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ABSTRACT

In this paper we describe the range of values that can be taken by
the fractional weak discrepancy of a poset subject to forbidden r + s
configurations, where r+s = 4. Generalizing previous work on weak
discrepancy in [5, 12, 13], the notion of fractional weak discrepancy
wdF (P ) of a poset P = (V,≺) was introduced in [7] as the minimum
nonnegative k for which there exists a function f : V → R satisfying
(i) if a ≺ b then f(a)+1 ≤ f(b) and (ii) if a ‖ b then |f(a)−f(b)| ≤ k.
Semiorders were characterized by their fractional weak discrepancy
in [8]. Here we describe the range of values of wdF (P ) according to
whether P contains an induced 2 + 2 and/or an induced 3 + 1. In
particular, we prove that the range for an interval order that is not
a semiorder (contains a 3 + 1 but no 2 + 2) is the set of rational
numbers greater than or equal to one.

∗Supported in part by a Wellesley College Brachman Hoffman Fellowship.
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1 Introduction

A weak order is a poset P = (V,≺) that can be assigned a real-valued function
f : V → R so that a ≺ b in P if and only if f(a) < f(b) [1]. Thus, the elements
of a weak order can be ranked by a function that respects the ordering ≺ and
issues a tie in ranking between incomparable elements (a ‖ b). When P is not a
weak order, it is not possible to resolve ties as fairly. The weak discrepancy of a
poset, introduced in [13] as the weakness of a poset, is a measure of how far a
poset is from being a weak order [5], [12]. In [7], the problem of determining the
weak discrepancy of a poset was formulated as an integer program whose linear
relaxation yields a fractional version of weak discrepancy given in Definition 1
below.

Definition 1 The fractional weak discrepancy wdF (P ) of a poset P = (V,≺)
is the minimum nonnegative real number k for which there exists a function
f : V → R satisfying

(i) if a ≺ b then f(a) + 1 ≤ f(b) (“up” constraints)
(ii) if a ‖ b then |f(a)− f(b)| ≤ k. (“side” constraints)

Such a function f is called an optimal fractional weak labeling of P (or of V ).

As an example, consider the salary assignment problem described in [8].
A manager wishes to assign a salary f(a) to each employee a in her division
in a fair way. She can partially order the employees in her division based on
their value to the company. The “up” constraints ensure that a more valuable
employee receives a higher salary. The “side” constraints are fairness conditions
that restrict the salary discrepancies between incomparable employees. For a
weak order, sets of pairwise incomparable employees (antichains) are assigned
the same salary level and the fractional weak discrepancy is zero (k = 0 satisfies
the definition). In general, with the appropriate choice of unit the manager can
assign f(a) according to Definition 1. The k in this definition is a measure of
the fairness of the assignment.

Denote the disjoint union of two chains with r and s elements, respectively,
by r + s. A number of important classes of posets can be characterized in terms
of forbidden r + s configurations. For example, linear orders are posets with no
induced 1 + 1, and it is not hard to show that weak orders are posets with no
induced 2 + 1 [1]. Posets with no induced 2 + 2 and no induced 3 + 1 are known
as semiorders. By a theorem of Scott and Suppes [6], this class is equivalent
to the class of unit interval orders, that is, posets which can be represented as
follows: each element x of the ground set V is assigned a unit length interval Ix

on the real number line so that x ≺ y if and only if the interval Ix is completely
to the left of Iy. In [8] we show how we can use fractional weak discrepancy
to characterize the class of semiorders. In particular we establish the following
two results.

Theorem 2 ([8]) If P is a semiorder then wdF (P ) = r
r+1 for some integer

r ≥ 0. Furthermore, for each integer r ≥ 0, there exists a semiorder P with
wdF (P ) = r

r+1 . Equivalently, {wdF (P ) : P a semiorder} = {0, 1
2 , 2

3 , 3
4 , 4

5 , . . .}.



