
CHAOTIC UNIMODAL AND BIMODAL MAPS

FRED SHULTZ

Abstract. We describe up to conjugacy all unimodal and bimodal maps that

are chaotic, by giving necessary and sufficient conditions for unimodal and

bimodal maps of slopes ±s to be transitive.

1. Introduction

In discussing chaotic dynamical systems, interval maps provide examples that
can be easily visualized. Two standard examples are the full tent map x 7→
1− |1− 2x|, and the conjugate map x 7→ 4x(1−x). A logistic map fk(x) = kx(1−x)
for k > 4 is also chaotic, if restricted to the set X of points in [0, 1] whose orbits
stay in [0, 1], cf. [6]. However, here X is a Cantor set. Are there other simple ex-
amples of functions chaotic on all of [0, 1]? Our purpose here is to describe (up to
conjugacy) all chaotic interval maps that are unimodal or bimodal, i.e., have two or
three intervals of monotonicity, where by an interval map we mean any continuous
map of [0, 1] into [0, 1].

In [3], Devaney defines a continuous map to be chaotic if it is transitive, has a
dense set of periodic points, and is sensitive to initial conditions. If τ : [0, 1] → [0, 1]
is continuous, then the results of Banks [1] and of Vellekoop and Berglund [13]
show that transitivity implies the other two conditions. (See [4, Thm. 3.8] for an
exposition.) Thus an interval map is chaotic iff it is transitive.

If an interval map τ is piecewise monotonic and transitive, by a result of Parry
[8], τ is conjugate to a uniformly piecewise linear map, i.e., an interval map which
is piecewise linear with slopes ±s for some constant s. Thus to describe all chaotic
piecewise monotonic interval maps up to conjugacy, it suffices to determine which
uniformly piecewise linear maps are transitive.

If a uniformly piecewise linear map with slopes ±s with s > 1 has a fixed point p
such that each point in a neighborhood of p has a unique preimage, then the map is
not transitive, cf. Lemma 5. Our main result (Theorem 21) says roughly that the
converse of this is true for maps that are unimodal or bimodal. From this result, it
is easy to tell if a particular uniformly piecewise linear unimodal or bimodal map
is transitive or not.

We prove this first for unimodal maps, then for bimodal maps with slope ±s
with s > 2, then for general “down-up-down” maps, and finally for “up-down-up”
maps. The arguments given here characterizing transitivity of uniformly piecewise
linear unimodal and bimodal maps are easily accessible to any undergraduate.
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Except for the “down-up-down” case, these individual results on transitivity of
uniformly piecewise linear maps are already either implicitly or explicitly in the
literature. See Jonker and Rand [5] or Bassein [2, Prop. 4] for the unimodal
case, and Veitch and Glendinning [12, Lemmas 3.3, 3.4] for the up-down-up case.
(Warning: Veitch and Glendinning call “transitive” what we call “topologically
exact”, cf. Definition 3). Our goal here is to pull together the necessary results and
techniques and fill in the missing pieces to give a simple answer to the problem of
describing transitive unimodal and bimodal maps up to conjugacy. We would like
to thank Robert Devaney for a helpful reference.

2. Preliminaries

Definition 1. An interval map τ is piecewise monotonic if there is a partition
of [0, 1] into finitely many subintervals on each of which τ is (strictly) monotonic.
If two (respectively, three) is the minimal number of such intervals, we say τ is
unimodal (respectively, bimodal).

Definition 2. A map τ : [0, 1] → [0, 1] is transitive if for every pair U, V of
nonempty open sets, there exists n ≥ 0 such that τn(U) ∩ V 6= ∅.

For interval maps, transitivity implies the existence of a dense orbit, cf. [14,
Thm. 5.9], and the converse holds as well. One way to show that a map τ is not
transitive is to find an invariant subset J (i.e., τ(J) ⊂ J) such that both J and its
complement have non-empty interiors U , V . (Then no iterate of U meets V ).

To establish transitivity, it is often easier to prove the following stronger property,
which is discussed in more detail in [9].

Definition 3. A map τ : [0, 1] → [0, 1] is (topologically) exact if for every nonempty
open set V , there exists n ≥ 0 such that Tn(V ) = [0, 1].

We will make frequent use of the following lemmas.

Lemma 4. Let T : [0, 1] → [0, 1] be uniformly piecewise linear with slopes ±s with
s > 1. Let [c, d] be a subinterval of [0, 1] on which T is linear and which contains
a fixed point p. If J is any subinterval of [0, 1] containing p in its interior, then
T k(J) = [0, 1] for some k ≥ 0.

