
Math 19, Winter 2006 Properties of Limits January 23, 2006

PROPERTIES OF LIMITS

1. Announcements

• Quiz 1 results posted on coursework
• Homework 2, homework 1 solutions, quiz 1 solutions posted on course webpage
• I’ve modified the syllabus slightly, so that Wednesday’s class is on continuous functions

2. Recap

Last time we talked about limits and directional limits. In particular we

(1) gave an intuitive definition of what the limit of a function is;
(2) saw how to evaluate limits when given the graph of a function;
(3) said that f(a) and limx→a f(x) are not necessarily related.

3. Some loose ends

We have a few very important properties of limits to discuss, but before we get to them there are a few things
I should have mentioned in class on Friday. The first is the following

Fact. limx→a f(x) exists if and only if limx→a− f(x) and limx→a+ f(x) exist and are equal.

This fact comes in handy for evaluating limits of functions that look pretty tricky. We’ll see an example of
this later in the class.

The second is an example of a function which doesn’t have a limit. In class on Friday we constructed some
functions which didn’t have a limit at a because the directional limits didn’t agree (though they did exist). The
function sin( 1

x ), however, doesn’t even have a directional limit at 0!

You can see from the graph that as x → 0+, the function is not approaching a single value. Indeed, Steve
pointed out in class that for any value c in the interval [−1, 1] that you like, there is a sequence of points
approaching 0 whose outputs are approaching c. In this sense, then, the function fails to have a directional limit
because it is approaching ‘too many’ values as x → 0+.

Before leaping into properties of limits, let’s do a reality check on limits.

Example. Evaluate limx→a x and limx→a c, where c is an arbitrary constant.

Solution. The graphs of each of these functions is shown below. We can see that as x → a, the function f(x) = x
is approaching the value a, whereas for the function g(x) = c outputs are approaching c. Hence we have

lim
x→a

x = a and lim
x→a

c = c.

¤
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4. Properties of Limits

If we are given functions f(x) and g(x) whose limits we understand, we can use properties of limits to evaluate
limits of functions built out of f and g. More specifically, we have the following:

Theorem. Suppose limx→a f(x) and limx→a g(x) both exist. Then

• limx→a [f(x) + g(x)] = limx→a f(x) + limx→a g(x)
• limx→a [f(x)− g(x)] = limx→a f(x)− limx→a g(x)
• for a fixed real number c, limx→a [cf(x)] = c (limx→a f(x))
• limx→a [(fg)(x)] = limx→a f(x) · limx→a g(x)

• if limx→a g(x) 6= 0, then limx→a

[
f(x)
g(x)

]
=

limx→a f(x)
limx→a g(x)

.

Indeed, these same rules hold for directional limits, so that (for instance) if limx→a− f(x) and limx→a− g(x)
exist, then

lim
x→a−

[f(x) + g(x)] = lim
x→a−

f(x) + lim
x→a−

g(x).

Corollary. If f(x) is a polynomial, then limx→a f(x) = f(a).

Proof. Since f(x) is a polynomial, we know that f(x) = anxn + · · ·+ a1x + a0. Then we have
lim
x→a

f(x) = lim
x→a

[anxn + · · ·+ a1x + a0] = lim
x→a

[anxn] + · · ·+ lim
x→a

[a1x] + lim
x→a

[a0]

= an lim
x→a

[xn] + · · ·+ a1 lim
x→a

[x] + a0 = an

(
lim
x→a

x
)n

+ · · ·+ a1

(
lim
x→a

x
)

+ a0

= anan + · · · a1a + a0 = f(a),

where we may apply all the limit laws since limx→a x and limx→a a0 exist (and in fact equal a and a0, respectively,
as per our previous example). ¤

It isn’t so crucial that you remember the proof, but instead just remember the handy fact that evaluating
limits of polynomials is quite easy.

Example. Consider the graph of the functions f(x) and g(x) below.

1

1

g(x)

f(x)

What is limx→−2 [3f(x) + 2g(x)]? What is limx→1[3f(x) + 2g(x)]?
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Solution. We can see from the graph that limx→−2 f(x) = 1 and limx→−2 g(x) = 0, and so to evaluate
limx→−2[3f(x) + 2g(x)] we can use the limit laws. We have

lim
x→−2

[3f(x) + 2g(x)] = lim
x→−2

[3f(x)] + lim
x→−2

[2g(x)] = 3 lim
x→−2

f(x) + 2 lim
x→−2

g(x) = 3 · 1 + 2 · 0 = 3.