3

Theorem 3 ([8]) If P is a poset that is not a semiorder then wdF (P ) is a
rational number that is at least one. Furthermore, for each rational number
q ≥ 1, there exists a poset P (that is not a semiorder) with wdF (P ) = q.
Equivalently, {wdF (P ) : P a poset that is not a semiorder} = {q ≥ 1 : q ∈ Q}.

Combining the results of Theorems 2 and 3, we obtain the following charac-
terization of semiorders.

Corollary 4 ([8]) A poset P is a semiorder if and only if wdF (P ) = r
r+1 for

some integer r ≥ 0.

Posets possessing no induced 2 + 2 and/or no 3 + 1 have been studied ex-
tensively beyond the class of semiorders. Relaxing the requirement that the
poset contain no 3 + 1, but retaining our restriction on no induced 2 + 2, yields
the well-known class of interval orders. These are, by definition, posets in which
each element x can be assigned an interval Ix on the real line so that x ≺ y if
and only if Ix lies completely to the left of Iy [2]. Posets that are 3 + 1 free
but may or may not contain a 2 + 2 are not as well known as either semiorders
or interval orders, but have a number of important properties nevertheless. For
example, Stanley’s generalization of the chromatic polynomial is s-positive for
the incomparability graph of such a poset [4, 11]. Skandera characterized posets
containing no induced 3 + 1 in terms of their antiadjacency matrices and used
this characterization to give a simple proof that the chain polynomial of such
posets has only real zeros [10].

In this paper we study the fractional weak discrepancy of posets obtained
by selectively relaxing the restrictions on induced 2 + 2 and induced 3 + 1.
Together with Theorem 3, Theorem 10 will imply that the range of the fractional
weak discrepancy function for interval orders (no induced 2 + 2) that are not
semiorders (contain an induced 3 + 1) is precisely the set of all rational numbers
greater than or equal to 1. Indeed, Corollary 15 states that any poset with
fractional weak discrepancy greater than 1 must contain a 3 + 1. We also show
that the range of wdF when an induced 2 + 2 is present also depends on the
presence of a 3 + 1: when P contains no induced 3 + 1 then wdF (P ) = 1 and
when it does contain a 3 + 1 then the range is again the set of rationals that
are at least 1. These results are summarized in Table 1.

2 Forcing cycles

We begin with some definitions and preliminary results.

Definition 5 A forcing cycle C of poset P = (V,≺) is a sequence C : x0, x1, . . . , xm =
x0 of m ≥ 2 elements of V for which xi ≺ xi+1 or xi ‖ xi+1 for each i : 0 ≤ i < m.
If C is a forcing cycle, we write up(C) = |{i : xi ≺ xi+1}| and side(C) = |{i :
xi ‖ xi+1}|.

In [2], forcing cycles are called picycles (preference-indifference cycles).
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No 3 + 1 Yes 3 + 1

semiorders

No 2 + 2 {wdF (P )} = { r
r+1} {wdF (P )} = {rationals ≥ 1}

interval orders (Corollary 4) (Theorems 3, 10)

Yes 2 + 2 wdF (P ) = 1 {wdF (P )} = {rationals ≥ 1}
(Corollary 16) (Theorem 9; Corollary 15; Figure 3)

Table 1: Summary of results for the range of wdF .

a

b

e

f

g

c

d

Figure 1: A poset with similar forcing cycles starting at a with type [2, 2, 3] and
at e with type [3, 2, 2].

Let C be a forcing cycle as in Definition 5. We may choose to start the
cycle at an element x0 that is the beginning of a sequence of “up” steps, i.e.,
x0 ≺ x1 and xm−1 ‖ xm = x0. We call x0 an upward starting point of C. In
this case, C consists of s successive chains of ai ≥ 1 elements each followed by
an incomparability, i = 1, 2, . . . , s, where

∑s
i=1 ai = m. We write type(C) =

[a1, a2, . . . , as].
For example, the poset P in Figure 1 has forcing cycle C : a ≺ b ‖ c ≺ d ‖

e ≺ f ≺ g ‖ a with up(C) = 4, side(C) = 3 and type(C) = [2, 2, 3]. In general, a
forcing cycle C with type(C) = [a1, a2, . . . , as] has up(C) =

∑s
j=1(aj − 1) and

side(C) = s. Note that ai = 1 corresponds to two consecutive incomparabilities
in the forcing cycle.