Proof. Let e = p − c and f = d − p. Then for all n ≥ 0, T 2n([p − e
s2n , p + f

s2n ]) =
[p− e, p + f ] = [c, d]. If we choose n large enough such that [p− e

s2n , p + f
s2n ] ⊂ J ,

then T 2n(J) ⊃ [c, d], so T 2n+1(J) = [0, 1]. �

Lemma 5. Let T : [0, 1] → [0, 1] be uniformly piecewise linear with slopes ±s with
s > 1. If for some n ≥ 1, there is a fixed point p of Tn such that each point in a
neighborhood V of p has a unique preimage under Tn, then T is not transitive.

Proof. Assume p, n and V are as in the statement of the lemma. We first establish
that for e sufficiently small, Je = (p− e, p + e) ∩ [0, 1] satisfies T−n(Je) ⊂ Je.

If p = 0, choose e > 0 such that each point in Je = [0, e] has a unique preimage
under Tn, and such that Tn is linear on Je with slope sn > 1. Then Tn(Je) =
[0, sne] ⊃ Je, and so by uniqueness of preimages, T−n(Je) ⊂ Je.

The case p = 1 is similar, so assume 0 < p < 1. Let V ⊂ (0, 1) be an open
neighborhood of p such that each point in V has a unique preimage under Tn.
Choose e > 0 so that Je = (p− e, p + e) ⊂ V ∩ T−n(V ). Since each point in V has
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a unique preimage, and Tn(Je) ⊂ V , then Tn has no turning point in Je. Thus Tn

is linear on Je, with slope ±sn. Then

Tn(Je) = (p− sne, p + sne) ⊃ Je.

Since Je ⊂ V , each point in Je has a unique preimage under Tn, so T−n(Je) ⊂ Je.
Now define

Ke = Je ∪ T−1(Je) ∪ · · · ∪ T−(n−1)(Je).
Since T−n(Je) ⊂ Je, we have

T−1(Ke) ⊂ T−1(Je) ∪ T−2(Je) ∪ · · · ∪ T−(n−1)(Je) ∪ Je = Ke.

Since T is bimodal and has slopes ±s, for any interval J we have

|T−1(J)| ≤ 3s−1|J | ≤ 3|J |.
It follows that we can choose e so that Ke has total length strictly less than 1. Then
the complement of Ke has nonempty interior W . Since T−1(Ke) ⊂ Ke, forward
images of W never meet Ke, and so T is not transitive. �

The following result, due to Parry [8], allows us to reduce the analysis of transi-
tive piecewise monotonic maps to the case of uniformly piecewise linear maps.

Theorem 6. If a piecewise monotonic map τ : [0, 1] → [0, 1] is transitive, then τ
is conjugate to a uniformly piecewise linear map with slopes ±s with s > 1.

Proof. The map τ is said to be strongly transitive if for every open subinterval
J a finite number of iterates of J cover [0, 1]. Every transitive interval map is
strongly transitive, cf. [9, Theorem 2.5]. Parry showed that every strongly transitive
piecewise monotonic interval map is conjugate to a uniformly piecewise linear map
T . Since T must be surjective, then s ≥ 1, and s = 1 would force T (x) = ±x,
which is not transitive.

Alternatively, since transitive interval maps have positive entropy, we could ap-
ply Milnor and Thurston’s result in [7] that piecewise monotonic maps of positive
entropy are semiconjugate to uniformly piecewise linear maps, and then observe
that transitivity forces the semiconjugacy to be a conjugacy.

We sketch a third proof. By a fixed point argument, one can show there is a
non-atomic probability measure µ with support all of [0, 1], and a constant s ≥ 1,
such that µ(τ(E)) = sµ(E) for each Borel set E on which τ is injective. Define
h : [0, 1] → [0, 1] by h(x) = µ([0, x]). Then h is a homeomorphism of [0, 1], and
is a conjugacy from τ onto a uniformly piecewise linear map with slopes ±s. For
details see [10, Cor. 4.4].

�

Observation. If T : [0, 1] → [0, 1] is uniformly piecewise linear, with slopes ±s,
and J is an interval on which T has k intervals of monotonicity, then |T (J)| ≥ s

k |J |,
where |J | denotes the length of J . We will make use of this observation throughout
this paper.

3. Unimodal maps

Definition 7. If 1 < s ≤ 2, the tent map fs : [0, 1] → [0, 1] is defined by

fs(x) =

{
sx if x < 1/2
−sx + s if x ≥ 1/2
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It is easy to check that f2 is topologically exact, and thus is transitive. How-
ever, for 1 < s < 2, the map fs is not surjective. Even if we restrict fs to
fs([0, 1]) = [0, s/2], the subinterval [fs(1/2), f2

s (1/2)] will be invariant, so fs will not
be transitive. It is more interesting to restrict fs to the interval [fs(1/2), f2

s (1/2)],
and rescale so that the domain is [0, 1].

