

Defn (solvable by adicals) A polynomial f(x) EF(x) is solvable by radicals if its splitting field Kf is contained in some conductal extension. Def'n (Solvable group) A group G is called solvable it thure is a sequence of subgroups $\{e_G\} = H_0 \leq H_1 \leq H_2 \leq \dots \leq H_{n-1} \leq H_n = G$ so that Hid Hiti for all DEICN and Hiti/Hi is cyclic.

BIG RESULT! Thu (Gulois' Great Theorem) let char(F)=D, let f(x) & F[x] and let kf be its splittig held. Then f is solvable by radiculs iff Gal (KF/F) is solvable. (Now Stuff) Prove this result

we'll nud	· · · · · · · · · · · ·	
Then (Kummer Theory) Let AENN and suppose F contains a	p/initue	nth coot of
unity W_{n} . Thus for an extension Gal(E/F) $\hookrightarrow \mathbb{Z}_{n}$ iff E is The	E/F	Na)
Some $x^n - c \in F[x]$.	· · · · · · · · · · ·	
Note: we already know "=" We'll	do "=>"	next time.

Pf (Galis' Great Theorem) let's first assume f(x) EF[x] is solvable by malicals. We'll try to prove that Gal (KF/F) is a rolumble group. By assumption we have a prodical tower containing kg: Kf < $- - - E_{5-1} - E_{5} = E$ $F \longrightarrow E_1 \longrightarrow E_2 \longrightarrow$ F("Je,) E("Jez) $E_{s-1}(N_{s})$ We'll extend This picture by adjoining a (N=TTh:) The not of with.

 $\rightarrow \widetilde{E}_{s_{1}} \longrightarrow \widetilde{E}_{s} = \widetilde{E}$ $\int \widetilde{E}_{s_{1}} (^{n} \mathcal{I}_{e_{s}})$ $k_{f} \swarrow \int \widetilde{E}_{s_{1}} (^{n} \mathcal{I}_{e_{s}})$ $\widetilde{F} = F(W) \longrightarrow \widetilde{E}, \longrightarrow \widetilde{E}_{Z} \longrightarrow$ F(Ve) E((Yez) $\rightarrow E_{5-1} \hookrightarrow E_5 = E$ $F \longrightarrow E_1 \longrightarrow E_2 \longrightarrow$ Es-i (nstes) F(Jei) E1(Jez) Note: for all 14i4s, the field F has a primitive nith root of unity (w^{n,-n}in nite ...ns). Hence for all i ur get Gul(Ēi/Ēi-1) is a subgroup of Zni (hune cyclic) by Kummer Theory.

Our strategy: try to prove Gal (E/F) is solvable in order to ague Gal (Ke/F) is solvable. (Recall : since Kf/F is Galois, we get That $G_{nl}(\widetilde{E}/F)/G_{nl}(\widetilde{E}/K_{F}) \simeq G_{nl}(K_{F}/F).$ Our deepish Therem from last time said quotiente at solumble groups are solumble.)

So: we'll try to show Gal (E/F) is solvable. Will fist focus on $\tilde{G} = G_{nl}(\tilde{E}/\tilde{F})$. (Fin exercise: E/F and E/F are both Galois.) Note: $\tilde{G} \leq G_n (\tilde{E}/F)$. we'll show G is solvable. let Hi=Gal (Ē/Ēs-i). S. fir example $H_o = G_{ul}(\tilde{E}/\tilde{E}_s) = G_{ul}(\tilde{E}/\tilde{E}) = \frac{3}{2}e^{3}$

we Thun	zet	
Ze) E Gu	$\left(\frac{\widetilde{E}}{\widetilde{E}_{g,1}}\right) \leq$	$G_n(\widehat{E}/\widehat{E}_{s-z})\subseteq \dots \subseteq G_n(\widehat{E}/\widehat{E}_{s-z})\subseteq G_n(\widehat{E}/\widehat{E}_{s-z})$
	. (1	$H_2 \subseteq \cdots \subseteq H_{s-1} \subseteq H_s : \widetilde{G}$
The findame	, ful Thorem	n says H: A Hi+1 iff
Es-i/Es	-i-1 is a $i+is$	Galois extension. But kummer Galois, and even Gal (Ēs-i/Ēs-i-,)
they tells	-i-1 v_{s} it is v_{s} of U_{m} .	Galois, and even Gul (Ēs-i/Ēs-i-,) i (and hence cyclic). Bit nok

$H_{in}/H_i = G_{al}(\widehat{E}/\overline{E}_{s-i-i})$	$S_{al}(\tilde{E}/\tilde{E}_{s-i}) \simeq G_{al}(\tilde{E}_{s-i/})$
which we know is cyclic.	· · · · · · · · · · · · · · · · · · ·
So: G is solvable. Now to show Gal (E/F)	is solumble, note
$\tilde{F} = F(w)/F$ is Galois, and	so by Galois correspondence
we get $Gral(\tilde{E}/\tilde{E}) \bigtriangleup$	$Gal(\tilde{E}/F).$
$\mathcal{G}_{\mathcal{G}}$	