Given a forcing cycle C, we can obtain a closely related forcing cycle C ′ by
choosing a different upward starting point. For example, in Figure 1 we can
start the forcing cycle at e instead of a. Then we obtain C ′ : e ≺ f ≺ g ‖ a ≺
b ‖ c ≺ d ‖ e, which has type(C ′) = [3, 2, 2].

Note that if P has no incomparable pair then it is a linear order, has no
forcing cycle, and wdF (P ) = 0. The following result characterizes fractional
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Figure 2: A poset with wdF (P ) = 3
2 but no forcing cycle with up(C) =

3, side(C) = 2.

weak discrepancy in terms of forcing cycles when P has an incomparable pair.
The analogous result for weak discrepancy appears in [5].

Theorem 6 ([7]) Let P = (V,≺) be a poset with at least one incomparable
pair. Then wdF (P ) = maxC

up(C)

side(C)
, taken over all forcing cycles C in P .

The proof of Theorem 3 shows that for integers r ≥ s ≥ 2, if q = r
s (not

necessarily in lowest terms) then there exist a non-semiorder P with wdF (P ) = q
and a forcing cycle C in P with up(C) = r, side(C) = s. It is thus natural to
conjecture that for integers r ≥ s ≥ 2, every poset P with wdF (P ) = r

s has a
forcing cycle C with up(C) = r and side(C) = s. This is not the case even if r

s
is in lowest terms, as the following proposition shows.

Proposition 7 There exists a poset P with wdF (P ) = 3
2 but no forcing cycle

C with up(C) = 3 and side(C) = 2.

Proof. We show that the poset P in Figure 2 has the desired property. By
Definition 1, the labeling function shown there implies that wdF (P ) ≤ 3

2 . By
Theorem 6 the forcing cycle

x1 ≺ y1 ‖ x2 ≺ y2 ‖ x3 ≺ y3 ‖ z1 ≺ z2 ≺ z3 ≺ z4 ‖ x1

shows that wdF (P ) ≥ 6
4 = 3

2 , thus wdF (P ) = 3
2 .

It is easy to see that there is no 4 + 1 in P because there is only one chain of
four elements, z1 ≺ z2 ≺ z3 ≺ z4, and every other element in P is comparable to
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some zi. Similarly, one can check that there is no 3 + 2 in P by considering all
possible chains of three elements. This implies that P cannot contain a forcing
cycle C with up(C) = 3 and side(C) = 2 because we could choose an upward
starting point for such a cycle to yield one of type [4, 1], a 4 + 1, or of type
[3, 2], a 3 + 2. �

Lemma 8, which appears as Proposition 9 of [8], allows us to describe optimal
fractional weak labelings for forcing cycles whose “up” to “side” ratios achieve
the maximum value of wdF (P ). In particular, every optimal labeling is tight on
such a forcing cycle in the following sense.

Lemma 8 ([8]) Let C : x0, x1, . . . , xm−1, xm = x0 be a forcing cycle for poset
P = (V,≺) such that k = wdF (P ) = up(C)

side(C)
and let f : V → R be an optimal

fractional weak labeling of P . For each i ∈ {0, 1, . . . ,m− 1}
(i) if xi ≺ xi+1 then f(xi) + 1 = f(xi+1)
(ii) if xi ‖ xi+1 then f(xi+1)− f(xi) = −k.

For example, the labeling shown in Figure 2 is tight on the forcing cycle
given in the proof of Proposition 7.