Definition 8. If 1 < s ≤ 2, the restricted tent map Ts : [0, 1] → [0, 1] is defined by

Ts(x) =

{
sx− s + 2 if x < 1− 1

s

s− sx if x ≥ 1− 1
s

(See Figure 1.)

1!
1
""""
s

p 1

1

Figure 1

We say f : [0, 1] → [0, 1] exchanges intervals J1 and J2 if f(J1) = J2 and
f(J2) = J1. (By “interval” we will always mean a non-degenerate interval, i.e., one
consisting of more than a single point.) The following theorem is implicit in [5] and
can also be found in [10, Lemma 8.1].

Theorem 9. Let 1 < s ≤ 2, and let p be the unique fixed point of Ts.
(i) The restricted tent map Ts is topologically exact iff s >

√
2, which occurs

iff Ts(0) < p.
(ii) If s =

√
2, then Ts is transitive but not exact. It exchanges the subinter-

vals [0, p] and [p, 1], and T 2
s is exact on each of these subintervals. The

condition s =
√

2 is equivalent to Ts(0) = p.
(iii) If s <

√
2, then Ts is not transitive; this occurs iff Ts(0) > p.

Proof. It is straightforward to check that Ts(0) = p is equivalent to s =
√

2, and
similarly Ts(0) > p iff s <

√
2, and Ts(0) < p iff s >

√
2.

(i) If s >
√

2, let J be any subinterval of [0, 1]. Suppose T 2
s (J) 6= [0, 1]. Let c be

the critical point of Ts. If c were in both J and Ts(J), then c and 1 = Ts(c) both
would be in Ts(J), so T 2

s (J) ⊃ Ts([c, 1]) = [0, 1], contrary to our assumption. Thus
on at least one of the intervals J and Ts(J), Ts is linear, and on the other interval
Ts is either linear or unimodal. Therefore, |T 2

s (J)| ≥ s2

2 |J | and s2

2 > 1. We can
repeat the argument starting with T 2

s (J) in place of J . Thus (T 2
s )n(J) = [0, 1] for

some n.
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(ii) If Ts(0) = p, then Ts maps [0, p] onto [p, 1] and maps [p, 1] onto [0, p], so
T 2 is not exact on [0, 1]. However, T 2

s maps [0, p] onto itself, and maps [p, 1] onto
itself, and restricted to each of these intervals is conjugate to the full tent map, so
is topologically exact on each of these intervals. Since Ts exchanges [0, p] and [p, 1],
it follows that Ts is transitive on [0, 1]. Indeed, suppose V and W are open subsets
of [0, 1]. If V and W both meet the interior of [0, p], then exactness of T 2

s on [0, p]
implies that T 2n

s (V ) ∩W is nonempty for some n. If V meets the interior of [0, p]
and W meets the interior of [p, 1], then Ts(W ) meets the interior of [0, p], so the
previous argument applies. The remaining cases can be treated similarly.

(iii) If Ts(0) > p, then each point in a neighborhood of p has a unique preimage,
so Ts is not transitive, cf. Lemma 5. �

Definition 10. Two interval maps τ1 and τ2 are reflections of each other if x 7→
1− x is a conjugacy from τ1 to τ2.

This terminology is motivated by the observation that if τ2 is the reflection of
τ1, then the graph of τ2 is the graph of τ1 reflected in the point (1/2, 1/2).

Theorem 11. A unimodal map τ : [0, 1] → [0, 1] is transitive iff τ is conjugate to
a restricted tent map Ts with s ≥

√
2.

Proof. If τ is transitive, then τ is conjugate to a uniformly piecewise linear map
T : [0, 1] → [0, 1], cf. Theorem 6. We may assume that T increases and then
decreases. (If not, replace T by its reflection.) By surjectivity, T takes on the value
0 at either 0 or 1. If T (1) > 0, then T (0) = 0, so 0 is a fixed point and there is a
neighborhood of 0 such that each point in the neighborhood has just one preimage.
By Lemma 5, this contradicts transitivity of T . Thus T (1) = 0, so T = Ts for some
s > 1. Now the theorem follows from Theorem 9.

�

4. Bimodal maps

If a bimodal map τ increases, then decreases, then increases we say τ is up-down-
up, and otherwise that τ is down-up-down.

In this section T : [0, 1] → [0, 1] will denote a bimodal piecewise linear map
with slopes ±s, with s > 1. Recall (Theorem 6) that any transitive bimodal map
τ : [0, 1] → [0, 1] is conjugate to such a map T .

Lemma 12. If T is transitive, then there exists a subinterval [a, b] mapped linearly
onto [0, 1], with neither a nor b being fixed points.

Proof. If T ([c1, c2]) = [0, 1], we’re done, so suppose this does not occur. Since T is
transitive, then T is surjective. We consider the possibilities for the points where
T takes on the values 0 and 1.

