Export Controls, Encryption Software, and Speech 10/27/2005 01:10 AM

Export Controls, Encryption Software, and Speech
Statement for the RSA Conference, January 28, 1997

Dorothy E. Dennin

Georgetown University
Copyright ©1997 Dorothy E. Denning

Three recent lawsuits -- filed on behalf of Philip Karn, Daniel Bernstein, and Peter Junger -- challenge the
Constitutionality of U.S. export controls on encryption source-code software. A central claim in these suits
is that the licensing requirement imposes an impermissible prior restraint on speech. As a programmer and
computer science educator for more than 30 years, this makes no sense to me.

Software is, and always has been, the specification of a program that controls a computer; it makes the
machine act with a given mathematical function. As such, software is an operational artifact. Export
controls on encryption software are concerned with its operational behavior -- with the fact that encryption
software loaded onto a computer is an encryption device. Export controls are not targeted at speech or ideas
about the software. Given that the theory, formulas, and methods of any program can be expressed in a
form that is not operational or easily made operational, I do not see how export controls on software restrict
First Amendment speech.

A Short History of Hardware and Software

Early computing machines, such as Blaise Pascal's Pascaline in 1642 and Charles Babbage's Difference
Engine in the 1820s, did not use software. The only functions they could perform were those built into their
physical components. Although Babbage envisioned in the 1840s a general-purpose computer using
punched cards to direct the operations performed, it was another century before the first programmable
computers were actually built (Konrad Zuse's Z3 in 1941 and Howard Aiken's Mark I in 1944). Two of the
earliest electronic computers, the Colossus, built in 1943 to break German codes, and the ENIAC, built in
1946 to calculate firing tables for the U.S. Army, were "programmable" with switches and pluggable cables.
EDSAC, built in 1949 by Maurice Wilkes at Cambridge University, was a precursor to the stored-program
electronic computers we use today. Programs were prepared on an external medium and then loaded into the
machine's memory for execution.

The stored-program computer revolutionized computing by splitting the functions performed by a machine
into two classes: machine instructions, which are embodied in the machine's architecture and provide the
building blocks for all computation on the machine, and software programs, which are sequences of
instructions. Software turned computers into universal machines -- the same machine could be used to
compute an unlimited number of functions -- a concept envisioned by Babbage and later by Alan Turing.
Software thus was invented for the purpose of extending the functionality of a machine so that it would be
more useful. It was effectively a part of the computer that was easier to change than the machine's wiring,
switches, or internal instruction set. Software and hardware are inseparable in any discussion of computers.

In the early days, programmers punched symbolic codes for instructions onto paper tape or cards. Special
programs, called assemblers and compilers, were invented to convert these paper representations into

http://www.cs.georgetown.edu/~denning/crypto/rsa.html Page 1 of 4



Export Controls, Encryption Software, and Speech 10/27/2005 01:10 AM

machine instructions. Over time, compilers became more sophisticated, enabling higher-level languages for
more compact descriptions of algorithms. A single statement in one of today's high-level languages is likely
to compile into hundreds of individual machine instructions. Programs written in high-level or assembly
languages came to be called "source code" and the compiled machine instructions as "object code."
Functionally, there is no difference between source code and object code -- both specify the same function
to be acted on by the machine. However, it is far easier to program in source code than in object code, and
to let the computer do the conversion.

High-level programming languages allowed programmers to write software far more efficiently than would
be possible if they had to program in machine code directly. Moreover, because the same source code could
be compiled into object code for different or upgraded hardware, programs could be used on more than one
machine, a feature called portability. These productivity-enhancing aspects of software eventually led to
today's software applications, graphical user interfaces, the World Wide Web, and electronic commerce.
None of this would have happened if programmers were still coding in machine language.