3 The Range of wdF and Interval Orders

In Theorem 3 we find the range of the fractional weak discrepancy function for
posets that are not semiorders. In this section we divide the non-semiorders into
two types and find the range for each: non-interval orders and interval orders
that are not unit interval orders.

Theorem 9 If P is a non-interval order, then wdF (P ) ≥ 1. Furthermore, for
any rational number q ≥ 1, there exists a non-interval order P with wdF (P ) = q.
Thus for the class of non-interval orders, the range of wdF is {q ∈ Q : q ≥ 1}.

Proof. If P is not an interval order (i.e., possesses an induced 2 + 2) then P
is not a semiorder, so wdF (P ) ≥ 1 by Theorem 3.

Now let q > 1 be rational. The proof of Theorem 3 includes the construction
of a poset P with wdF (P ) = q. This construction, which appears in Proposition
14 of [8], contains an induced 2 + 21, so P is not an interval order.

For the case of q = 1 we consider Figure 3, which gives a poset P containing
an induced 2 + 2, so again P is not an interval order. The labeling of P shown
in the figure demonstrates that wdF (P ) ≤ 1. On the other hand C : a ‖ c ≺
d ≺ e ‖ a is a forcing cycle with up(C) = side(C) = 2, so wdF (P ) = 1. �

We now establish a similar result for interval orders. In particular, we show
how to achieve any rational number that is at least one as the fractional weak
discrepancy of some interval order, which by Theorem 3 is necessarily not a
semiorder. The proof is constructive.

1The 2 + 2 is formed by the chains xn−1 ≺ yn−1 and z1 ≺ z2.
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a 1

b 2

c 0

d 1

e 2

Figure 3: A non-interval order P with wdF (P ) = 1.

Theorem 10 For any rational number q ≥ 1, there exists an interval order P
with wdF (P ) = q.

Proof. We write the given rational q as q = r/s with integers r ≥ s ≥ 2.
We will construct an interval representation of an order P = (V,≺) with V =
{x0, x1, . . . , xr, y1, y2, . . . , ys−1}. For 0 ≤ i ≤ r, let I(xi) = [is, is], that is, each
of these intervals is a point. Let I(ys−1) = [(s − 2)r, sr] and if s > 2, then for
1 ≤ j ≤ s−2, let I(yj) = [(j−1)r, (j+1)r− 1

2 ]. Figure 4 shows the representation
in the case r = 7 and s = 4. By construction, xi ≺ xi+1 for 0 ≤ i < r and
yj ‖ yj+1 for 1 ≤ j ≤ s−2. Furthermore, xr ‖ ys−1 and y1 ‖ x0. Thus P contains
the forcing cycle C : x0 ≺ x1 ≺ x2 ≺ · · · ≺ xr ‖ ys−1 ‖ ys−2 ‖ · · · ‖ y1 ‖ x0 with
up(C) = r and side(C) = s. Thus wdF (P ) ≥ r/s by Theorem 6.

It remains to show wdF (P ) ≤ r/s. Define the labeling function g : V → Z by
setting g(xi) = is for i = 0, 1, . . . , r and setting g(yj) = jr for j = 1, 2, . . . , s−1.
(See the example in Figure 4.) We show

(i) if a ≺ b then g(a) + s ≤ g(b) (“up” constraints)
(ii) if a ‖ b then |g(a)− g(b)| ≤ r. (“side” constraints)

Then it will follow that the function f : V → Q defined by f(x) = g(x)/s is an
optimal fractional weak labeling of P satisfying Definition 1.

We will consider all pairs (a, b) of elements of V , classify their relation in
the poset, and prove that the corresponding constraints are satisfied. First take
xi, xj ∈ V with i < j. By construction, xi ≺ xj and g(xi) + s = is + s =
(i + 1)s ≤ js = g(xj), satisfying (i) for this pair of elements.