Suppose that T takes on the values 0 and 1 only at the endpoints of [0, 1]. Then
either T (0) = 0 and T (1) = 1, or else T (0) = 1 and T (1) = 0. In either case, we can
apply Lemma 5 with p = 0 and n = 1 or n = 2 to conclude that T is not transitive,
contrary to our hypothesis.

The remaining possibility is that T takes on the value 0 at an endpoint, and 1
at a critical point, or vice versa. For example, suppose T (0) = 0 and T (c1) = 1,
with T (c2) > 0. Then there is an interval containing 0 in which each point has
a unique preimage, so by Lemma 5, T is not transitive. The case T (1) = 1 and
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T (c2) = 0, with T (c1) < 1 is a reflection of the previous case, so again T is not
transitive. Thus we are left with the cases T (0) = 1 with T (c1) = 0, or T (1) = 0
with T (c2) = 1. In the former case we can take [a, b] = [0, c1], and in the latter case
[a, b] = [c2, 1].

�

4.1. The case s > 2. We will consider up-down-up and down-up-down bimodal
maps separately. However, we first treat these cases together for the case where
s > 2.

We start with a lemma concerning maps with T (0) = 1, as illustrated in Figure 2.

p c1 c2 1

1

Figure 2

Lemma 13. Let c1 < c2 be the critical points of T . Assume T (0) = 1 and T (c1) =
0, and let p be the fixed point of T in [0, c1].

(i) If s ≤
√

2, then T (c2) < p.
(ii) If s >

√
3, then T (c2) > p.

Proof. (i) We have

T (c2) = s(c2 − c1) < s(1− c1) = s(1− 1/s) = s− 1.

If s ≤
√

2, then s− 1 ≤ 1
s+1 = p, so T (c2) < p.

(ii) In order for T to be bimodal, c2 − c1 ≥ 1
2 (1− c1), so

T (c2) = s(c2 − c1) ≥
s

2
(1− 1/s) =

1
2
(s− 1).

If s >
√

3, then 1
2 (s− 1) > 1

s+1 = p, so T (c2) > p.
�

The following shows that the converse to Lemma 12 holds if s > 2, as illustrated
in Figure 3.

Theorem 14. Assume s > 2. Then T is topologically exact iff there is a proper
subinterval [a, b] mapped linearly onto [0, 1], with neither a nor b being fixed points.
Furthermore, T is transitive iff it is exact.
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c1 c2p 1
0

1

Figure 3. down-up-down, s > 2

Proof. Let c1 < c2 be the critical points of T . Suppose first that such an interval
[a, b] exists. Consider the case where [a, b] = [c1, c2], so that T ([c1, c2]) = [0, 1].
(See Figure 3). If J is any interval that does not contain [c1, c2], then T is either
linear or unimodal on J , so |T (J)| ≥ s

2 |J |. If no iterate of J contains [c1, c2], then
|Tn(J)| ≥

(
s
2

)n |J | for all n. Since s
2 > 1, this is impossible. Thus for some n we

have Tn(J) ⊃ [c1, c2], so Tn+1(J) = [0, 1]. Thus T is exact.
Consider next the case where [a, b] = [0, c1], so that T (0) = 1 and T (c1) = 0. See

Figure 2. By Lemma 13, since s > 2 >
√

3, then T (c2) > p, where p is the fixed
point of T in [0, c1]. Now if J is any interval, since s > 2, iterates of J will expand
in length until the iterate contains [c1, c2]. Since T (c2) > p and T (c1) = 0, the next
iterate will contain p in its interior. By Lemma 4, iterates of J will eventually equal
[0, 1], so T is exact.

The case where T (1) = 0 and T (c2) = 1 is a reflection of the case just considered,
and so T is again exact. Since T is bimodal, this exhausts the possibilities for an
interval [a, b] with the properties in the statement of the theorem, and thus the
existence of such an interval implies that T is exact.

If T is transitive, the existence of the desired interval [a, b] follows from Lemma
12, and exactness then follows from the first part of this proof.

�

4.2. Down-up-down maps. For surjective down-up-down maps, with the excep-
tion of maps with T (0) = 1 or T (1) = 0, we will now show that the condition s > 2
is both necessary and sufficient for the map to be topologically exact or transitive.

Theorem 15. Assume T is down-up-down, with critical points c1 < c2, and that
T (c1) = 0 and T (c2) = 1. Let p be the fixed point of T in [c1, c2]. Then the following
are equivalent.

(i) s > 2.
(ii) T (0) > p.
(iii) T (1) < p.
(iv) T is topologically exact.
(v) T is transitive.

