AN OVERVIEW OF FUNCTIONS

In class today we talked about all things related to real-valued functions.

1. INTRODUCTION

Definition 1.1. A real-valued function $f: D \to \mathbb{R}$ is a rule which assigns to each input in the set D an output in the set of real numbers \mathbb{R} .

There are a wealth of basic real-valued functions that you have seen previously in your life. These include:

- polynomials (like $x^2 + 1$ or $x^{17} + x^2 + x$)
- rational functions (quotients of polynomials, such as $\frac{x^2+1}{x^{17}+x^2+x}$ or $7x+x^{-2}$)
- algebraic functions (functions that can be written by adding, multiplying, dividing, or extracting roots of polynomials, such as $\sqrt{\frac{x^2+1}{x^{17}+x^2+x}}$)
- trigonometric functions (these are sin(x), cos(x), tan(x), csc(x), sec(x), or cot(x))
- exponentials functions (such as e^x or 2^x)
- logarithmic functions (such as $\ln(x)$ or $\log_2(x)$)
- the absolute value function (written |x|)

2. Combining functions

Although there are lots of 'basic' functions we could talk about, we can create really interesting functions by combining those functions found in our library above. There are a few ways to combine functions. For instance, we can take two old functions and define a new function by adding them together. The sum of two functions f and g is defined by the rule

$$(f+g)(x) = f(x) + g(x)$$

Similarly we can take the product of two functions by multiplying their outputs

$$(fg)(x) = f(x)g(x).$$

A far more subtle way to combine functions is function composition, where we evaluate one function 'at' another function. The composition of f and g is written as $f \circ g$, and is defined by the rule

$$(f \circ g)(x) = f(g(x)).$$

Example. Let $f(x) = x^2 + 1$, $g(x) = \sin(x)$, and $h(x) = e^x$. What are f + h, fh, and $f \circ h$? What is $h \circ f \circ g$?

Solution. The function f+h is defined by the rule (f+h)(x) = f(x)+h(x), and of course $f(x)+h(x) = x^2+1+e^x$.

Similarly fg is defined by the rule (fg)(x) = f(x)g(x), so that $(fg)(x) = (x^2 + 1)e^x$.

The function $f \circ h$ is given as

$$(f \circ h)(x) = f(h(x)) = f(e^x) = (e^x)^2 + 1 = e^{2x} + 1.$$

Finally, the function $h \circ f \circ g$ is

$$h \circ f \circ g)(x) = h(f(g(x))) = h(f(\sin(x)))$$

= $h((\sin(x))^2 + 1) = h(\sin^2(x) + 1)$
= $e^{\sin^2(x) + 1}$.

It is also critical in this class that you are able to take a given expression and identify it as a composition of functions. When doing this, it's good to work from the outside in.

Example. Write $\sin(2^{\tan(x+1)})$ as a composition of functions.

Solution. The answer is $(\sin(x)) \circ (2^x) \circ (\tan(x)) \circ (x+1)$.

To see this, I start by asking 'What is the last thing I do when evaluating this function?' In this case, the last thing to do is evalue the sin of some number, and therefore sin(x) will be the last function I compose with (i.e., it goes on the far left). Then I forget about the sin in my expression (so that it becomes $2^{tan(x+1)}$ and ask 'What is the last thing I do when evaluating this function?' The answer is now that I raise 2 to a paricular power, so that the function 2^x is the second-to-last function in my composition (i.e., it goes to the right of sin(x)). Just as before, I now forget about the 2 and look only at the remaining function tan(x + 1), and I ask 'What's the last thing I do when evaluating this function?' Here the answer is that I evaluate the tangent of a number, so that tan(x) belongs in my composition. This leaves me with only x + 1, which goes on the far right of my expression.

Note: This is easier to see me do in person, so if you want to see this again just ask!