Today's programming languages have their roots in mathematics and symbolic logic. Even before the first
electronic computer, the logician Alonzo Church devised a language for expressing mathematical functions
and their computation. His Lambda Calculus influenced the design of early programming languages such as
LISP and ALGOL, and later inspired the modern class of languages called functional languages.
FORTRAN, which stands for FORmula TR ANslator, was developed in the 1950s for computing
mathematical formulae. It went on to become the dominant language for scientific computation. Another
early language, COBOL, was designed to allow business programmers to express functional manipulations
of business data in an easy notation.

I wrote my first program at the University of Michigan in 1966 using the Michigan Algorithm Decoder
(MAD) language. The term "algorithm" in the language's name refers explicitly to the sequence of steps to
be performed by a computer. For as long as I have been in the field, programming has been regarded as the
process of writing algorithms in computer languages for the purpose of enabling a computer to carry out a
certain function.

A discipline of programming, called software engineering, gradually emerged to cover program design,
development, testing, and verification. The central concern of software engineering is that the designer can
demonstrate conclusively that the software performs the desired function without error. The most powerful
modern tools to assist the software engineer with this task -- such as theorem-provers, specification
checkers, and predicate calculus transformers -- treat the software as undertaking mathematical functions on
a computer. The argumentation and documentation required to convince other people that a software
program works correctly is often much more extensive than the program itself -- few software engineers will
accept a program by itself as a correctly functioning entity. The entire history of programming and software
engineering has been pervaded with the notion that software directs the operation of a computer, and that it
1s essential to get that right. Computer science professors teach the standard practice of the field, which is
that software is a precise functional specification that controls the operation of a machine.

Despite the shared use of the word "language," programming languages are quite different from natural
languages such as English. Their purpose is not to communicate values, culture, emotions, feelings, political
views, or arguments to a human being, or to coordinate action with another person. Rather, their central
purpose is to encode the steps to be performed by a machine. Thus, whereas human languages are
necessarily laden with ambiguity because words and phrases have real-world meanings which are subject to
interpretation, computer languages are designed to be precise so that the functions will be performed

http://www.cs.georgetown.edu/~denning/crypto/rsa.html Page 2 of 4



Export Controls, Encryption Software, and Speech 10/27/2005 01:10 AM

correctly. Universities long ago recognized the fundamental difference between human languages and
computer languages, disallowing use of the latter to satisfy language requirements.

Further, the process of compiling source code into object code is not the same as translating between natural
languages such as English and French. One reason is that the result is intended for a machine, not a human
being. Another is that the process is very different. The compiler assigns memory locations and registers in
the central processing unit to instructions and data objects. It determines the precise order for directing
computations in the CPU and the movement of data between the CPU and primary memory. It inserts
instructions into the code to make use of routines already on the computer, for example, to compute a
square root or display results on the screen. Most compilers also optimize the object code in order to speed
up processing. Thus, any analogy between programming languages and human languages is extremely weak.

Mathematical Function is Infinitely Expressible

Software is not the same as speech about software. Programmers speak about their software all the time.
They write descriptions and explanations of it, draw diagrams illustrating what it does, and prove properties
about it. They express themselves in a natural language like English, mathematical notation, "pseudo-code,"
figures, diagrams, graphs, and many other forms of expression. They embed explanatory and descriptive
comments in their source code -- asides that are ignored during compilation and execution.

The mathematics of programming teaches us that the functionality represented in any given program can be
expressed in an infinite number of ways. The variety of expressions of the same function is so rich, that in
practice teachers immediately suspect students who submit identical programs of cheating! But even more
important to the discussion here: the functionality of a program can be expressed without a single line of
executable code; it can be expressed as descriptions and equations using natural languages, mathematics,
diagrams, and pseudo-code. This point is so crucial that it is worth emphasizing: no program reflects an
idea or function that cannot be expressed by other means. The theory, formulas, and methods represented in
software, whether source code or object code, can be expressed in a manner that is not easily made
operational. Pseudo-code, which is cross between statements in a natural language and programming
language, 1s particularly useful in this regard as it superficially resembles source code, but lacks the
precision needed for conversion to object code. A skilled programmer can use this information to write a
program that has the same effect, although reasonable effort may be required to do so. Thus, the notion that
an executable source code program is necessary to convey an idea about a mathematical function to another
person is not true.