Proof. See Figure 4.
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c1 c2p 1
0

1

Figure 4. down-up-down, s ≤ 2

(i) ⇐⇒ (ii) follows from T (0) = c1s and p = c1s/(s− 1).
(i) ⇐⇒ (iii) follows from T (1) = 1− (1− c2)s and p = (c2s− 1)/(s− 1).
(i) =⇒ (iv) If s > 2, then T is topologically exact by Theorem 14.
(iv) =⇒ (v) Trivial.
(v) =⇒ (ii) If (ii) fails, then T (0) ≤ p, so

T ([0, p]) = T ([0, c1]) ∪ T ([c1, p]) = [0, T (0)] ∪ [0, p] = [0, p].

Thus [0, p] is invariant under T , so T is not transitive.
�

By Lemma 12, there is one remaining kind of up down-up-down map that can
be transitive: maps such that T (0) = 1 or T (1) = 0, cf. Figure 2. We begin with a
lemma on critical points, relevant to showing that T stretches intervals until they
include both critical points.

Lemma 16. Assume T is down-up-down and s ≤ 2. Let c1 < c2 be the critical
points of T , and assume that T (0) = 1 and T (c1) = 0. Suppose K is an interval
such that no iterate of K contains both critical points.

(i) At least one of K, T (K), T 2(K) contains no critical point.
(ii) If T (c2) < c1, at least one of K or T (K) contains no critical point.

Proof. We first make no assumption about T (c2), and prove

(1) if c1 ∈ K, then T (K) contains no critical point.

Indeed, if c1 ∈ K, then 0 = T (c1) ∈ T (K). If c1 or c2 were in T (K), then
[0, c1] ⊂ K, so T 2(K) = [0, 1], contrary to our assumption that no iterate of K
contains both critical points. Thus we’ve proven (1).

We now prove (i) and (ii). By (1), we may assume c2 ∈ K. Then K ⊂ (c1, 1], so

(2) T (K) ⊂ [0, T (c2)].

Furthermore,

(3) T (c2) < c2

follows from

T (c2) = s(c2 − c1) = sc2 − 1 ≤ 2c2 − 1 = c2 + (c2 − 1) < c2.
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By (2) and (3), T (K) ⊂ [0, c2). If c1 ∈ T (K), by (1), T 2(K) contains no critical
points. If c1 /∈ T (K), then T (K) ⊂ [0, c2) implies that T (K) contains neither c1

nor c2, which proves (i).
If T (c2) < c1, suppose both K and T (K) contain critical points. If c1 ∈ K, we

apply (1). Otherwise, as above we conclude T (K) ⊂ [0, T (c2)). Since T (c2) < c1,
then T (K) contains no critical point, a contradiction. Hence (ii) follows.

�

Theorem 17. Let c1 < c2 be the critical points of T , and assume that T (0) = 1
and T (c1) = 0. Let p be the fixed point of T in [0, c1].

(i) If T (c2) > p, then T is topologically exact.
(ii) If T (c2) = p, then T is transitive, T exchanges [0, p] and [p, 1], and T 2 is

topologically exact on each of these intervals.
(iii) If T (c2) < p, then T is not transitive.

Proof. See Figure 2.
(i) Assume T (c2) > p. By Lemma 13, s >

√
2. If s > 2, then as shown in

Theorem 14, T is exact. Thus we may assume
√

2 < s ≤ 2.
Let K be a subinterval of [0, 1]; we will show some iterate of K equals [0, 1]. If

K contains both critical points, since T (c2) > p and T (c1) = 0, then T (K) contains
the fixed point p in its interior, so by Lemma 4 some iterate of K equals [0, 1]. Thus
it suffices to show that some iterate of K contains both critical points.

Suppose (to reach a contradiction) that K is an interval such that no iterate
contains both critical points. If T (c2) < c1, by Lemma 16(ii) we have |T 2(K)| ≥
s2

2 |K|. Since the same argument can be applied to T 2(K), we conclude that

|T 2n(K)| ≥
(

s2

2

)n

|K| for all n ≥ 0.

Since s >
√

2, then s2/2 > 1, so this is impossible. Thus some iterate of K contains
both critical points, so is eventually mapped onto [0, 1].

If T (c2) ≥ c1, then a similar argument based on Lemma 16(i) shows

(4) |T 3n(K)| ≥
(

s3

4

)n

|K| for all n ≥ 0.

Since c1 ≤ T (c2) = s(c2 − c1), then c1 = 1/s gives

1
s
≤ sc2 − 1,

so
1
s2

+
1
s
≤ c2 < 1.

Hence s2− s− 1 > 0. Since s > 1, this implies s > 1+
√

5
2 ≈ 1.618, so s3 > 4. If this

is combined with (4), we again reach a contradiction, and this completes the proof
of (i).