Next consider yi, yj ∈ V with i < j. If j = i + 1, then I(yi) ∩ I(yj) 6= ∅ so
yi ‖ yj and |g(yi) − g(yj)| = |ir − jr| = r, satisfying (ii). Otherwise, j ≥ i + 2.
Let R be the right endpoint of the interval I(yi) and L be the left endpoint of
the interval I(yj). Then R = (i + 1)r− 1

2 ≤ (j− 1)r− 1
2 < L. Thus yi ≺ yj and

g(yi) + s = ir + s ≤ ir + r = (i + 1)r < jr = g(yj), satisfying (i).
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0

I(x0)

g(xi) = 4

I(x1) I(x2)

8

I(x3)

12

I(x4)

16

I(x5)

20

I(x6)

24

I(x7)

28

I(y1)

g(y1) = 70 13.5

I(y2)

g(y2) = 147 20.5

I(y3)

g(y3) = 2114 28

Figure 4: An interval order P with wdF (P ) = 7/4 and labeling function g.

Lastly, consider xi, yj ∈ V . By construction, xi ‖ yj precisely when the
point I(xi) is contained in the interval I(yj). In this case, for 1 ≤ j ≤ s− 1 we
have (j − 1)r ≤ is ≤ (j + 1)r. Subtracting jr yields −r ≤ is − jr ≤ r. Thus
|g(xi)− g(yj)| = |is− jr| ≤ r, satisfying (ii).

If instead xi ≺ yj then the point I(xi) lies strictly to the left of I(yj), so
is < (j − 1)r. In this case, g(xi) + s = is + s < (j − 1)r + s ≤ (j − 1)r + r =
jr = g(yj), satisfying (i). Finally, if yj ≺ xi then j < s− 1 and the point I(xi)
lies strictly to the right of the interval I(yj), and thus (j + 1)r − 1

2 < is. Since
all the parameters are integers, in fact, (j + 1)r ≤ is. In this case g(yj) + s =
jr + s ≤ jr + r = (j + 1)r ≤ is = g(xi), satisfying (i). �

We can now fill in the top-right entry of Table 1. If P contains an induced
3 + 1 but no 2 + 2, then Theorem 3 implies wdF (P ) ≥ 1. Conversely, by The-
orem 10 any rational q ≥ 1 equals wdF (P ) for some interval order P (contains
no 2 + 2), but Theorem 2 implies P is not a semiorder (thus contains a 3 + 1).
We have shown the following.

Corollary 11 For the class of posets that are interval orders but not semiorders
(contain an induced 3 + 1 but no 2 + 2), the range of wdF is {q ∈ Q : q ≥ 1}.

4 An Upper Bound on wdF for Posets with no
n + 1

As in [7, 8], we define the (integer) weak discrepancy wd(P ) of a poset P = (V,≺)
as the minimum nonnegative integer k for which there exists a function f : V →
Z satisfying (i) and (ii) of Definition 1. This is equivalent to the concept of
weakness first introduced in [13]. The following theorem (Proposition 7 of [7])
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allows us to calculate the weak discrepancy of a poset from its fractional weak
discrepancy.

Theorem 12 ([7]) For any poset P we have wd(P ) = dwdF (P )e.

In [13], the author proved a result giving an upper bound on wd(P ) for
posets with no induced n + 1. We state the result in its contrapositive form.

Theorem 13 ([13]) Every poset P with wd(P ) > n − 2 contains an induced
n + 1.

Neither forcing cycles nor fractional weak discrepancy had been defined when
Theorem 13 was first presented. In this section, we give a substantially simpler
proof of the analogous theorem for fractional weak discrepancy and show the
two results are in fact equivalent.

Theorem 14 Every poset P with wdF (P ) > n− 2 contains an induced n + 1.

Proof. Let P = (V,≺) be an interval order with k = wdF (P ) > n − 2 and
let f : V → R be an optimal fractional weak labeling of P . By Theorem 6
there exists a forcing cycle C : x0, x1, . . . , xm = x0 such that k = wdF (P ) =
up(C)

side(C)
. Without loss of generality, suppose that xm−1 ‖ xm = x0, i.e., the

cycle closes with an incomparability. By Lemma 8, the labeling f is tight on C.
In particular, f(xm−1)− f(x0) = k.

