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During the Second World War, British codebreakers had the upper hand
over German codemakers, mainly because the men and women at
Bletchley Park, following the lead of the Poles, developed some of the
earliest codebreaking technology. In addition to Turing’s bombes, which
were used to crack the Enigma cipher, the British also invented another
codebreaking device, Colossus, to combat an even stronger form of
encryption, namely the German Lorenz cipher. Of the two types of code-
breaking machine, it was Colossus that would determine the development
of cryptography during the latter half of the twentieth century.

The Lorenz cipher was used to encrypt communications between
Hitler and his generals. The encryption was performed by the Lorenz
$Z40 machine, which operated in a similar way to the Enigma machine,
but the Lorenz was far more complicated, and it provided the Bletchley
codebreakers with an even greater challenge. However, two of Bletchley’s
codebreakers, John Tiltman and Bill Tutte, discovered a weakness in the
way that the Lorenz cipher was used, a flaw that Bletchley could exploit
and thereby read Hitler’s messages.

Breaking the Lorenz cipher required a mixture of searching, matching,
statistical analysis and careful judgment, all of which was beyond the tech-
nical abilities of the bombes. The bombes were able to carry out a specific
task at high speed, but they were not flexible enough to deal with the sub-
tleties of Lorenz. Lorenz-encrypted messages had to be broken by hand,
which took weeks of painstaking effort, by which time the messages were
largely out of date. Eventually, Max Newman, a Bletchley mathematician,
came up with a way to mechanize the cryptanalysis of the Lorenz cipher.
Drawing heavily on Alan Turing’s concept of the universal machine,
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Newman designed a machine that was capable of adapting itself to dif-
ferent problems, what we today would call a programm.able Cf)mpute.r.

Implementing Newman’s design was deemed technically impossible,
so Bletchley’s senior officials shelved the project. Fortunately, Tomm’y
Flowers, an engineer who had taken part in discussions about Newmafx s
design, decided to ignore Bletchley’s skepticism, and went ahea'd w1.th
building the machine. At the Post Office’s research center at Dollis Hill,
North London, Flowers took Newman’s blueprint and spent ten months
turning it into the Colossus machine, which he delivered to Bletch'ley
Park on December 8, 1943. It consisted of 1,500 electronic valves, which
were considerably faster than the sluggish electromechanical relay
switches used in the bombes. But more important than Colossus’s speed
was the fact that it was programmable. It was this fact that made Colossus
the precursor to the modern digital computer.

Colossus, as with everything else at Bletchley Park, was destroyed aft.er
the war, and those who worked on it were forbidden to talk abou.t it.
When Tommy Flowers was ordered to dispose of the Colossus blueprints,
he obediently took them down to the boiler room and burned them. The
plans for the world’s first computer were lost forever. This secrecy meant
that other scientists gained the credit for the invention of the. computer.
In 1945, J. Presper Eckert and John W. Mauchly of the University of Penn-
sylvania completed ENIAC (Electronic Numerical Integrator AI.ld Calcu-
lator), consisting of 18,000 electronic valves, capable of performing 5,090
calculations per second. For decades, ENIAC, not Colossus, was consid-
ered the mother of all computers.

Having contributed to the birth of the modern computer, cryptanalys'ts
continued after the war to develop and employ computer technology in
order to break all sorts of ciphers. They could now exploit the sPeed and
flexibility of programmable computers to search through all possible keys
until the correct one was found. In due course, the cryptographers b.egan
to fight back, exploiting the power of computers to crea.te 1ncrea.smgly
complex ciphers. In short, the computer played a crucial role in the
postwar battle between codemakers and codebreakers.

Using a computer to encipher a message is, to a large extent, very
similar to traditional forms of encryption. Indeed, there are only three
significant differences between computer encryption and the sort of

Alice and Bob Go Public 245

mechanical encryption that was the basis for ciphers like Enigma. The
first difference is that a mechanical cipher machine is limited by what can
be practically built, whereas a computer can mimic a hypothetical cipher
machine of immense complexity. For example, a computer could be pro-
grammed to mimic the action of a hundred scramblers, some spinning
clockwise, some anticlockwise, some vanishing after every tenth letter,
others rotating faster and faster as encryption progresses. Such a mechani-
cal machine would be practically impossible to build, but its “virtual”
computerized equivalent would deliver a highly secure cipher.

The second difference is simply a matter of speed. Electronics can
operate far more quickly than mechanical scramblers: a computer pro-
grammed to mimic the Enigma cipher could encipher a lengthy message
in an instant. Alternatively, a computer programmed to perform a vastly
more complex form of encryption could stil] accomplish the task within a
reasonable time.

The third, and perhaps most significant, difference is that a computer
scrambles numbers rather than letters of the alphabet. Computers deal only
in binary numbers~sequences of ones and zeros known as binary digits, or
bits for short. Before encryption, any message must therefore be converted
into binary digits. This conversion can be performed according to various
protocols, such as the American Standard Code for Information
Interchange, known familiarly by the acronym ASCII, pronounced “ass-
key.” ASCII assigns a 7-digit binary number to each letter of the alphabet.
For the time being, it is sufficient to think of a binary number as merely a
pattern of ones and zeros that uniquely identifies each letter (Table 24), just
as Morse code identifies each letter with a unique series of dots and dashes.
There are 128 (27) ways to arrange a combination of 7 binary digits, so
ASCII can identify up to 128 distinct characters. This allows plenty of room
to define all the lowercase letters (e.g., a = 1100001 ), all necessary punctu-
ation (e.g., ! = 0100001), as well as other symbols (e.g., & = 0100110).
Once the message has been converted into binary, encryption can begin.

Even though we are dealing with computers and numbers, and not
machines and letters, the encryption still proceeds by the age-old princi-
ples of substitution and transposition, in which elements of the message
are substituted for other elements, or their positions are switched, or both.
Every encipherment, no matter how complex, can be broken down into
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combinations of these simple operations. The following two examples
demonstrate the essential simplicity of computer encipherment by show-
ing how a computer might perform an elementary substitution cipher and
an elementary transposition cipher.

First, imagine that we wish to encrypt the message HELLO, employing
a simple computer version of a transposition cipher. Before encryption can
begin, we must translate the message into ASCII according to Table 24:

Plaintext = HELLO = 1001000 1000101 1001100 1001100 1001111

One of the simplest forms of transposition cipher would be to swap the
first and second digits, the third and fourth digits, and so on. In this case
the final digit would remain unchanged because there are an odd number
of digits. In order to see the operation more clearly, I have removed the
spaces between the ASCII blocks in the original plaintext to generate a
single string, and then lined it up against the resulting ciphertext for com-
parison:

Plaintext = 10010001000101100110010011001001111
Ciphertext = 01100010001010011001100011000110111

An interesting aspect of transposition at the level of binary digits is that the
transposing can happen within the letter. Furthermore, bits of one letter can
swap places with bits of the neighboring letter. For example, by swapping

Table 24 ASCII binary numbers for the capital letters.