(ii) If T (c2) = p, then T exchanges [0, p] and [p, 1], and T 2 is a bimodal map
from [0, p] onto [0, p] with slopes ±s2. By Lemma 13, s >

√
2, so s2 > 2. If d1, d2

are the T -preimages in [0, p] of c1, c2, then T 2 maps [d2, d1] linearly onto [0, p]. By
Theorem 14, T 2 restricted to [0, p] is topologically exact. Since T exchanges [0, p]
and [p, 1], then T is transitive on [0, 1].
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(iii) Assume T (c2) < p. Then there is an open interval around p in which each
point has a unique preimage. By Lemma 5, T is not transitive.

�

Remark. If T (1) = 0 and T (c2) = 1, then transitivity and exactness of T can be
determined by applying Theorem 17 to the reflection of T .

4.3. Up-down-up maps. Recall by Lemma 12 that for T to be transitive, there
must be a subinterval J = [a, b] mapped linearly onto [0, 1], with neither a nor b
being fixed points. Thus if T is up-down-up, with critical points c1 < c2, for T
to have a chance of being transitive we must have T (c1) = 1 and T (c2) = 0. See
Figure 5.

c1 p c2

1

Figure 5. up-down-up

Lemma 18. Let T be up-down-up, with critical points c1 < c2, with T (c1) = 1 and
T (c2) = 0, and let p be the fixed point of T in [c1, c2]. Assume T (1) > p, and let K
be any interval none of whose iterates contains the fixed point p in its interior.

(i) If K and T (K) both contain critical points, then c2 ∈ K and c1 ∈ T (K)
(ii) At most two of K, T (K), T 2(K) contain critical points.
(iii) If also T (1) < c2, and both K and T (K) contain critical points, then

neither T 2(K) nor T 3(K) contains a critical point.

Proof. Denote the interior of any interval J by J◦. Hereafter K denotes an interval
such that no iterate of K contains p in its interior. Since T (c1) = 1 and T (c2) = 0,
then K can’t contain two critical points (or else T (K) = [0, 1] would contain p).

(i) Suppose both K and T (K) contain critical points. Assume (to reach a con-
tradiction) that c1 ∈ K. Then 1 = T (c1) ∈ T (K), so T (K) is an interval with 1 as
one endpoint. Since T (K) contains just one critical point, then c2 ∈ T (K). Then
T 2(K) contains T (c2) = 0 and contains T 2(c1) = T (1) > p. Hence p ∈ T 2(K)◦, a
contradiction.

Thus we’ve shown c1 /∈ K, so we must have c2 ∈ K. Then 0 = T (c2) ∈ T (K).
Since T (K) contains exactly one critical point, and contains 0, it can’t contain c2,
so c1 ∈ T (K).

(ii) Suppose K, T (K), and T 2(K) all contain critical points. By (i), c2 ∈ K and
c1 ∈ T (K). But by (i) applied to T (K), c2 ∈ T (K), so T (K) contains two critical
points, which forces p ∈ T (K)◦, contrary to assumption.
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(iii) Suppose T (1) < c2, so that p < T (1) < c2, and suppose that K and
T (K) contain critical points. By (ii), T 2(K) contains no critical point, and by
(i), 1 = T (c1) ∈ T 2(K). Thus we can write T 2(K) = [e, 1] with e > c2. Then
T 3(K) = [T (e), T (1)]. Since p < T (1) < c2, and p /∈ T 3(K)◦, we must have
p ≤ T (e), so T 3(K) ⊂ [p, c2); in particular T 3(K) contains no critical point.

�

Lemma 19. Assume T is up-down-up, with critical points c1 < c2, with T (c1) = 1
and T (c2) = 0. Let p be the fixed point in [c1, c2].

(i) If T (1) ≥ p, then s >
√

2.
(ii) If T (1) ≥ c2, then s > 41/3.
(iii) T (0) < T (1) iff s > 2.

Proof. (i) Note that c2 = c1 + 1
s , so T (1) = s(1− c2) = s− c1s− 1. The inequality

T (1) ≥ p is the same as

s− c1s− 1 ≥ 1 + c1s

1 + s
.

Rearranging gives s2 − 2 ≥ c1s(s + 2). Since c1s(s + 2) > 0, then s >
√

2.
(ii) Observe that T (1) ≥ c2 is equivalent to s− c1s− 1 ≥ c1 + 1/s. Rearranging

gives s2 − s− 1 ≥ c1s(1 + s). The positive root of s2 − s− 1 is 1+
√

5
2 , so T (1) ≥ c2

implies s > 1+
√

5
2 ≈ 1.618. This is larger than 41/3 ≈ 1.587.

