
COURSE NOTES - 02/23/05

1. Announcements

This coming Monday (February 28th) we have a midterm from 7pm to 9pm. To prepare for the
midterm,

• I have posted a practice exam on the course webpage. The format of the midterm will closely
follow the format of this practice exam, and the level of difficulty should be comparable.
My suggestion is that you carve out a 2 hour block of time to take the practice midterm
without notes or your book.

• We will have a review session Sunday (February 27th) as we did before the last midterm.
The review session will be held in 383-N, the same room we used for the last review session.
The time is not yet finalized...we’ll figure that out in class on Friday.

2. Recap

In the last class period we computed many derivatives using all the technology we’ve built up
over the last 2 or 3 weeks. In this class period we’ll add another feather to our cap by discussing
derivatives of inverse trig functions and learning implicit differentiation.

3. Derivatives of inverse trig functions

We can use the technique we developed for solving
d

dx
[log(x)] to solve for the derivative of the

inverse of almost any function we like. An important class of inverse functions are the inverse trig
functions, which include (but aren’t limited to) arcsin(x), arccos(x), and arctan(x). We’re interested
in the derivatives of any of these functions, but today we’ll discuss

d

dx
[arcsin(x)] and

d

dx
[arctan(x)] .

Example. Compute
d

dx
[arcsin(x)].

Solution. The defining equation for arcsin(x) is

sin(arcsin(x)) = x.

The derivative of the right hand side is 1, and the derivative of the left hand side is

d

dx
[sin(x) ◦ arcsin(x)] =

(
d

dx
[sin(x)] ◦ arcsin(x)

)
d

dx
[arcsin(x)] = cos(arcsin(x))

d

dx
[arcsin(x)] .
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Hence we have
d

dx
[arcsin(x)] =

1

cos(arcsin(x))
. But what is cos(arcsin(x))? Consider the picture

below.

Notice that θ = arcsin(x), since sin(θ) = x. Also the length of the bottom edge is
√

1− x2 using the
Pythagorean theorem. We can see then that cos(arcsin(x)) = cos(θ) =

√
1− x2. Hence, we have

shown that
d

dx
[arcsin(x)] =

1√
1− x2

.

�

We could use the same type of technique to show

d

dx
[arctan(x)] =

1

1 + x2
.

4. Implicit differentiation

To this point, we have gained serious proficiency in evaluating the derivative of a function y =
f(x). However, it often happens that we are given some relationship between an independent
variable x and some dependent variable y. For instance, the equation for the unit circle

x2 + y2 = 1

show that y is dependent on x, but that y itself is not a function of x.

In these types of scenarios, we will still be interested in how y changes given a small change in

x. That is to say, we will still be interested in the derivative
dy

dx
. How can we go about finding this

quantity?

Given an equation f(x, y) = 0, we might try solving y in terms of x, and then computing
derivatives. For instance, in the case of the circle we can see that y = ±

√
1− x2, and we can

evaluate the derivative
dy

dx
using the techniques from the last several weeks.

But what if x and y are related by an equation like x3 + y3 = 6xy? Solving for y in terms of x
in this case will be very difficult. Worse still, there are equations relating y and x where we won’t
be able to solve for y in terms of x, no matter how hard we try or how clever we are. So what can

we do if we want to find
dy

dx
? The idea is to take the given equation relating x and y and whack it
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with the derivative operator
d

dx
on both sides. In taking these derivatives, we will find that terms

of the form
dy

dx
continually pop out of the expressions, allowing us to solve for

dy

dx
. Let’s do a few

examples to get a feel for this.

Example. Suppose that y2 = 4x. Find
dy

dx
.

Solution. In this case, we could find
dy

dx
by solving for y and evaluating the derivative in the

traditional way. But let’s try our other technique instead. So, we differentiate each side of the

equation y2 = 4x and attempt to solve for
dy

dx
. Now

d

dx
[4x] = 4. What is

d

dx
[y2]? Now the key

point is y2 = x2 ◦ y, so we have

d

dx

[
y2

]
=

d

dx

[
x2 ◦ y

]
=

(
d

dx

[
x2

]
◦ y

)
d

dx
[y] = 2y

dy

dx
.

Combining this with the derivative of the right hand side as computed before, we have

4 = 2y
dy

dx
.

Solving for
dy

dx
, we have

dy

dx
=

2

y
.

�

Example. Suppose that x3 + y3 = 6xy. Find
dy

dx
.

Solution. Again, our technique is to apply
d

dx
to both sides of the equation relating x and y, then

solve for
dy

dx
. Now the left hand side has derivative

d

dx

[
x3 + y3

]
= 3x2 + 3y2 dy

dx
and the derivative of the right hand side is

d

dx
[6xy] = 6

(
x

dy

dx
+ y

)
.

This gives the equation 3x2 + 3y2 dy

dx
= 6x

dy

dx
+ 6y, and we solve

dy

dx
=

6y − 3x2

3y2 − 6x
.
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