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IMPLICIT DIFFERENTIATION

1. Recap

We’ve recently become amazingly good at computing derivatives. The tools we’ve used to develop this pro-
ficiency are basic derivatives of polynomials, trigonometic functions, exponentials, and certain ‘basic’ algebraic
functions. With these in hand we use the product, quotient, and chain rules to compute any derivative that
comes our way.

Last class period we saw how to use the chain rule to compute the derivative of the inverse of a function. In
particular, we saw that

d

dx
[ln(x)] =

1
x

and
d

dx
[arcsin(x)] =

1√
1− x2

.

Today we’ll apply our new muscles to solve the tangent problem for graphs that aren’t even functions!

2. The tangent problem for the circle

One of the most basic objects in mathematics is the circle. Analytically, a circle of radius 1 centered at
the origin is represented by the formula x2 + y2 = 1. As it is one of the fundamental mathematical graphs, it
is natural to want to solve the tangent problem for the circle. Sadly, however, the graph of the circle is not
the graph of a function because it fails the vertical line test. Since we only have tools for solving the tangent
problem for functions, we can’t yet solve the tangent problem for the circle.

How can a person remedy this problem? One trick would be to take the expression for the circle and solve for
y. This would give an expression for y in terms of x, an expression which we might then be able to evaluate the
derivative of. In this case, solving for y gives y = ±√1− x2. The + and − are there because we’ve split the circle
into a top piece y =

√
1− x2 and a bottom piece y = −√1− x2. We could then evaluate the derivative of each

of these functions and then use them to find the slope of the line tangent to a point (x, y) on the circle (which
derivative we used would depend on which half of the circle (x, y) lived on). This would result in derivatives

− x√
1− x2

and
x√

1− x2
.

There are a few problems with this approach.

• From an aesthetic standpoint, it’s pretty clunky and unnatural. Given an expression that’s nice like
x2 + y2 = 1, it’s silly that we need to evaluate ugly derivatives like

√
1− x2.

• From a practical standpoint, it’s problematic because to find the slope of the tangent to the curve at a
point P we have to figure out which of the two functions P ‘lives on.’ This isn’t too much of a problem
for the circle, but can become more complicated when we have nastier expressions.

• From a computability standpoint, given a complicated expression involving x’s and y’s, there’s no
guarantee that we’ll even be able to solve for y! Nevertheless, the tangent problem still makes perfect
sense for these complicated graphs, so we need a new tool.
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3. Implicit Differentiation

To solve these problems, we develop a new way to evaluate derivatives of implicit functions of x.

Example. Find the slope of the line tangent to the graph x2 +y2 = 1 at an arbitrary point (x, y) on the curve.

Solution. We’re going to use a new tool called implicit differentiation to solve this problem. Our idea will be
to take the given expression x2 + y2 = 1 and evaluate the derivative of both the left and right hand sides. In

doing this, the desired derivative (which is
dy

dx
, since this represents ‘rise over run’) will pop out, and we’ll be

able to solve.

The derivative of the right hand side of our expression is easy:
d

dx
[1] = 0. The left hand side is slightly more

complicated:
d

dx

[
x2 + y2

]
= 2x + 2y

dy

dx
. Why does this strange factor of

dy

dx
show up? Essentially, this is just

the chain rule. In this case the variable y is implicitly a function of x, and so when we evaluate its derivative
we need to use the chain rule. To see how it appears, let’s write y = f(x). Then

d

dx

[
y2

]
=

d

dx

[
(f(x))2

]
= 2f(x)f ′(x) = 2y

dy

dx
.

Hence we have the stated equality:
d

dx

[
x2 + y2

]
= 2x + 2y

dy

dx
.

Setting the derivatives of the left and right hand sides equal gives 2x + 2y
dy

dx
= 0. Now since we’re after

dy

dx
,

we can just solve:
dy

dx
=
−2x

2y
= −x

y
.

This means that the slope of the line tangent to the graph x2 + y2 = 1 at a point (x, y) is given by −x

y
. As a

reality check, we can verify this formula against what we know the slopes of the tangent to the circle at certain
‘nice’ points to be. ¤

This examples embodies everything there is in implicit differentiation. To solve the tangent problem for a
graph which isn’t explictly a function of x (ie, in an expression which isn’t ‘solved for y’), the technique is pretty
simple:

• start with a complicated expression involving x’s and y’s; this makes y an implicit function of x;

• compute the derivative of both sides of this expression (don’t forget those
dy

dx
’s which pop up!);

• solve for
dy

dx
;

• celebrate, because
dy

dx
gives you the slope of the line tangent to the curve defined by your original

complicated expression.