(iii) Since T (0) = 1− c1s and T (1) = s− c1s− 1, then (iii) follows.
�

Theorem 20. Let T be up-down-up, with critical points c1 < c2 and T (c1) = 1,
T (c2) = 0. Let p be the fixed point of T in [c1, c2]. Then s > 2 iff T (0) < T (1),
and in that case T is exact. If s ≤ 2, then T (1) ≤ T (0), and we have the following
cases for the location of p with respect to the interval [T (1), T (0)].

(i) If p < T (1) or p > T (0), then T is topologically exact.
(ii) If T (0) = p or T (1) = p, then T is transitive but not topologically exact,

T exchanges [0, p] and [p, 1], and T 2 restricted to each of these intervals is
topologically exact.

(iii) If T (1) < p < T (0), then T is not transitive.

Proof. By Lemma 19(iii) we have T (0) < T (1) iff s > 2, and in that case T is exact
by Theorem 14. Hereafter, we assume s ≤ 2.

(i) Assume p < T (1) or T (0) < p. Without loss of generality, we may assume
T (1) > p. (Otherwise, if T (0) < p, replace T by its reflection T̃ , which will satisfy
T̃ (1) > p̃, where p̃ = 1− p is the fixed point of T̃ .)

Let K be any subinterval of [0, 1]. Suppose (to reach a contradiction) that no
iterate of K contains p in its interior (and thus also that no iterate of K contains
both critical points). We consider two possibilities.

First suppose T (1) ≥ c2. By Lemma 19, s > 41/3. By Lemma 18, at most
two of K, T (K), T 2(K) contain a critical point, so |T 3(K)| ≥ s3

4 |K|. Thus each
application of T 3 to any iterate of K increases its length by a factor at least s3/4 >
1, which is impossible.

Now suppose T (1) < c2. If either K or T (K) contains no critical point, then
applying T 2 increases the length of K by a factor of at least s2/2, which is greater
than 1 by Lemma 19(i). On the other hand, suppose both K and T (K) contain
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critical points. By Lemma 18, T 2(K) and T 3(K) contain no critical points. Thus
applying T 4 to K increases its length by at least a factor of s4/4 = (s2/2)2 > 1, cf.
Lemma 19(i). Thus we may repeatedly apply one of T 2 or T 4 to steadily increase
the length of iterates of K by a factor strictly greater than one, a contradiction.

We conclude that some iterate of K must contain p in its interior, and thus by
Lemma 4, some iterate of K equals [0, 1]. Thus T is exact.

(ii) Assume T (1) = p or T (0) = p. Without loss of generality, we may assume
T (1) = p. (Otherwise, if T (0) = p, replace T by its reflection T̃ .) See Figure 6 for
possible graphs of T and T 2 in the case T (1) = p.

c1 p c2 1

1

c1 p c2 1

1

Figure 6. T and T 2 when T (1) = p

Since s ≤ 2, by Lemma 19(iii) we have T (0) ≥ T (1) = p. Thus T maps [0, p]
onto [p, 1], and maps [p, 1] onto [0, p]. The turning points of T 2 on [0, p] are c1 and
the T -preimages of c2, so T 2 on [0, p] is either bimodal (as illustrated in Figure 6)
or trimodal. On [0, p] the values of T 2 at turning points are either 0 or p, and the
slopes of T 2 will be ±s2, with s2 > 2 by Lemma 19. Thus when T 2 is repeatedly
applied to an interval in [0, p], the length gets increased by at least the factor
s2/2 > 1 until some iterate contains two critical points of T 2 in [0, p]. The range
of T 2 on the interval between successive critical points is [0, p], so T 2 on [0, p] is
topologically exact.

Since T exchanges [0, p] and [p, 1], it follows that T 2 is exact on [p, 1] as well,
and that T is transitive on [0, 1]. (For transitivity, see the argument in the proof of
Theorem 9(ii).)

(iii) Assume T (1) < p < T (0). Then there is an open neighborhood of p in which
each point has a unique preimage, so by Lemma 5, T is not transitive.

�

5. Summary

Theorem 21. A unimodal or bimodal uniformly piecewise linear map T : [0, 1] →
[0, 1] is transitive iff there is a subinterval J such that the following three conditions
are satisfied.

(i) T is linear on J with T (J) = [0, 1], with neither endpoint of J fixed by T .
(ii) The fixed point p in J is contained in the closure of T ([0, 1] \ J).
(iii) If p is in the boundary of T ([0, 1] \ J), then T exchanges [0, p] and [p, 1].

Furthermore, T will be topologically exact iff an interval J can be chosen such that
(i) holds and such that p is contained in the interior of T ([0, 1] \ J).
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Proof. If T is unimodal, the theorem follows from Theorem 9. Suppose now that T
is bimodal. If T is transitive, then there exists an interval satisfying (i) by Lemma
12, so suppose that J is such an interval. (Note that there could be more than one
such interval.)