A 1000001 N 1001110
B 1000010 O 1001111
C 1000011 P 1010000
D 1000100 Q 1010001
E 1000101 R 1010010
F 1000110 S 1010011
G 1000111 T 1010100
H 1001000 U 1010101
I 1001001 VvV 1010110
J 1001010 W 1010111
K 1001011 X 1011000
L 1001100 Y 1011001
M 1001101 Z 1011010
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the seventh and eighth numbers, the final 0 of H is swapped with the initial
1 of E. The encrypted message is a single string of 35 binary digits, which
can be transmitted to the receiver, who then reverses the transposition to
re~create the original string of binary digits. Finally, the receiver reinterprets
the binary digits via ASCII to regenerate the message HELLO.

Next, imagine that we wish to encrypt the same message, HELLO, this
time employing a simple computer version of a substitution cipher. Once
again, we begin by converting the message into ASCII before encryption.
As usual, substitution relies on a key that has been agreed between sender
and receiver. In this case the key is the word DAVID translated into
ASCII, and it is used in the following way. Each element of the plaintext
is “added” to the corresponding element of the key. Adding binary digits
can be thought of in terms of two simple rules. If the elements in the
plaintext and the key are the same, the element in the plaintext is substi-
tuted for O in the ciphertext. But, if the elements in the message and key
are different, the element in the plaintext is substituted for 1 in the
ciphertext:

Message HELLO

Message in ASCII  10010001000101100110010011001001111
Key = DAVID 10001001000001101011010010011000100
Ciphertext 00011000000100001101000001010001011

The resulting encrypted message is a single string of 35 binary digits
which can be transmitted to the receiver, who uses the same key to reverse
the substitution, thus recreating the original string of binary digits.
Finally, the receiver reinterprets the binary digits via ASCII to regenerate
the message HELLO.

Computer encryption was restricted to those who had computers,
which in the early days meant the government and the military. However,
a series of scientific, technological and engineering breakthroughs made
computers, and computer encryption, far more widely available. In 1947,
AT&T Bell Laboratories invented the transistor, a cheap alternative to the
electronic valve. Commercial computing became a reality in 1951 when
companies such as Ferranti began to make computers to order. In 1953
IBM launched its first computer, and four years later it introduced For-
tran, a programming language that allowed “ordinary” people to write




G

248  The Code Book

computer programs. Then, in 1959, the invention of the integrated circuit
heralded a new era of computing.

During the 1960s, computers became more powerful, and at the same
time they became cheaper. Businesses were increasingly able to afford
computers, and could use them to encrypt important communications
such as money transfers or delicate trade negotiations. However, as more
and more businesses bought computers, and as encryption between
businesses spread, cryptographers were confronted with new problems,
difficulties that had not existed when cryptography was the preserve of
governments and the military. One of the primary concerns was the issue
of standardization. A company might use a particular encryption system
to ensure secure internal communication, but it could not send a secret
message to an outside organization unless the receiver used the same
system of encryption. Eventually, on May 15, 1973, America’s National
Bureau of Standards planned to solve the problem, and formally requested
proposals for a standard encryption system that would allow business to
speak secretly unto business.

One of the more established cipher algorithms, and a candidate for the
standard, was an IBM product known as Lucifer. It had been developed
by Horst Feistel, a German émigré who had arrived in America in 1934.
He was on the verge of becoming a U.S. citizen when America entered
the war, which meant that he was placed under house arrest until 1944.
For some years after, he suppressed his interest in cryptography to avoid
arousing the suspicions of the American authorities. When he did even-
tually begin research into ciphers, at the Air Force’s Cambridge Research
Center, he soon found himself in trouble with the National Security
Agency (NSA), the organization with overall responsibility for maintain-
ing the security of military and governmental communications, and
which also attempts to intercept and decipher foreign communications.
The NSA employs more mathematicians, buys more computer hardware,
and intercepts more messages than any other organization in the world. It
is the world leader when it comes to snooping.

The NSA did not object to Feistel’s past, they merely wanted to have a
monopoly on cryptographic research, and it seems that they arranged for
Feistel’s research project to be canceled. In the 1960s Feistel moved to the
Mitre Corporation, but the NSA continued to apply pressure and forced
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him to abandon his work for a second time. Feistel eventually ended up at
IBM’s Thomas J. Watson Laboratory near New York, where for several
years he was able to conduct his research without being harassed. It was
there, during the early 1970s, that he developed the Lucifer system.

Lucifer encrypts messages according to the following scrambling oper-
ation. First, the message is translated into a long string of binary digits.
Second, the string is split into blocks of 64 digits, and encryption is per-
formed separately on each of the blocks. Third, focusing on just one
block, the 64 digits are shuffled, and then split into two half-blocks of 32,
labeled Left? and Right0. The digits in Right0 are then put through a
“mangler function,” which changes the digits according to a complex sub-
stitution. The mangled Right0 is then added to Lefi? to create a new half-
block of 32 digits called Right!. The original Right? is relabeled Left!. This
set of operations is called a “round.” The whole process is repeated in a
second round, but starting with the new half-blocks, Left! and Right!, and
ending with Left? and Right2. This process is repeated until there have
been 16 rounds in total. The encryption process is a bit like kneading a
slab of dough. Imagine a long slab of dough with a message written on it.
First, the long slab is divided into blocks that are 64 cm in length. Then,
one half of one of the blocks is picked up, mangled, folded over, added
to the other half and stretched to make a new block. Then the process is
repeated over and over again until the message has been thoroughly
mixed up. After 16 rounds of kneading the ciphertext is sent, and is then
deciphered at the other end by reversing the process.

The exact details of the mangler function can change, and are deter-
mined by a key agreed by sender and receiver. In other words, the same
message can be encrypted in a myriad of different ways depending on
which key is chosen. The keys used in computer cryptography are simply
numbers. Hence, the sender and receiver merely have to agree on a2 num-
ber in order to decide the key. Thereafter, encryption requires the sender to
input the key number and the message into Lucifer, which then outputs the
ciphertext. Decryption requires the receiver to input the same key number
and the ciphertext into Lucifer, which then outputs the original message.

Lucifer was generally held to be one of the strongest commercially
available encryption products, and consequently it was used by a variety
of organizations. It seemed inevitable that this encryption system would
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be adopted as the American standard, but once again the NSA interfered
with Feistel’s work. Lucifer was so strong that it offered the possibility of
an encryption standard that was probably beyond the codebreaking capa-
bilities of the NSA; not surprisingly, the NSA did not want to see an
encryption standard that they could not break. Hence, it is rumored that
the NSA lobbied to weaken one aspect of Lucifer, the number of possible
keys, before allowing it to be adopted as the standard.

The number of possible keys is one of the crucial factors determining
the strength of any cipher. A cryptanalyst trying to decipher an encrypted
message could attempt to check all possible keys, and the greater the num-
ber of possible keys, the longer it will take to find the right one. If there
are only 1,000,000 possible keys, a cryptanalyst could use a powerful com-
puter to find the correct one in a matter of minutes, and thereby decipher
an intercepted message. However, if the number of possible keys is large
enough, finding the correct key becomes impractical. If Lucifer were to
become the encryption standard, then the NSA wanted to ensure that it
operated with only a restricted number of keys.