Export Controls Do Not Violate the First Amendment

It is against this background that the contention that export controls on encryption software, particularly
source code, are a prior restraint on protected speech, makes no sense to me. Export controls applying to
particular functional artifacts hardly restrain a programmer's speech. All of the ideas and formulas
represented in a program -- any program -- can be expressed in a non-functional manner. Export controls
are not targeted at publicly available unclassified descriptive and explanatory information, mathematical
formulas, or even pseudo-code despite the fact that this information can be used to produce a fully
operational program that computes the exact same function as an export-controlled program. They also
explicitly exclude educational information taught in college courses; fundamental research at universities;
information concerning general scientific, mathematical or engineering principles; and information
exchanged at symposia. Thus, export controls are not targeted at academic discussions about cryptography.
The extensive number of academic conferences and courses on cryptography attest to this fact.

http://www.cs.georgetown.edu/~denning/crypto/rsa.html Page 3 of 4



Export Controls, Encryption Software, and Speech 10/27/2005 01:10 AM

When I wrote my book Cryptography and Data Security, I included enough information about the Data
Encryption Standard for a skilled programmer to implement the algorithm. I did this without providing any
actual code and without violating any export control regulations. Indeed, I obtained my own information
from a government publication, Federal Information Processing Standard (FIPS) 46. From this information,
which included formulas, tables, and explanatory material, my students were able to produce software that
correctly implemented the DES algorithm. (That they were able to do this does not mean that export
controls are useless. Considerable effort is required to build complete and marketable products which meet
user requirements when the software is not ready-at-hand.)

Thus, export controls on software are effectively controls on operational artifacts and not speech. Indeed,
they are identical in purpose to those on encryption devices, which is logical given that encryption software
loaded onto a machine is an encryption device.

The arguments above are valid regardless of the medium in which software is recorded. Nevertheless, the
Administration has elected to require licenses only for programs in electronic form, even though printed
code can be scanned into a computer. The rationale is that enough effort is required to convert source code
in printed form to a functioning product that it is not necessary to license programs in print form, at least at
this time. I can attest to this based on my personal experience a few years ago when a student tried, and
failed, to produce a working version of the Data Encryption Standard from the source code in Bruce
Schneier's book Applied Cryptography. Scanners and humans are error-prone, so unless one understands the
program, it can be difficult to find and remove the errors. Perhaps this is why the students using my book
succeeded, whereas this student failed -- he was never forced to fully comprehend the algorithm. Thus, in
attempting to control only those artifacts that are easily used to encrypt, the government's distinction
between electronic and printed materials i1s not irrational.

Larger Implications

I am concerned about the long-term implications of attempting to treat software generally as fully protected
speech. Software has the potential of being highly destructive. Witness the Morris worm, computer viruses,
or today's concerns about attacks on information infrastructure. Future viruses might someday bring down
the power grid or direct the production of weapons of mass destruction. Do we really want to consider
distribution of such software as free speech? Surely no one would say "logic bombs," or viruses should have
the same protection as political or religious speech, even if an author claimed to be making a political
statement. Yet treating software as fully protected speech could lead us down that path.

Export control regulations express judgments that exporting certain technological artifacts are harmful to the
national well being and that the regulations make an important difference. It is reasonable and legitimate to
question whether these regulations are serving the country. However, let us address that issue directly and
squarely. Let us not muddle the issue by sweeping functional artifacts into the First Amendment. Free
speech is one of our most fundamental and cherished rights. We should be cautious in applying it to the
distribution of computer programs.

http://www.cs.georgetown.edu/~denning/crypto/rsa.html Page 4 of 4