We first consider the case where T is down-up-down. Let the critical points of
T be c1 < c2. In the case where J = [c1, c2], the theorem follows from Theorem 15.
If J = [0, c1] or J = [c2, 1], the theorem follows from Theorem 17 (and the remark
following that theorem).

Now suppose T is up-down-up. If s > 2 then T is exact by Theorem 20, and
T (0) < T (1), so either p < T (1) or p > T (0). In both cases p is in the interior of
T ([0, 1] \ J). If s ≤ 2, the theorem follows from (i), (ii), (iii) in Theorem 20.

�

Remarks Combining Theorem 21 with Parry’s theorem (cf. Theorem 6), every
transitive unimodal or bimodal map τ is conjugate to a uniformly piecewise linear
map T satisfying the conditions of Theorem 21. It can be shown that the map T
is unique up to reflection, cf. [11].

Observe that T satisfies condition (ii) in Theorem 21 precisely if there is no
open neighborhood of the fixed point p in which each point has unique preimage.
Thus Theorem 21 is almost the converse of Lemma 5 (and in fact, is precisely the
converse in the unimodal case). However, for a down-up-down map with s = 2, we
have T (1) = T (0) = p, so there is no such neighborhood, and yet the map is not
transitive, cf. Theorem 15. In this case the intervals [0, p] and [p, 1] are invariant,
and T is transitive (in fact exact) on each.

In Theorem 21, since T is uniformly piecewise linear, we could rephrase (i) by
requiring T to be monotone on J instead of linear; call that rephrased condition (i)′.
If τ : [0, 1] → [0, 1] is unimodal or bimodal, and is transitive, let h : [0, 1] → [0, 1] be
a conjugacy from τ onto a uniformly piecewise linear map T , cf. Theorem 6. Then T
is transitive, so satisfies the conditions of Theorem 21. Since h is a homeomorphism
and is either strictly increasing or strictly decreasing, it follows that τ also satisfies
the same conditions (i)′, (ii), (iii). Thus these conditions are necessary for τ to be
transitive. They are not sufficient, as can be seen by considering the logistic map
τ(x) = kx(1− x) where k = 3.839 (restricted to the interval [τ2(1/2), τ(1/2)], and
rescaled to live on [0, 1]). For the fixed point p, we have τ(0) < p, so τ satisfies
(i)′, (ii), (iii). However, for this value of k, τ has an attracting 3-cycle, so is not
transitive, cf. [3, §1.13].

References

[1] J. Banks, J. Brooks, G. Cairns, G. Davis, and P. Stacey, On Devaney’s Definition of Chaos,
Amer. Math. Monthly 99 (1992), no. 4, 332–334.

[2] S. Bassein, The dynamics of a family of one-dimensional maps, Amer. Math. Monthly 105

(1998), no. 2, 118-130.

[3] R. Devaney, An Introduction to Chaotic Dynamical Systems, Addison-Wesley, 1987.
[4] S. Elaydi, Discrete chaos, Chapman & Hall/CRC, Boca Raton, FL, 2000.

[5] L. Jonker and D. Rand, Bifurcations in one dimension. I. The nonwandering set. Invent.
Math. 62 (1981), no. 3, 347–365.

[6] R. Kraft, Chaos, Cantor Sets, and Hyperbolicity for the Logistic Maps, Amer. Math. Monthly

106 (1999), no. 5, 400–408.
[7] J. Milnor and Thurston, On iterated maps of the interval I, II. Dynamical Systems: Proc.

Univ. of Maryland 1986-87 (1988), Lect. Notes In Math 1342, Springer, Berlin, NY, 465–563.



14 FRED SHULTZ

[8] W. Parry, Symbolic dynamics and transformations of the unit interval. Trans. Amer. Math.

Soc. 122 (1966), 368–378.

[9] C. Preston, Iterates of piecewise monotone mappings on an interval. Lecture Notes in Math-
ematics, 1347. Springer-Verlag, Berlin, 1988.

[10] F. Shultz, Dimension groups for interval maps II: The transitive case. Ergodic Theory Dyam-

ical Systems, to appear.
[11] F. Shultz, Uniqueness of Parry maps, and invariants for transitive piecewise monotonic maps,

preprint.

[12] D. Veitch and P. Glendinning, Expliicit renormalization in piecewise linear bimodal maps,
Physica D 44 (1990), 149-167.

[13] M. Vellekoop and R. Berglund, On intervals, transitivity = chaos. Amer. Math. Monthly 101

(1994), no. 4, 353–355.
[14] P. Walters, An introduction to ergodic theory. Graduate Texts in Mathematics, 79. Springer-

Verlag, New York-Berlin, 1982.

Wellesley College, Wellesley, Massachusetts 02481
E-mail address: fshultz@wellesley.edu