The NSA argued in favor of limiting the number of keys to roughly
100,000,000,000,000,000 (technically referred to as 56 bits, because this
number consists of 56 digits when written in binary). It seems that the
NSA believed that such a key would provide security within the civilian
community, because no civilian organization had a computer powerful
enough to check every possible key within a reasonable amount of time.
However, the NSA itself, with access to the world’s greatest computing
resource, would just about be able to break into messages. The 56-bit ver-
sion of Feistel’s Lucifer cipher was officially adopted on November 23,
1976, and was called the Data Encryption Standard (DES). A quarter of a
century later, DES remains America’s official standard for encryption.

The adoption of DES solved the problem of standardization, en-
couraging businesses to use cryptography for security. Furthermore, DES
was strong enough to guarantee security against attacks from commercial
rivals. It was effectively impossible for a company with a civilian com-
puter to break into a DES-encrypted message because the number of pos-
sible keys was sufficiently large. Unfortunately, despite standardization
and despite the strength of DES, businesses still had to deal with one
more major issue, a problem known as key distribution.
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Imagine that a bank wants to send some confidential data to a client
via a telephone line, but is worried that there might be somebody tapping
the wire. The bank picks a key and uses DES to encrypt the data message.
In order to decrypt the message, the client needs not only to have a copy
of DES on its computer, but also to know which key was used to encrypt
the message. How does the bank inform the client of the key? It cannot
send the key via the telephone line, because it suspects that there is an
eavesdropper on the line. The only truly secure way to send the key is to
hand it over in person, which is clearly a time-consuming task. A less
secure but more practical solution is to send the key via a courier. In the
1970s, banks attempted to distribute keys by employing special dispatch
riders who had been vetted and who were among the company’s most
trusted employees. These dispatch riders would race across the world
with padlocked briefcases, personally distributing keys to everyone who
would receive messages from the bank over the next week. As business
networks grew in size, as more messages were sent, and as more keys had
to be delivered, the banks found that this distribution process became a
horrendous logistical nightmare, and the overhead costs became prohib-
itive.

The problem of key distribution has plagued cryptographers through-
out history. For example, during the Second World War the German High
Command had to distribute the monthly book of day keys to all its
Enigma operators, which was an enormous logistical problem. Also, U-
boats, which tended to spend extended periods away from base, had to
somehow obtain a regular supply of keys. In earlier times, users of the
Vigenére cipher had to find a way of getting the keyword from the sender
to the receiver. No matter how secure a cipher is in theory, in practice it
can be undermined by the problem of key distribution.

To some extent, government and the military have been able to deal
with the problem of key distribution by throwing money and resources at
it. Their messages are so important that they will go to any lengths to
ensure secure key distribution. The U.S. Government keys are managed
and distributed by COMSEC, short for Communications Security. In
the 1970s, COMSEC was responsible for transporting tons of keys every
day. When ships carrying COMSEC material came into dock, crypto-
custodians would march onboard, collect stacks of cards, paper tapes,
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floppy disks, or whatever other medium the keys might be stored on, and
then deliver them to the intended recipients.

Key distribution might seem a mundane issue, but it became the over-
riding problem for postwar cryptographers. If two parties wanted to com-
municate securely, they had to rely on a third party to deliver the key, and
this became the weakest link in the chain of security. The dilemma for
businesses was straightforward—if governments with all their money were
struggling to guarantee the secure distribution of keys, then how could
civilian companies ever hope to achieve reliable key distribution without
bankrupting themselves?

Despite claims that the problem of key distribution was unsolvable, a
team of mavericks triumphed against the odds and came up with a
brilliant solution in the mid-1970s. They devised an encryption system
that appeared to defy all logic. Although computers transformed the
implementation of ciphers, the greatest revolution in twentieth-century
cryptography has been the development of techniques to overcome the
problem of key distribution. Indeed, this breakthrough is considered to
be the greatest cryptographic achievement since the invention of the
monoalphabetic cipher, over two thousand years ago.

God Rewards Fools

Whitfield Diffie is one of the most ebullient cryptographers of his gener-
ation. The mere sight of him creates a striking and somewhat contradic-
tory image. His impeccable suit reflects the fact that for most of the 1990s
he has been employed by one of America’s giant computer companies—
currently his official job title is Distinguished Engineer at Sun Micro-
systems. However, his shoulder-length hair and long white beard betray
the fact that his heart is still stuck in the 1960s. He spends much of his
time in front of a computer workstation, but he looks as if he would be
equally comfortable in a Bombay ashram. Diffie is aware that his dress
and personality can have quite an impact on others, and comments that,
“People always think that I am taller than I really am, and I'm told it’s the
Tigger effect—"No matter his weight in pounds, shillings and ounces, he
always seems bigger because of the bounces.’”

Diffie was born in 1944, and spent most of his early years in Queens,
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New York. As a child he became fascinated by mathematics, reading
books ranging from The Chemical Rubber Company Handbook of Mathemati-
cal Tables to G.H. Hardy’s Course of Pure Mathematics. He went on to study
mathematics at the Massachusetts Institute of Technology, graduating in
1965. He then took a series of jobs related to computer security, and by
the early 1970s he had matured into one of the few truly independent
security experts, a freethinking cryptographer, not employed by the gov-
ernment or by any of the big corporations. In hindsight, he was the first
cypherpunk.

Diffie was particularly interested in the key distribution problem, and
he realized that whoever could find a solution would go down in history
as one of the all-time great cryptographers. Diffie was so captivated by the

Figure 62 Whitfield Diffie.
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problem of key distribution that it became the most important entry
in his special notebook entitled “Problems for an Ambitious Theory of
Cryptography.” Part of Diffie’s motivation came from his vision of a
wired world. Back in the 1960s, the U.S. Department of Defense began
funding a cutting-edge research organization called the Advanced
Research Projects Agency (ARPA), and one of ARPA’s front-line projects
was to find a way of connecting military computers across vast distances.
This would allow a computer that had been damaged to transfer its
responsibilities to another one in the network. The main aim was to make
the Pentagon’s computer infrastructure more robust in the face of nuclear
attack, but the network would also allow scientists to send messages to
each other, and perform calculations by exploiting the spare capacity of
remote computers. The ARPANet was born in 1969, and by the end of
the year there were four connected sites. The ARPANet steadily grew in
size, and in 1982 it spawned the Internet. At the end of the 1980s, non-
academic and nongovernmental users were given access to the Internet,
and thereafter the number of users exploded. Today, more than a hundred
million people use the Internet to exchange information and send elec-
tronic mail messages, or e-mails.

While the ARPANet was still in its infancy, Diffie was farsighted
enough to forecast the advent of the information superhighway and the
digital revolution. Ordinary people would one day have their own com-
puters, and these computers would be interconnected via phone lines.
Diffie believed that if people then used their computers to exchange e-
mails, they deserved the right to encrypt their messages in order to guar-
antee their privacy. However, encryption required the secure exchange of
keys. If governments and large corporations were having trouble coping
with key distribution, then the public would find it impossible, and
would effectively be deprived of the right to privacy.