Consider the sequence of differences S : f(x1)−f(x0), f(x2)−f(x1), . . . , f(xm−1)−
f(xm−2). Note that the sum of the elements of S is f(xm−1) − f(x0) = k. By
Lemma 8, each term of S is either +1 or −k. Let t be the largest number of
consecutive +1’s in S. If t < k then every partial sum of S, and in particular
the sum of all the terms, is less than k, a contradiction. Thus, t ≥ k and since
t is an integer, t ≥ dke. By the definition of t, there is a longest chain in C
containing t elements. Let xj be its starting point and consider its subchain
xj ≺ xj+1 ≺ · · · ≺ xj+dke of length dke. By the maximality of t, xj−1 ‖ xj (if
j = 0 we replace j by m) and thus f(xj−1)− k = f(xj). Now

f(xj+dke) = f(xj) + dke = f(xj−1)− k + dke < f(xj−1) + 1 (1)

If xj−1 ≺ xj+dke then (1) contradicts the “up” constraint in Definition 1. If
xj+dke ≺ xj−1 then xj ≺ xj+dke ≺ xj−1, contradicting xj−1 ‖ xj . Thus,
xj−1 ‖ xj+dke. We conclude that xj ≺ xj+1 ≺ · · · ≺ xj+dke ‖ xj−1 is a
(dke+ 1) + 1. Since k > n − 2 and n − 2 is an integer, dke ≥ n − 1 and P
contains an induced n + 1. �

The bound given in the Theorem 14 is the best possible, since P = (n− 1) + (n− 1)
has no induced n + 1 but wdF (P ) = 2(n−2)

2 = n− 2.
The hypotheses of Theorems 13 and 14 are equivalent because n is an integer

and wd(P ) = dwdF (P )e. Thus our proof of Theorem 14 gives a shorter proof
of Theorem 13 as well. Notice also that the proof of Theorem 14 relies on the
existence of a forcing cycle and an optimal labeling that is tight on that cycle.
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This same argument cannot be used to prove Theorem 13 directly since the
tightness condition need not hold for forcing cycles whose “up” to “side” ratios
achieve the (integer) weak discrepancy of the poset. For example, let P be a
3 + 2 with chains a0 ≺ a1 ≺ a2 and a3 ≺ a4. An optimal integer labeling is
f(a0) = 0, f(a1) = 1, f(a2) = 2, f(a3) = 1, f(a4) = 2 so wd(P ) = 2, but the
labeling is not tight on the forcing cycle a0 ≺ a1 ≺ a2 ‖ a3 ≺ a4 ‖ a0.

5 The Range of wdF and non-Interval Orders

In Theorem 9 we find the range of the fractional weak discrepancy function for
non-interval orders. In this section, we divide these orders into two types and
find the range for each: orders that contain an induced 3 + 1 and those that do
not. This will justify the entries at the bottom of Table 1.

The poset P in Figure 2 has wdF (P ) = 3/2 and contains no induced 4 + 1
but it does have a 3 + 1, e.g., the elements of z1 ≺ z2 ≺ z3 are all incomparable
to x2. Indeed, all posets with fractional weak discrepancy greater than one must
contain a 3 + 1 by Theorem 14, with n = 3. We state that specific case so we
can refer to it more easily.

Corollary 15 Every poset P with wdF (P ) > 1 contains an induced 3 + 1.

This result is best possible since, by Theorem 3, if wdF (P ) < 1 then P must be
a semiorder and thus does not contain a 3 + 1. On the other hand, [7] shows
that wdF (3 + 1) = wdF (2 + 2) = 1 so if wdF (P ) = 1 then P may or may not
contain a 3 + 1.