3. FUNCTION INVERSES

Now that we know how to combine functions, it is useful to know how to 'uncombine' them. That is, if I've put f and g together to form a new function, how can I recover either f or g from the new function?

If I want to recover f from f+g, we simply subtract g from f+g, just like you'd expect. Similarly if we want to recover f from fg, we just divide by g. But how do I recover f from $f \circ g$? This is a far subtler question, and leads us to the concept of the inverse of a function.

Definition 3.1. For a function f and a value a in the range of f, $f^{-1}(a)$ is the set of solutions to f(x) = a.

In other words, $f^{-1}(a)$ is the collection of all those inputs whose output is a.

Example. Let $f(x) = x^2$. What is $f^{-1}(4)$?

Solution. We know that $f^{-1}(4)$ is the set of all solutions to the equation f(x) = 4. Since $f(x) = x^2$, this means we are looking for solutions to $x^2 = 4$. Of course there are just the values $x = \pm 2$, so that $f^{-1}(4) = \{-2, 2\}$. \Box

This example is an important one to keep in mind, because it shows us that the inverse of a function need not be a function, since for some a in the range of f it may be the case that $f^{-1}(a)$ is a set with more than one element.

Frequently we will be interested finding the inverse of a function for an arbitrary input. In order to do this, first write y = f(x). Now switch the place of y and x in the expression, and solve this new expression for y. This will give you the inverse of your function.

Example. Let f(x) = 2x + 1. What is $f^{-1}(x)$?

Solution. We are given y = f(x) = 2x + 1. To solve for $f^{-1}(x)$ we are first supposed to switch y and x in this equation, so we have x = 2y + 1. Now we solve for y in this expression, and the result gives us $f^{-1}(x)$. Using basic algebra techniques provides

$$f^{-1}(x) = \frac{x-1}{2}.$$

Example. Let $f(x) = e^{2x}$. What is $f^{-1}(x)$?

Solution. Again, since our equation is $y = e^{2x}$ we are meant to solve for y in the expression $x = e^{2y}$. To do this we take natural logs of both sides. On the left this gives $\ln(x)$, and on the right this gives $\ln(e^{2y})$. But $\ln(e^{2y}) = 2y$, and so we are left with $\ln(x) = 2y$. Hence we have

$$f^{-1}(x) = \frac{\ln(x)}{2}.$$

The nice property of the inverse of a function is that for a function f, if its inverse is also a function then $(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$ (when $f^{-1}(x)$ isn't a function, we can only say $(f \circ f^{-1})(x) = x$). Because this is true, we can use inverses to 'undo' function composition: if we want to recover g from $f \circ g$, we simply compose with f^{-1} :

$$(f^{-1} \circ (f \circ g))(x) = ((f^{-1} \circ f) \circ g)(x) = (x \circ g)(x) = g(x).$$

Similarly to recover f we precompose with g^{-1} : $(f \circ g \circ g^{-1})(x) = f(x).$

Of all the inverses we talk about, the two that will be important to keep in mind are (in order of importance) that $\ln(x)$ and e^x are inverse functions (and similarly $\log_a(x)$ and a^x are inverses for any a > 0); and that $\sin(x)$ and $\arcsin(x)$ (or $\cos(x)$ and $\arccos(x)$, or $\tan(x)$ and $\arctan(x)$, etc) are inverse functions.

4. Graphs of functions

You'll be expected to know the graphs of familiar functions, including (but not limited to) the graphs of a line, parabola, cubic, sine, cosine, tangent, exponential function, and logarithmic function. Given the graph of a function f(x) you will also be expected to be able to sketch the graph of f(x + 1), f(2x), 2f(x), etc.

Given a graph, you can determine if it is the graph of a function using the vertical line test as follows. If you are able to find a vertical line which hits the given graph in more than one spot, than the graph fails the vertical line test and is not a function (why? because there is an input which yields two outputs). If there is no vertical line which hits the graph in more than one spot, than you have a bona fide function.