So from provisors norte me got:	normal subgroup with quotient is Gul (F/F)
$\{e\} \subseteq Gul(\tilde{E}/\tilde{E}_{g_1}) \subseteq Gul(\tilde{E}/\tilde{E}_{g_2}) \subseteq \dots \subseteq Gul(\tilde{E}/\tilde{E}_{g_1}) \subseteq Gul(\tilde{E}/\tilde{E}) \subseteq Gul(E$	$G_{\mu}(\widehat{E}/\widehat{E}_{\bullet}) \subseteq G_{\mu}(\widehat{E}/F)$
$H_{0} \subseteq H_{1} \subseteq H_{2} \subseteq \cdots \subseteq H_{s-1} \subseteq$	
Sime all "lower layers" of This chain	satisty The
solvability property and since The new	w" top layer
also satisfies The condition, we have	M Gral (\tilde{E}/F)
is solvable.	

For The second half: assume Gal (Kf/F) is solvable, and we want fis golvable by malicals. let N=[Kf:F] and let w be a N!th of unity. Let $\tilde{F} = F(\omega)$. We can define $\tilde{K}_{F} = K_{F}(\omega)$. Claim: Gul(KF/F) is (isomorphic to) a subgroup of Gal (KC/F). (Stratyg: create injective hom.)

let $\sigma \in G_{nl}(\overline{k}_{\mathcal{F}}/\overline{F})$ be given. Define $\psi(\sigma) = \sigma|_{kf}$. Is $\psi(r) \in (\operatorname{rel}(K_{\mathrm{F}}/F)?$ Since F fixes elements in \tilde{F} , and since $F \subseteq \tilde{F}$, we have $f(\tau)$ fixes elements in F. To show 4(0) is an element of Aut(Kf), we only have to check that $\sigma(k_f) = k_f$. Since Kf/F is Galois, we know its only conjugate in \tilde{K}_{f} is itself, s. $\sigma(K_{f}) = K_{f}$.

lets check injectivity. let T, Tz EGul (Kf/F) be firen so that $\psi(\sigma_1) = \psi(\sigma_2)$, then $\sigma_1 = \sigma_2$. We know $k_{f} = F(\alpha_{1}, ..., \alpha_{n})$ for appropriate $\alpha_{1}, ..., \alpha_{n}$, So that $K_F = F(w, \alpha_1, ..., \alpha_n)$. Since $f(\tau_1) = f(\tau_2)$, in Know $\sigma_1(\kappa) = \sigma_2(\kappa)$ for any kekt. In particular we know $\sigma_1(d_1) = \overline{\sigma_2}(d_1)$ fir all 15ign. BA since Gul (Kf/F) fixes w, we have $\sigma_1(w) = \sigma_2(w)$. Since elements of $Gul(F_f/\tilde{F})$ are determined by Their action on generates of FG, we get $\sigma_1 = \sigma_2$.

We now have Gal(Fp/F) is a subgroup of Gul (KF/F). Noke also [KF:F] = [KF:F] = N. By our deepish Theorem, we get $G_n(F_f/F)$ is solumble: Three exist subgroups $\{H_i\}_{i=0}^d$ $- = H_{k-1} = H_k = G$ $\{c\} = H_0 \subseteq H_1 \subseteq H_2$ Gul(KF/F) s. That His Hir and Hir/Hi is cyclic.

Now we'll use The Galois colorspincence on This chain of subgroups $\{c\} = H_0 \subseteq H_1 \subseteq H_2 \subseteq \dots \subseteq H_{k-1} \subseteq H_k = \widetilde{G}$ s. That $H_i \supseteq H_{i+1}$ and H_{i+1}/H_i is cyclic. $Gul(\tilde{k}_f/\tilde{F})$ F $k_{f}: \overline{k}_{g} \leftarrow \overline{k}_{g-1} \leftarrow \overline{k}_{g-2} \leftarrow \cdots \leftarrow \overline{k}_{i} \leftarrow \overline{F}$ and $\overline{K}_{i+1}/\overline{K}_{i}$ is Galois and $Gal(\overline{k}_{f}/\overline{K}_{i})/\overline{Gal}(\overline{k}_{f}/\overline{K}_{i})) \cong Gal(\overline{k}_{i+1}/\overline{K}_{i})$

Simme Gul (Kit./k:) is cyclic, ma get frem Kummer They That Kit, = Ki (Ni Ki) for som kit Ki. Hence we have F ~> Kp is a radical tower. But $\widetilde{F} = F(w) = F(N!I)$, so in that FLD FLD KF is a redical tower containing KF. Hence F is solvable.