Diffie imagined two strangers meeting via the Internet, and wondered
how they could send each other an encrypted message. He also con-
sidered the scenario of a person wanting to buy a commodity on the
Internet. How could that person send an e-mail containing encrypted
credit card details so that only the Internet retailer could decipher them?
In both cases, it seemed that the two parties needed to share a key, but
how could they securely exchange keys? The number of casual contacts

Alice and Bob Go Public 255

and the amount of spontaneous e-mails among the public would be enor-
mous, and this would mean that key distribution would be impractical.
Diffie was fearful that the necessity of key distribution would prevent the
public from having access to digital privacy, and he became obsessed with
the idea of finding a solution to the problem.

In 1974, Diffie, still an itinerant cryptographer, paid a visit to IBM’s
Thomas J. Watson Laboratory, where he had been invited to give a talk.
He spoke about various strategies for attacking the key distribution prob-
lem, but all his ideas were very tentative, and his audience was skeptical
about the prospects for a solution. The only positive response to Diffie’s
presentation was from Alan Konheim, one of IBM’s senior cryptographic
experts, who mentioned that someone else had recently visited the labo-
ratory and given a lecture that addressed the issue of key distribution.
That speaker was Martin Hellman, a professor from Stanford University
in California. That evening Diffie got in his car and began the 5,000 km
journey to the West Coast to meet the only person who seemed to share
his obsession. The alliance of Diffie and Hellman would become one of
the most dynamic partnerships in cryptography.

Martin Hellman was born in 1945 in a Jewish neighborhood in the
Bronx, but at the age of four his family moved to a predominantly Irish
Catholic neighborhood. According to Hellman, this permanently
changed his attitude to life: “The other kids went to church and they
learned that the Jews killed Christ, so I got called ‘Christ killer.” I also got
beat up. To start with, I wanted to be like the other kids, I wanted a
Christmas tree and I wanted Christmas presents. But then I realized that
I couldn’t be like all the other kids, and in self-defense I adopted an atti-
tude of “Who would want to be like everybody else?’ ” Hellman traces his
interest in ciphers to this enduring desire to be different. His colleagues
had told him he was crazy to do research in cryptography, because he
would be competing with the NSA and their multibillion-dollar budget.
How could he hope to discover something that they did not know
already? And if he did discover anything, the NSA would classify it.

Just as Hellman was beginning his research, he came across 7% Code-
breakers by the historian David Kahn. This book was the first detailed dis-
cussion of the development of ciphers, and as such it was the perfect
primer for a budding cryptographer. The Codebreakers was Hellman’s only



256  The Code Book

research companion, until September 1974, when he received an unex-
pected phone call from Whitfield Diffie, who had just driven across the
Continent to meet him. Hellman had never heard of Diffie, but grudg-
ingly agreed to a half-hour appointment later that afternoon. By the end
of the meeting, Hellman realized that Diffie was the best-informed per-
son he had ever met. The feeling was mutual. Hellman recalls: “I’d
promised my wife I'd be home to watch the kids, so he came home with
me and we had dinner together. He left at around midnight. Our person-
alities are very different—he is much more counterculture than I am—but
eventually the personality clash was very symbiotic. It was just such a
breath of fresh air for me. Working in a vacuum had been really hard.”

Since Hellman did not have a great deal of funding, he could not
afford to employ his new soulmate as a researcher. Instead, Diffie was
enrolled as a graduate student. Together, Hellman and Diffie began to
study the key distribution problem, desperately trying to find an alterna-
tive to the tiresome task of physically transporting keys over vast dis-
tances. In due course they were joined by Ralph Merkle. Merkle was an
intellectual refugee, having emigrated from another research group where
the professor had no sympathy for the impossible dream of solving the
key distribution problem. Says Hellman:

Ralph, like us, was willing to be a fool. And the way to get to the top of the
heap in terms of developing original research is to be a fool, because only
fools keep trying. You have idea number 1, you get excited, and it flops. Then
you have idea number 2, you get excited, and it flops. Then you have idea
number 99, you get excited, and it flops. Only a fool would be excited by the
100th idea, but it might take 100 ideas before one really pays off. Unless
you're foolish enough to be continually excited, you won’t have the motiva-
tion, you won’t have the energy to carry it through. God rewards fools.

The whole problem of key distribution is a classic catch-22 situation. If
two people want to exchange a secret message over the phone, the sender
must encrypt it. To encrypt the secret message the sender must use a key,
which is itself a secret, so then there is the problem of transmitting the
secret key to the receiver in order to transmit the secret message. In short,
before two people can exchange a secret (an encrypted message) they
must already share a secret (the key).

Alice and Bob Go Public 257

When thinking about the problem of key distribution, it is helpful to
consider Alice, Bob and Eve, three fictional characters who have become
the industry standard for discussions about cryptography. In a typical sit-
uation, Alice wants to send a message to Bob, or vice versa, and Eve is try-
ing to eavesdrop. If Alice is sending private messages to Bob, she will
encrypt each one before sending it, using a separate key each time. Alice is
continually faced with the problem of key distribution because she has to
convey the keys to Bob securely, otherwise he cannot decrypt the mes-
sages. One way to solve the problem is for Alice and Bob to meet up once

Figure 63 Martin Hellman.
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a week and exchange enough keys to cover the messages that might be
sent during the next seven days. Exchanging keys in person is certainly
secure, but it is inconvenient and, if either Alice or Bob is taken ill, the
system breaks down. Alternatively, Alice and Bob could hire couriers,
which would be less secure and more expensive, but at least they have del-
egated some of the work. Either way, it seems that the distribution of keys
is unavoidable. For two thousand years this was considered to be an
axiom of cryptography—an indisputable truth. However, there is a
thought experiment that seems to defy the axiom.

Imagine that Alice and Bob live in a country where the postal system
is completely immoral, and postal employees will read any unprotected
correspondence. One day, Alice wants to send an intensely personal mes-
sage to Bob. She puts it inside an iron box, closes it and secures it with a
padlock and key. She puts the padlocked box in the post and keeps the
key. However, when the box reaches Bob, he is unable to open it because
he does not have the key. Alice might consider putting the key inside
another box, padlocking it and sending it to Bob, but without the key to
the second padlock he is unable to open the second box, so he cannot
obtain the key that opens the first box. The only way around the prob-
lem seems to be for Alice to make a copy of her key and give it to Bob in
advance when they meet for coffee. So far, I have just restated the same
old problem in a new scenario. Avoiding key distribution seems logically
impossible—surely, if Alice wants to lock something in a box so that only
Bob can open it, she must give him a copy of the key. Or, in terms of
cryptography, if Alice wants to encipher a message so that only Bob can
decipher it, she must give him a copy of the key. Key exchange is an
inevitable part of encipherment—or is it?

Now picture the following scenario. As before, Alice wants to send an
intensely personal message to Bob. Again, she puts her secret message in an
iron box, padlocks it and sends it to Bob. When the box arrives, Bob adds
his own padlock and sends the box back to Alice. When Alice receives the
box, it is now secured by two padlocks. She removes her own padlock, leav-
ing just Bob’s padlock to secure the box. Finally she sends the box back to
Bob. And here is the crucial difference: Bob can now open the box because
it is secured only with his own padlock, to which he alone has the key.
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The implications of this little story are enormous. It demonstrates that
a secret message can be securely exchanged between two people without
necessarily exchanging a key. For the first time we have a suggestion that
key exchange might not be an inevitable part of cryptography. We can
reinterpret the story in terms of encryption. Alice uses her own key to
encrypt a message to Bob, who encrypts it again with his own key and
returns it. When Alice receives the doubly encrypted message, she
removes her own encryption and returns it to Bob, who can then remove
his own encryption and read the message.