To evaluate limx→1[3f(x) + 2g(x)] we would like to use the limit laws, but in this case limx→1 g(x) does
not exist. We cannot use the limit laws to conclude limx→1[3f(x) + 2g(x)] does not exist, so instead we will
compare directional limits. From our earlier fact, we know that limx→1[3f(x) + 2g(x)] exists if and only if
limx→1− [3f(x) + 2g(x)] and limx→1+ [3f(x) + 2g(x)] exist and are equal.

Now
lim

x→1−
f(x) = 1, lim

x→1+
f(x) = 1, lim

x→1−
g(x) = −2, and lim

x→1+
g(x) = −1.

Using our limit laws for directional limits, we have

lim
x→1−

[3f(x) + 2g(x)] = lim
x→1−

[3f(x)] + lim
x→1−

[2g(x)] = 3 lim
x→1−

f(x) + 2 lim
x→1−

g(x) = 3 · 1 + 2 · −1 = 1

and

lim
x→1+

[3f(x) + 2g(x)] = lim
x→1+

[3f(x)] + lim
x→1+

[2g(x)] = 3 lim
x→1+

f(x) + 2 lim
x→1+

g(x) = 3 · 1 + 2 · −2 = −1.

Since these values don’t agree, we conclude

lim
x→1

[3f(x) + 2g(x)] does not exist.

¤

Example. Consider the functions f(x) and g(x) depicted below. What is limx→0[f(x) + g(x)]?

1

1

g(x)

f(x)

Solution. We cannot use the limit laws directly to evaluate limx→0[f(x) + g(x)], since neither limx→0 f(x) not
limx→0 g(x) exist. Instead, we have to attempt to evaluate this limit by evaluating the directional limits and
comparing.

We see that
lim

x→0−
f(x) = 1, lim

x→0+
f(x) = −1, lim

x→0−
g(x) = −1, and lim

x→0+
g(x) = 1.
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Since the directional limits exist, we can compute the directional limit of the sum using the properties of
directional limits:

lim
x→0−

[f(x) + g(x)] = lim
x→0−

f(x) + lim
x→0−

g(x) = 1− 1 = 0,

and
lim

x→0+
[f(x) + g(x)] = lim

x→0+
f(x) + lim

x→0+
g(x) = −1 + 1 = 0.

Since the two directional limits exist and agree, we have

lim
x→0

[f(x) + g(x)] = 0.

¤

This is a great example to keep in mind because it reinforces appropriate use of the limit laws: we can only
apply them when the constituent limits exist, and when these constituent limits don’t exist we can’t conclude
anything without further tinkering.

Example. Using the same functions as the previous example, what can one say about limx→0−
f(x)

1 + g(x)
?

What can one say about limx→0−
1− f(x)
1 + g(x)

?

Solution. We would like to use the directional limit properties to say that the limit of these quotients is the
quotient of the limits. Indeed, all of f(x), 1 + g(x) and 1 − f(x) have limits as x → 0−. However, the limit
rule on quotients can only be applied when the denonimator has a nonzero limit, and in both these example
limx→0− [1 + g(x)] = 0. Hence, we cannot conclude anything about either of these limits.

NB: In class on Wednesday we will see we can say something about the first limit, but that without futher
information we can’t say anything about the second. ¤

5. A preview of Continuity

In class Wednesday we’re going to talk about continuous functions and some of the nice properties they enjoy.

Definition. A function f(x) is continuous at a if

lim
x→a

f(x) = f(a).

We’ve already seen that polynomials satisfy this property, so polynomials are continuous functions. We’ll
see that lots of other functions are continuous, and we’ll use this fact to make evaluating limits of functions
lots easier (since you see from the definition that evaluating the limit of a continuous function is easy—you just
evaluate the function at the point of interest!).

We’ll also talk about the Intermediate Value Theorem in class on Wednesday, which is a very nice
property enjoyed by continuous functions.
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