Let’s do some more examples.
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Example. Solve the tangent problem for the point (1, 1) on the curve y2 = x3(2− x).

Solution. We want to solve for
dy

dx
, so we need to compute the derivative of the left and right hand sides of the

given equality. The right hand side has derivative
d

dx

[
x3(2− x)

]
=

d

dx

[
2x3 − x4

]
= 6x2 − 4x3, and the left

hand side has derivative
d

dx

[
y2

]
= 2y

dy

dx
(remember: the

dy

dx
is appearing because of our old friend the chain

rule). Hence we have

2y
dy

dx
= 6x2 − 4x3.

Solving for
dy

dx
gives

dy

dx
=

6x2 − 4x3

2y
=

3x2 − 2x3

y
.

This means the slope of the line tangent to the curve at (1, 1) is 3(1)2−2(1)3

1 = 1
1 = 1. Hence the line tangent

to the curve at (1, 1) is
y − 1 = 1(x− 1) or, equivalently y = x.

¤

Example. Compute
d

dx
[arcsin(x)].

Solution. This doesn’t look like an implicit differentiation problem, but we’re going to make it one. We start
by writing y = arcsin(x). Applying sine to both sides then gives sin(y) = sin(arcsin(x)) = x. Aha! Now we can

use implicit differentiation. The left hand side has derivative cos(y)
dy

dx
, and the right hand side has derivative

1. This means we have
dy

dx
=

1
cos(y)

.

But what is cos(y) in terms of x? We know that cos2(y) + sin2(y) = 1, so that cos(y) =
√

1− sin2(y). But since

sin(y) = x, we have cos(y) =
√

1− x2. Hence, we have
d

dx
[arcsin(x)] =

1
cos(arcsin(x))

=
1√

1− x2
.

¤

Example. Compute
d

dx
[arccos(x)].

Solution. We’ll use the same trick as last time. We start by writing y = arccos(x) and apply cosine to both

sides to get cos(y) = cos(arccos(x)) = x. The left hand side has derivative − sin(y)
dy

dx
, and the right hand side

has derivative 1. This means we have
dy

dx
= − 1

sin(y)
.

But what is sin(y) in terms of x? Again, we have cos2(y) + sin2(y) = 1, so sin(y) =
√

1− cos2(y). But since
cos(y) = x, we have sin(y) =

√
1− x2. Hence, we have

d

dx
[arcsin(x)] = − 1

sin(arccos(x))
= − 1√

1− x2
.
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¤

Example. Show that
d

dx
[arctan(x)] =

1
1 + x2

.

Solution. We use the same trick as before, but when simplifying this we’ll need the identity 1+tan2(y) = sec2(y).
Try it! ¤

Example. Find
dy

dx
for the graph

√
1 + x2y2 = 2xy.

Solution. In this problem I’m going to use the shorthand y′ =
dy

dx
. A lot of students find this useful, and I want

you to feel comfortable using it if you like.

Ok, this is a typical implicit differentiation problem. We begin by computing the derivatives of the left and
right hand sides. For the right hand side, we have

d

dx
[2xy] = 2(xy′ + y) = 2xy′ + 2y

(note: I had to use the product rule to compute this derivative). For the left hand side, I notice that
√

1 + x2y2 =
f(g(x)), where f(x) =

√
x and g(x) = 1 + x2y2. Hence the chain rule says that

d

dx

[√
1 + x2y2

]
=

1

2
√

1 + x2y2

(
x2 · 2yy′ + 2xy2

)
=

2x2yy′

2
√

1 + x2y2
+

2xy2

2
√

1 + x2y2
.

Setting these two derivatives equal to each other, I solve for y′:

2xy′ + 2y =
2x2yy′

2
√

1 + x2y2
+

2xy2

2
√

1 + x2y2

⇐⇒ 2y − 2xy2

2
√

1 + x2y2
=

2x2yy′

2
√

1 + x2y2
− 2xy′

⇐⇒ 2y − 2xy2

2
√

1 + x2y2
= y′

(
2x2y

2
√

1 + x2y2
− 2x

)

⇐⇒ y′ =
2y − 2xy2

2
√

1 + x2y2

2x2y

2
√

1 + x2y2
− 2x

The answer isn’t pretty, but that’s ok. ¤

aschultz@stanford.edu http://math.stanford.edu/~aschultz/w06/math19 Page 4 of 4