It seems that the problem of key distribution might have been solved,
because the doubly encrypted scheme requires no exchange of keys. How-
ever, there is a fundamental obstacle to implementing a system in which
Alice encrypts, Bob encrypts, Alice decrypts and Bob decrypts. The prob-
lem is the order in which the encryptions and decryptions are performed.
In general, the order of encryption and decryption is crucial, and should
obey the maxim “last on, first off.” In other words, the last stage of
encryption should be the first to be decrypted. In the above scenario, Bob
performed the last stage of encryption, so this should have been the first
to be decrypted, but it was Alice who removed her encryption first, before
Bob removed his. The importance of order is most easily grasped by
examining something we do every day. In the morning we put on our
socks, and then we put on our shoes, and in the evening we remove our
shoes before removing our socks—it is impossible to remove the socks
before the shoes. We must obey the maxim “last on, first off.”

Some very elementary ciphers, such as the Caesar cipher, are so simple
that order does not matter. However, in the 1970s it seemed that any form
of strong encryption must always obey the “last on, first off” rule. If 2 mes-
sage is encrypted with Alice’s key and then with Bob’s key, then it must
be decrypted with Bob’s key before it can be decrypted with Alice’s key.
Order is crucial even with a monoalphabetic substitution cipher. Imagine
that Alice and Bob have their own keys, as shown on the next page, and let
us take a look at what happens when the order is incorrect. Alice uses her
key to encrypt a message to Bob, then Bob reencrypts the result using his
own key; Alice uses her key to perform a partial decryption, and finally Bob
attempts to use his key to perform the full decryption.
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Alice’s key
abcdefghijklmnopqrstuvwxyz
HFSUGTAKVDEOYJBPNXWCQRIMZL

Bob’s key
abcdefghijklmnopqrstuvwxyz
CPMGATNOJEFWIQBURYHXSDZKLYV

Message meet me at noon
Encrypted with Alice’'skey YGGC YG HC JBBJ
Encrypted with Bob’s key LNNM LN OM EPPE
Decrypted with Alice’skey ZQQX ZQ LX KPPK
Decrypted with Bob’s key wnnt wn yt xbbx

The result is nonsense. However, you can check for yourself that if the
decryption order were reversed, and Bob decrypted before Alice, thus
obeying the “last on, first off” rule, then the result would have been the
original message. But if order is so important, why did the padlock sys-
tem seem to work in the anecdote about locked boxes? The answer is that
order is not important for padlocks. I can apply twenty padlocks to a box
and undo them in any order, and at the end the box will open. Unfortu-
nately, encryption systems are far more sensitive than padlocks when it
comes to order.

Although the doubly padlocked box approach would not work for real-
world cryptography, it inspired Diffie and Hellman to search for a practical
method of circumventing the key distribution problem. They spent month
after month attempting to find a solution. Although every idea ended in
failure, they behaved like perfect fools and persevered. Their research con-
centrated on the examination of various mathematical Sunctions. A func-
tion is any mathematical operation that turns one number into another
number. For example, “doubling” is a type of function, because it turns the
number 3 into 6, or the number 9 into 18. Furthermore, we can think of all
forms of computer encryption as functions because they turn one number
(the plaintext) into another number (the ciphertext).

Most mathematical functions are classified as two-way functions
because they are easy to do, and easy to undo. For example, “doubling”
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is a two-way function because it is easy to double a number to generate a
new number, and just as easy to undo the function and get from the dou-
bled number back to the original number. For example, if we know that
the result of doubling is 26, then it is trivial to reverse the function and
deduce that the original number was 13. The easiest way to understand
the concept of a two-way function is in terms of an everyday activity. The
act of turning on a light switch is a function, because it turns an ordinary
lightbulb into an illuminated lightbulb. This function is two-way because
if a switch is turned on, it is easy enough to turn it off and return the light-
bulb to its original state.

However, Diffie and Hellman were not interested in two-way func-
tions. They focused their attention on one-way functions. As the name
suggests, a one-way function is easy to do but very difficult to undo. In
other words, two-way functions are reversible, but one-way functions are
not reversible. Once again, the best way to illustrate a one-way function
is in terms of an everyday activity. Mixing yellow and blue paint to make
green paint is a one-way function because it is easy to mix the paint, but
impossible to unmix it. Another one-way function is the cracking of an
egg, because it is easy to crack an egg but impossible then to return the
egg to its original condition. For this reason, one-way functions are some-
times called Humpty Dumpty functions.

Modular arithmetic, sometimes called clock arithmetic in schools, is an
area of mathematics that is rich in one-way functions. In modular arith-
metic, mathematicians consider a finite group of numbers arranged in a
loop, rather like the numbers on a clock. For example, Figure 64 shows a
clock for modular 7 (or mod 7), which has only the 7 numbers from 0 to
6. To work out 2 + 3, we start at 2 and move around 3 places to reach 5,
which is the same answer as in normal arithmetic. To work out 2 + 6 we
start at 2 and move around 6 places, but this time we go around the loop
and arrive at 1, which is not the result we would get in normal arithmetic.
These results can be expressed as:

2+3=5(mod7) and 2+6=1(mod?7)

Modular arithmetic is relatively simple, and in fact we do it every day
when we talk about time. If it is 9 o’clock now, and we have a meeting
8 hours from now, we would say that the meeting is at 5 o’clock, not
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17 o’clock. We have mentally calculated 9 + 8 in (mod 12). Imagine a
clock face, look at 9, and then move around 8 spaces, and we end up at 5:

9+ 8=>5 (mod 12)

Rather than visualizing clocks, mathematicians often take the shortcut of
performing modular calculations according to the following recipe. First,
perform the calculation in normal arithmetic. Second, if we want to know
the answer in (mod x), we divide the normal answer by x and note the
remainder. This remainder is the answer in (mod x). To find the answer to
11 x 9 (mod 13), we do the following:

11x9=99
99 = 13 =7, remainder 8
11 x 9=8 (mod 13)

Functions performed in the modular arithmetic environment tend to
behave erratically, which in turn sometimes makes them one-way func-
tions. This becomes evident when a simple function in normal arithmetic
is compared with the same simple function in modular arithmetic. In the
former environment the function will be two-way and easy to reverse; in
the latter environment it will be one-way and hard to reverse. As an exam-
ple, let us take the function 3*. This means take a number x, then
multiply 3 by itself x times in order to get the new number. For example,
if x = 2, and we perform the function, then:

3*=32=3x3=9,
In other words, the function turns 2 into 9. In normal arithmetic, as the

value of x increases so does the result of the function. Hence, if we were
given the result of the function it would be relatively easy to work back-

Figure 64 Modular arithmetic is
performed on a finite set of numbers,
which can be thought of as numbers
on a clock face. In this case, we can
work out 6 + 5 in modular 7 by
starting at 6 and moving around five
spaces, which brings us to 4.
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ward and deduce the original number. For example, if the result is 81, we
can deduce that x is 4, because 34 = 81. If we made a mistake and guessed
that x is 5, we could work out that 35= 243, which tells us that our choice
of x is too big. We would then reduce our choice of x to 4, and we would
have the right answer. In short, even when we guess wrongly we can home
in on the correct value of x, and thereby reverse the function.

