable at a point on the graph where

the tangent line to f is a vertical line. This is because the slope of the tangent to the graph
at this point is infinite, which in our class corresponds to ‘does not exist.’

3. Second derivative

Last class we introduced the derivative of a function f , which is itself a function. Why not take
the derivative of this function? Why not indeed!

Definition. The second derivative of a function, written f ′′(x), is
d

dx
[f ′(x)].

You will not be surprised to hear that one can also speak of the third derivative of a function, or
even the fourth or fifth. The pariticularly enthusiastic might wonder if a function can have infinitely
many derivatives. However, these more exotic creatures aren’t going to be so useful to us in this
class. But what about the second derivative? The second derivative of a function has a few nice
applications.

(1) If f is a position function, then we have already seen that f ′(x) is the function which gives the
instantaneous speed of the object being measured. And just as the first derivative measures
the change in the function values given a small change in inputs, the second derivative
measures the change in the derivative values (i.e., slopes of tangent lines) given a small
change in inputs. Since a f ′(x) is speed for a position function f , this means that f ′′(x)
measures how speed is changing with respect to time. In other words, f ′′(x) measures the
acceleration of the object being measured by f .

(2) For an arbitrary function f , a similar analysis holds. f ′′(x) measures how the slopes of
tangents change given a small changes in inputs. Hence, if f ′′(x) > 0, this means that the
slopes of tangent lines are increasing as we move from left to right. Such places on the graph
are said to be concave up, and generally they look like the following picture.
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On the other hand, if f ′′(x) < 0, this means that the slopes of tangent lines are decreasing
as we move from left to right. Such places on the graph are said to be concave down, and
they look like this.

Places where f ′′(x) = 0 are places where the slopes of tangent lines are constant. These
places are called inflexion points of the graph f . The point (0, 0) on the curve y = x3 is an
inflexion point. In fact, one can see that the graph of x3 is concave down on the interval
(−∞, 0) and concave up on the interval (0,∞) (sketch the graph of x3 and see for yourself!).

(3) Concavity is also useful for our new skills in linearization. In particular, we can use concavity
to detect if our linear approximations are over or underestimates. Notice for the picture of
concave down above, tangent lines lie above the graph of the function. This means linear
approximations taken from these tangent lines will be overestimates. Similarly, tangent lines
lie below the graph of a function where the graph is concave up. This means that linear
approximations taken from these tangent lines will be underestimates. In other words,
• if f ′′(a) > 0, then linear approximations near a will be underestimates, and
• if f ′′(a) < 0, then linear approximations near a will be overestimates.


	1. Recap
	2. Non-differentiability
	3. Second derivative

