
COURSE NOTES - 02/09/05

1. Comment on notation

I should have made a comment concerning a standard notation for higher derivatives when we
first introduced second derivatives, but I forgot. As I did mention, though, the second derivative
of a function f(x) is usually written f ′′(x). You won’t be surprised to see that the third derivative
is often writen f ′′′(x), though you should also become familiar with another notation for the third
derivative: f (3)(x). The fourth derivative of a function is almost always written f (4)(x), and all
higher derivatives use this same parenthetical notation.

2. Recap

In the last few class periods we’ve gained some tools to helps us compute derivatives of functions
quickly. In Wednesday’s class, we saw how to take the derivative of a product or quotient of
functions f and g in terms of the functions and their derivatives. In particular, we saw the product
rule
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Today we’re going to switch our focus from computing derivatives to exploring some reasons why
a person might be interested in derivatives in the first place. The applications are the real reason
people continue to be interested in calculus today, and in particular they are the reason that so
many students are required to take a calculus class.

3. Geometry of a function and its derivatives: an overview

One of the first connections we made between the geometry of the graph of a function f and
information concerning derivatives of f is that places on the graph of f which are ‘flat’ (i.e., where
the tangent line to f at a is horizontal) correspond to solutions to f ′(x) = 0. However, we can gain
a lot of information about the geometry of the graph of f(x) by using information concerning its
derivatives. The following list is by no means exhaustive, but covers most of the things we’ve seen
in this class so far.
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f(x) is flat at a ↔ f ′(a) = 0
f(x) is increasing on (a, b) ↔ f ′(x) > 0 on (a, b)
f(x) is decreasing on (a, b) ↔ f ′(x) < 0 on (a, b)
f(x) is concave up on (a, b) ↔ f ′′(x) > 0 on (a, b)
f(x) is concave down on (a, b) ↔ f ′′(x) < 0 on (a, b)
f ′(x) is increasing on (a, b) ↔ f ′′(x) > 0 on (a, b)
f ′(x) is decreasing on (a, b) ↔ f ′′(x) < 0 on (a, b)
Slopes of tangent lines of f are increasing on (a, b) ↔ f ′′(x) > 0 on (a, b)
Slopes of tangent lines of f are decreasing on (a, b) ↔ f ′′(x) < 0 on (a, b)

4. Local Maxs and Mins

Perhaps the most widespread application of derivatives is in computing local maxima and minima
of a function f(x). A local maximum of a function f(x) is a point a for which f(b) < f(a) for all
points b ‘close to’ a; similarly, a local minimum of a function f(x) is a point a for which f(b) > f(a)
for all points b ’close to’ a. For instance, the absolute value function as a local minimum at x = 0,
since all points near 0 have absolute value which is positive. Also, the function sin(x) has local
maxima at points · · · ,−3π

2
,−3π

2
, π

2
, 5π

2
, · · · , and local minima at points · · · ,−5π

2
,−π

2
, 3π

2
, 7π

2
, · · · . For

a given function f(x) is is quite natural to find local maxima and minima. But how will derivatives
help us do that?

Try to graph a function with a local max or min (your choice) at a point x = a. If you study
your drawing, you will see that the derivative of your function at a will be either 0 or undefined.
Hence, to find places where a function might have a local max or min, we need to find places where
f ′(x) = 0 or f ′(x) is undefined.

Example. Find possible local maxs and mins of the function f(x) = xex.

Solution. We have just seen above that local max and mins can only occur if f ′(x) is zero or
undefined. Hence to find possible local maxs and mins of f(x), we need to compute its derivative
first. We have seen the derivative of this function before (using the product rule), and so we recall
that f ′(x) = (x + 1)ex.

Now possible local maxs and mins occur when f ′(x) is zero or undefined. Since f ′(x) is defined
everywhere, we need only find solutions to f ′(x) = 0, or in other words (x + 1)ex = 0. Now ex > 0
for any number x we plug in, so we have f ′(x) = 0 if and only if x + 1 = 0. Of course, this happens
if and only if x = −1. Hence, the possible local max/min of f(x) = xex is the point x = −1. �

Example. Find possible local maxs and mins of the function f(x) = x3.

Solution. Again, local maxs and mins can only occur if f ′(x) is zero or undefined. Hence to find
possible local maxs and mins of f(x), we need to compute f ′(x). Using the power rule, we have
f ′(x) = 3x2.

Now possible local maxs and mins occur when f ′(x) is zero or undefined. Since f ′(x) is defined
everywhere, we need only find solutions to f ′(x) = 0, or in other words 3x2 = 0. Since this only
happens if x = 0, the possible local max/min of f(x) = x3 is the point x = 0. �
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Notice that in each of these examples we have not said whether the possible local max/min is
actually a local max/min. Indeed, in the second example the possible max/min is not a max/min
at all. So how can we determine whether a function has, say, a local maximum at a point without
looking at its graph? There are actually a few answers. In all cases, we are assuming that it has
already been shown that f ′(a) = 0 or is undefined.

(1) (Bare Hands) The definition of a local max says that a is a local max of f if for any point
b near a, f(a) > f(b). Hence, we could find a point very close to a and to its left, say bl,
and determine if f(a) > f(bl). If we also found a point br very close to a and to its right,
we could then test if f(a) > f(br). If both of these inequalities hold, we’re golden.

The downside to this procedure is twofold. First, it isn’t clear how close the points bl and
br need to be to a to count at ‘near a.’ Second, we would have to compute the actual value
of f(bl) and f(br), which can be pretty difficult without a calculator.

(2) (First derivative test) We might also examine the slopes of tangent lines near a to get a
feeling for what the graph of f looks like near a. In particular, if we find a point very close
to a and to its left, call it bl, with f ′(bl) > 0 and another point very close to a and to its
right, call it br, with f ′(br) < 0, then we can be assured that the function has a maximum
at a. Why? Sketch a line segment with positive slope whose right endpoint is a, and a line
segment with negative slope whose left endpoint is a. What does it look like? Sort of like a∧

, right? And the tip of this
∧

is the point (a, f(a)). So you can see that a is a local max.
What are good parts to this approach? First, when we have to find points bl and br, we

can determine what ‘close by’ actually means using the IVT. In particular, provided our
derivative is a continuous function (which it almost always is), all we need to do to choose bl

is to make sure f ′(x) has no zeros on the interval (bl, a), and similarly to choose br we only
have to make sure f ′(x) has no zeros on the interval (a, br). The second reason it is a good
approach is that we don’t actually have to compute f ′(bl) or f ′(br). Instead, we only have
to compute whether these numbers are positive or negative. In general, this is far easier to
do than computing the actual derivatives at these points.

(3) (Second derivative test) We might also notice that at a local max, the function in question
is often concave down. Hence, if we can show that f ′′(a) < 0, then we can immediately
conclude that f has a maximum at a. The upside to this technique is that it is very quick
(provided you have the second derivative). The downside is that it might happen that
f ′′(a) = 0. In this situation, one cannot conclude from the second derivative alone whether
f has a max or a min at a. Instead, you would likely have to use the second technique
above.


	1. Comment on notation
	2. Recap
	3. Geometry of a function and its derivatives: an overview
	4. Local Maxs and Mins