However, in modular arithmetic this same function does not behave so
sensibly. Imagine that we are told that 3% in {mod 7) is 1, and we are asked
to find the value of x. No value springs to mind, because we are generally
unfamiliar with modular arithmetic. We could take a guess that x=5, and
we could work out the result of 35 (mod 7). The answer turns out to be 5,
which is too big, because we are looking for an answer of just 1. We might
be tempted to reduce the value of x and try again. But we would be head-
ing in the wrong direction, because the actual answer is x = 6.

In normal arithmetic we can test numbers and can sense whether we
are getting warmer or colder. The environment of modular arithmetic
gives no helpful clues, and reversing functions is much harder. Often, the
only way to reverse a function in modular arithmetic is to compile a table
by calculating the function for many values of x until the right answer is
found. Table 25 shows the result of calculating several values of the func-
tion in both normal arithmetic and modular arithmetic. It clearly demon-
strates the erratic behavior of the function when calculated in modular
arithmetic. Although drawing up such a table is only a little tedious when
we are dealing with relatively small numbers, it would be excruciatingly
painful to build a table to deal with a function such as 453* (mod 21,997).
This is a classic example of a one-way function, because I could pick a
value for x and calculate the result of the function, but if I gave you a

Table 25 Values of the function 3% calculated in normal
arithmetic (row 2) and modular arithmetic (row 3). The
function increases continuously in normal arithmetic,
but is highly erratic in modular arithmetic.

x 1 2 3 4 5 6
3* 39 27 81 243 729
¥mod7) 3 2 6 4 5 1
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result, say 5,787, you would have enormous difficulty in reversing the
function and deducing my choice of x. It took me just seconds to do my
calculation and generate 5,787, but it would take you hours to draw up the
table and work out my choice of x.

After two years of focusing on modular arithmetic and one-way func-
tions, Hellman’s foolishness began to pay off. In the spring of 1976 he hit
upon a strategy for solving the key exchange problem. In half an hour of
frantic scribbling, he proved that Alice and Bob could agree on a key
without meeting, thereby disposing of an axiom that had lasted for cen-
turies. Hellman’s idea relied on a one-way function of the form Y*¥ (mod
P). Initially, Alice and Bob agree on values for ¥ and P. Almost any val-
ues are fine, but there are some restrictions, such as Y being smaller than
P. These values are not secret, so Alice can telephone Bob and suggest
that, say, Y= 7 and P= 11. Even if the telephone line is insecure and
nefarious Eve hears this conversation, it does not matter, as we shall see
later. Alice and Bob have now agreed on the one-way function 7* (mod
11). At this point they can begin the process of trying to establish a secret
key without meeting. Because they work in parallel, I explain their actions
in the two columns of Table 26.

Having followed the stages in Table 26, you will see that, without meet-
ing, Alice and Bob have agreed on the same key, which they can use to
encipher a message. For example, they could use their number, 9, as the
key for a DES encryption. (DES actually uses much larger numbers as the
key, and the exchange process described in Table 26 would be
performed with much larger numbers, resulting in a suitably large DES
key.) By using Hellman’s scheme, Alice and Bob have been able to agree
on a key, yet they did not have to meet up and whisper the key to each
other. The extraordinary achievement is that the secret key was agreed via
an exchange of information on a normal telephone line. But if Eve tapped
this line, then surely she also knows the key?

Let us examine Hellman’s scheme from Eve’s point of view. If she is
tapping the line, she knows only the following facts: that the function is
7% (mod 11), that Alice sends a = 2 and that Bob sends B =4. In order to
find the key, she must either do what Bob does, which is turn o into the
key by knowing B, or do what Alice does, which is turn B into the key by
knowing A. However, Eve does not know the value of A4 or B because
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Table 26 The general one-way function is Y* (mod P). Alice and Bob have chosen values
for Yand P, and hence have agreed on the one-way function 7% (mod 11).

Alice Bob
Stage 1 Alice chooses a number, say 3, Bob chooses a number, say 6,
and keeps it secret. and keeps it secret.
We label her number A. We will label his number B.

Stage 2 Alice puts 3 into the one-way Bob puts 6 into the one-way
function and works out the

result of 7B (mod 11):

function and works out the
result of 74 (mod 11):

73 (mod 11) =343 (mod 11) =2 76 (mod 11) = 117,649 (mod 11) =4
Stage 3 Alice calls the result of this Bob calls the result of this
calculation o, and she sends calculation B, and he sends
her result, 2, to Bob. his result, 4, to Alice.
The swap Ordinarily this would be a crucial moment, because

Alice and Bob are exchanging information, and therefore this is
an opportunity for Eve to eavesdrop and find out the details of the
information. However, it turns out that Eve can listen in without it
affecting the ultimate security of the system. Alice and Bob could use
the same telephone line that they used to agree the values for ¥
and P, and Eve could intercept the two numbers that are being
exchanged, 2 and 4. However, these numbers are not the key,
which is why it does not matter if Eve knows them.

Stage 4 Alice takes Bob’s result, and works Bob takes Alice’s result, and works
out the result of B4 (mod 11):
43 (mod 11) = 64 (mod 11)=9

out the result of a8 (mod 11):
26 (mod 11) =64 (mod 11)=9

The key Miraculously, Alice and Bob have ended up
with the same number, 9.
This is the key!
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Alice and Bob have not exchanged these numbers, and have kept them
secret. Eve is stymied. She has only one hope: in theory, she could work
out A from a, because o was a consequence of putting A4 into a function,
and Eve knows the function. Or she could work out B from B, because B
was a consequence of putting B into a function, and once again Eve
knows the function. Unfortunately for Eve, the function is one-way, $o
whereas it was easy for Alice to turn A into « and for Bob to turn B into
B, it is very difficult for Eve to reverse the process, especially if the num-
bers are very large.

Bob and Alice exchanged just enough information to allow them to
establish a key, but this information was insufficient for Eve to work out
the key. As an analogy for Hellman’s scheme, imagine a cipher that some-
how uses color as the key. First, let us assume that everybody, including
Alice, Bob and Eve, has a three-liter pot containing one liter of yellow
paint. If Alice and Bob want to agree on a secret key, each of them adds
one liter of their own secret color to their own pot. Alice might add a pecu-
liar shade of purple, while Bob might add crimson. Each sends their own
mixed pot to the other. Finally, Alice takes Bob’s mixture and adds one liter
of her own secret color, and Bob takes Alice’s mixture and adds one liter
of his own secret color. Both pots should now be the same color, because
they both contain one liter of yellow, one liter of purple and one liter of
crimson. It is the exact color of the doubly contaminated pots that is used
as the key. Alice has no idea what color was added by Bob, and Bob has no
idea what color was added by Alice, but they have both achieved the same
end. Meanwhile, Eve is furious. Even if she intercepts the intermediate pots
she cannot work out the color of the final pots, which is the agreed key.
She might see the color of the mixed pot containing yellow and Alice’s
secret color on its way to Bob, and she might see the color of the mixed
pot containing yellow and Bob’s secret color on its way to Alice, but in
order to work out the key she really needs to know Alice and Bob’s origi-
nal secret colors. However, Eve cannot work out Alice and Bob’s secret col-
ors by looking at the mixed pots. Even if she takes a sample from one of
the mixed paints, she cannot unmix the paint to find out the secret color,
because mixing paint is a one-way function.