Note that Theorem 9 implies that the range of wdF for posets possessing an
induced 2 + 2 is the set of all rational numbers greater than or equal to 1. In
the case of strict inequality, Corollary 15 implies all such posets must also have
an induced 3 + 1. The poset P given in Figure 3 possesses both a 2 + 2 and
a 3 + 1 and has wdF (P ) = 1. We conclude that the range of wdF for posets
possessing both an induced 2 + 2 and an induced 3 + 1 is also {q ∈ Q : q ≥ 1},
as indicated in the lower-right entry in Table 1.

By Corollary 15 a poset P with no induced 3 + 1 must satisfy wdF (P ) ≤ 1.
Also, if P has an induced 2 + 2 then it has a forcing cycle C with up(C)

side(C)
= 1

and thus by Theorem 6, wdF (P ) ≥ 1. So wdF (P ) = 1, which fills in the lower-
left entry of Table 1 and which we state as an additional corollary. The converse
is clearly false since wdF (3 + 1) = 1. We have

Corollary 16 Every poset P with an induced 2 + 2 but no induced 3 + 1 sat-
isfies wdF (P ) = 1.

Although Corollary 15 gives the best possible bound for wdF (P ) over the
class of all posets, the upper row of Table 1 suggests a slightly better bound
when P is restricted to the class of interval orders. In particular, if C is a
forcing cycle for P with up(C) > r and side(C) = r + 1 (so wdF (P ) > r

r+1 ),
then C must contain a 3 + 1. Furthermore, the proof of Theorem 2 given in
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Proposition 16 of [8] shows how to construct, for each r > 0, an interval order P
possessing an optimal forcing cycle C with up(C) = r and side(C) = r + 1 but
no induced 3 + 1. In the case n = 3, we can express the upper row as saying
that if up(C) > (n − 2)r and side(C) = r + 1, then P must contain an n + 1.
In [9] we extend this result to the case where n ≥ 3.

Acknowledgment. The third author feels very privileged to have collaborated
with Peter Fishburn on papers [3] and [12].

References

[1] K.P. Bogart. Introductory Combinatorics. Harcourt Brace Jovanovich, New
York, 1990.

[2] P.C. Fishburn. Interval orders and interval graphs: A study of partially
ordered sets. John Wiley & Sons, New York, 1985.

[3] P.C. Fishburn, P.J. Tanenbaum, and A.N. Trenk. Linear discrepancy and
bandwidth. ORDER, 18:237–245, 2001.

[4] V. Gasharov. Incomparability graphs of (3 + 1)-free posets are s-positive.
Discrete Math., 157:211–215, 1996.

[5] J.G. Gimbel and A.N. Trenk. On the weakness of an ordered set. SIAM J.
Discrete Math., 11:655–663, 1998.

[6] D. Scott and P. Suppes. Foundational aspects of theories of measurement.
J. Symbolic Logic, 23:113–128, 1958.

[7] A. Shuchat, R. Shull, and A.N. Trenk. The fractional weak discrepancy of
a partially ordered set. Discrete Applied Math., to appear.

[8] A. Shuchat, R. Shull, and A.N. Trenk. Range of the fractional weak discrep-
ancy function. ORDER, 23:51–63, 2006.

[9] A. Shuchat, R. Shull, and A.N. Trenk. Fractional weak discrepancy and
interval orders. In preparation.

[10] M. Skandera. A characterization of (3 + 1)-free posets. J. of Combin.
Theory, Ser. A., 93:231–241, 2001.

[11] R. Stanley. A symmetric function generalization of the chromatic polyno-
mial of a graph. Adv. Math., 111:166–194, 1995.

[12] P.J. Tanenbaum, A.N. Trenk, and P.C. Fishburn. Linear discrepancy and
weak discrepancy of partially ordered sets. ORDER, 18:201–225, 2001.

[13] A.N. Trenk. On k-weak orders: Recognition and a tolerance result. Discrete
Math., 181:223–237, 1998.