Hellman’s breakthrough came while he was working at home late one
night, so by the time he had finished his calculations it was too late to call
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Diffie and Merkle. He had to wait until the following morning to reveal
his discovery to the only two other people in the world who had believed
that a solution to the key distribution problem was even possible. “The
muse whispered to me,” says Hellman, “but we all laid the foundations
together.” Diffie immediately recognized the power of Hellman’s break-
through: “Marty explained his system of key exchange in all its unnerv-
ing simplicity. Listening to him, I realized that the notion had been at the
edge of my mind for some time, but had never really broken through.”

The Diffie-Hellman-Merkle key exchange scheme, as it is known,
enables Alice and Bob to establish a secret via public discussion. It is one
of the most counterintuitive discoveries in the history of science, and it
forced the cryptographic establishment to rewrite the rules of encryption.
Diffie, Hellman and Merkle publicly demonstrated their discovery at the
National Computer Conference in June 1976, and astonished the audience
of cryptoexperts. The following year they filed for a patent. Henceforth,
Alice and Bob no longer had to meet in order to exchange a key. Instead,
Alice could just call Bob on the phone, exchange a couple of numbers
with him, mutually establish a secret key and then proceed to encrypt.

Although Diffie-Hellman-Merkle key exchange was a gigantic leap for-
ward, the system was not perfect because it was inherently inconvenient.
Imagine that Alice lives in Hawaii, and that she wants to send an e-mail
to Bob in Istanbul. Bob is probably asleep, but the joy of e-mail is that
Alice can send a message at any time, and it will be waiting on Bob’s com-
puter when he wakes up. However, if Alice wants to encrypt her
message, then she needs to agree a key with Bob, and in order to perform
the key exchange it is preferable for Alice and Bob to be on-line at the
same time—establishing a key requires a mutual exchange of information.
In effect, Alice has to wait until Bob wakes up. Alternatively, Alice could
transmit her part of the key exchange, and wait 12 hours for Bob’s reply,
at which point the key is established and Alice can, if she is not asleep
herself, encrypt and transmit the message. Either way, Hellman’s key
exchange system hinders the spontaneity of e-mail.

Hellman had shattered one of the tenets of cryptography and proved
that Bob and Alice did not have to meet to agree a secret key. Next, some-
body merely had to come up with a more efficient scheme for overcom-
ing the problem of key distribution.
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The Birth of Public Key Cryptography

Mary Fisher has never forgotten the first time that Whitfield Diffie asked
her out on a date: “He knew I was a space buff, so he suggested we go and
see a launch. Whit explained that he was leaving that evening to see Sky-
lab take off, and so we drove all night, and we got there at about 3 A.M.
The bird was on the path, as they used to say in those days. Whit had
press credentials, but I didn’t. So when they asked for my identification
and asked who I was, Whit said ‘My wife.” That was 16 November 1973.”
They did eventually marry, and during the early years Mary supported her
husband during his cryptographic meditations. Diffie was still being
employed as a graduate student, which meant that he received only a
meager salary. Mary, an archaeologist by training, took a job with British
Petroleum in order to make ends meet.

While Martin Hellman had been developing his method of key
exchange, Whitfield Diffie had been working on a completely different
approach to solving the problem of key distribution. He often went
through long periods of barren contemplation, and on one occasion in
1975 he became so frustrated that he told Mary that he was just a failed
scientist who would never amount to anything. He even told her that she
ought to find someone else. Mary told him that she had absolute faith in
him, and just two weeks later Diffie came up with his truly brilliant idea.

He can still recall how the idea flashed into his mind, and then almost
vanished: “I walked downstairs to get a Coke, and almost forgot about the
idea. I remembered that I'd been thinking about something interesting,
but couldn’t quite recall what it was. Then it came back in a real adrena-
line rush of excitement. I was actually aware for the first time in my work
on cryptography of having discovered something really valuable. Every-
thing that I had discovered in the subject up to this point seemed to me
to be mere technicalities.” It was midafternoon, and he had to wait a cou-
ple of hours before Mary returned. “Whit was waiting at the door,” she
recalls. “He said he had something to tell me and he had a funny look on
his face. I walked in and he said, ‘Sit down, please, I want to talk to you.
I believe that I have made a great discovery—I know I am the first person
to have done this.” The world stood still for me at that moment. I felt like
I was living in a Hollywood film.”

Al

M,
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Diffie had concocted a new type of cipher, one that incorporated a
so-called asymmetric key. So far, all the encryption techniques described in
this book have been symmetric, which means that the unscrambling process
is simply the opposite of scrambling. For example, the Enigma machine
uses a certain key setting to encipher a message, and the receiver uses an
identical machine in the same key setting to decipher it. Similarly, DES
encipherment uses a key to perform 16 rounds of scrambling, and then
DES decipherment uses the same key to perform the 16 rounds in reverse.
Both sender and receiver effectively have equivalent knowledge, and they
both use the same key to encrypt and decrypt—their relationship is
symmetric. On the other hand, in an asymmetric key system, as the name
suggests, the encryption key and the decryption key are not identical. In an
asymmetric cipher, if Alice knows the encryption key she can encrypt a
message, but she cannot decrypt a message. In order to decrypt, Alice must
have access to the decryption key. This distinction between the encryption
and decryption keys is what makes an asymmetric cipher special.

At this point it is worth stressing that although Diffie had conceived of
the general concept of an asymmetric cipher, he did not actually have a
specific example of one. However, the mere concept of an asymmetric
cipher was revolutionary. If cryptographers could find a genuine working
asymmetric cipher, a system that fulfilled Diffie’s requirements, then the
implications for Alice and Bob would be enormous. Alice could create
her own pair of keys: an encryption key and a decryption key. If we
assume that the asymmetric cipher is a form of computer encryption,
then Alice’s encryption key is a number, and her decryption key is a dif-
ferent number. Alice keeps the decryption key secret, so it is commonly
referred to as Alice’s private key. However, she publishes the encryption
key so that everybody has access to it, which is why it is commonly
referred to as Alice’s public key. If Bob wants to send Alice a message, he
simply looks up her public key, which would be listed in something akin
to a telephone directory. Bob then uses Alice’s public key to encrypt the
message. He sends the encrypted message to Alice, and when it arrives
Alice can decrypt it using her private decryption key. Similarly, if Charlie,
Dawn or Edward want to send Alice an encrypted message, they too can

look up Alice’s public encryption key, and in each case only Alice has
access to the private decryption key required to decrypt the messages.
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The great advantage of this system is that there is no toing and froing,
as there is with Diffie-Hellman-Merkle key exchange. Bob does not have
to wait to get information from Alice before he can encrypt and send a
message to her, he merely has to look up her public encryption key.
Furthermore, the asymmetric cipher still overcomes the problem of key
distribution. Alice does not have to transport the public encryption key
securely to Bob: in complete contrast, she can now publicize her public
encryption key as widely as possible. She wants the whole world to know
her public encryption key so that anybody can use it to send her
encrypted messages. At the same time, even if the whole world knows
Alice’s public key, none of them, including Eve, can decrypt any mes-
sages encrypted with it, because knowledge of the public key will not help
in decryption. In fact, once Bob has encrypted a message using Alice’s
public key, even he cannot decrypt it. Only Alice, who possesses the
private key, can decrypt the message.

This is the exact opposite of a traditional symmetric cipher, in which
Alice has to go to great lengths to transport the encryption key securely
to Bob. In a symmetric cipher the encryption key is the same as the
decryption key, so Alice and Bob must take enormous precautions to
ensure that the key does not fall into Eve’s hands. This is the root of the
key distribution problem.

Returning to padlock analogies, asymmetric cryptography can be
thought of in the following way. Anybody can close a padlock simply by
clicking it shut, but only the person who has the key can open it. Locking
(encryption) is easy, something everybody can do, but unlocking (decryp-
tion) can be done only by the owner of the key. The trivial knowledge of
knowing how to click the padlock shut does not tell you how to unlock it.
Taking the analogy further, imagine that Alice designs a padlock and key.
She guards the key, but she manufactures thousands of replica padlocks
and distributes them to post offices all over the world. If Bob wants to
send a message, he puts it in a box, goes to the local post office, asks for
an “Alice padlock” and padlocks the box. Now he is unable to unlock the
box, but when Alice receives it she can open it with her unique key. The
padlock and the process of clicking it shut is equivalent to the public
encryption key, because everyone has access to the padlocks, and every-
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one can use a padlock to seal a message in a box. The padlock’s key is
equivalent to the private decryption key, because only Alice has it, only
she can open the padlock, and only she can gain access to the message in
the box.

The system seems simple when it is explained in terms of padlocks, but
it is far from trivial to find a mathematical function that does the same
job, something that can be incorporated into a workable cryptographic
system. To turn asymmetric ciphers from a great idea into a practical
invention, somebody had to discover an appropriate mathematical func-
tion. Diffie envisaged a special type of one-way function, one that could
be reversed under exceptional circumstances. In Diffie’s asymmetric sys-
tem, Bob encrypts the message using the public key, but he is unable to
decrypt it—this is essentially a one-way function. However, Alice is able to
decrypt the message because she has the private key, a special piece of
information that allows her to reverse the function. Once again, padiocks
are a good analogy—shutting the padlock is a one-way function, because in
general it is hard to open the padlock unless you have something special (the
key), in which case the function is easily reversed.

Diffie published an outline of his idea in the summer of 1975, where-
upon other scientists joined the search for an appropriate one-way
function, one that fulfilled the criteria required for an asymmetric cipher.
Initially there was great optimism, but by the end of the year nobody had
been able to find a suitable candidate. As the months passed, it seemed
increasingly likely that special one-way functions did not exist. It seemed
that Diffie’s idea worked in theory but not in practice. Nevertheless, by
the end of 1976 the team of Diffie, Hellman and Merkle had revolution-
ized the world of cryptography. They had persuaded the rest of the world
that there was a solution to the key distribution problem, and had created
Diffie-Hellman-Merkle key exchange—a workable but imperfect system.
They had also proposed the concept of an asymmetric cipher~a perfect
but as yet unworkable system. They continued their research at Stanford
University, attempting to find a special one-way function that would
make asymmetric ciphers a reality. However, they failed to make the dis-
covery. The race to find an asymmetric cipher was won by another trio of
researchers, based 5,000 km away on the East Coast of America.
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Prime Suspects

“I walked into Ron Rivest’s office,” recalls Leonard Adleman, “and Ron
had this paper in his hands. He started saying, ‘These Stanford guys have
this really blah, blah, blah.” And I remember thinking, ‘That’s nice, Ron,
but I have something else I want to talk about.” I was entirely unaware of
the history of cryptography and I was distinctly uninterested in what he
was saying.” The paper that had made Ron Rivest so excited was by Diffie
and Hellman, and it described the concept of asymmetric ciphers. Even-
tually Rivest persuaded Adleman that there might be some interesting
mathematics in the problem, and together they resolved to try to find a
one-way function that fitted the requirements of an asymmetric cipher. They
were joined in the hunt by Adi Shamir. All three men were researchers on the
eighth floor of the MIT Laboratory for Computer Science.

Rivest, Shamir and Adleman formed a perfect team. Rivest is a com-
puter scientist with a tremendous ability to absorb new ideas and apply
them in unlikely places. He always kept up with the latest scientific
papers, which inspired him to come up with a whole series of weird and
wonderful candidates for the one-way function at the heart of an asym-
metric cipher. However, each candidate was flawed in some way. Shamir,
another computer scientist, has a lightning intellect and an ability to see
through the debris and focus on the core of a problem. He too regularly
generated ideas for formulating an asymmetric cipher, but his ideas were
also inevitably flawed. Adleman, a mathematician with enormous stam-
ina, rigor and patience, was largely responsible for spotting the flaws in
the ideas of Rivest and Shamir, ensuring that they did not waste time fol-
lowing false leads. Rivest and Shamir spent a year coming up with new
ideas, and Adleman spent a year shooting them down. The threesome
began to lose hope, but they were unaware that this process of continual
failure was a necessary part of their research, gently steering them away
from sterile mathematical territory and toward more fertile ground. In
due course, their efforts were rewarded.

In April 1977, Rivest, Shamir and Adleman spent Passover at the house
of a student, and had consumed significant amounts of Manischewitz
wine before returning to their respective homes some time around mid-
night. Rivest, unable to sleep, lay on his couch reading a mathematics
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textbook. He began mulling over the question that had been puzzling
him for weeks—is it possible to build an asymmetric cipher? Is it possible
to find a one-way function that can be reversed only if the receiver has
some special information? Suddenly, the mists began to clear and he had
a revelation. He spent the rest of that night formalizing his idea, effec-
tively writing a complete scientific paper before daybreak. Rivest had
made a breakthrough, but it had grown out of a yearlong collaboration
with Shamir and Adleman, and it would not have been possible without
them. Rivest finished off the paper by listing the authors alphabetically;
Adleman, Rivest, Shamir.

The next morning, Rivest handed the paper to Adleman, who went
through his usual process of trying to tear it apart, but this time he could
find no faults. His only criticism was with the list of authors. “I told Ron
to take my name off the paper,” recalls Adleman. “I told him that it
was his invention, not mine. But Ron refused and we got into a discus-
sion about it. We agreed that I would go home and contemplate it for one
night, and consider what I wanted to do. I went back the next day and
suggested to Ron that I be the third author. I recall thinking that this
paper would be the least interesting paper that I will ever be on.”
Adleman could not have been more wrong. The system, dubbed RSA
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(Rivest, Shamir, Adleman) as opposed to ARS, went on to become the
most influential cipher in modem cryptography.

Before exploring Rivest’s idea, here is a quick reminder of what scien-
tists were looking for in order to build an asymmetric cipher:

(1) Alice must create a public key, which she would then publish so that
Bob (and everybody else)} can use it to encrypt messages to her.
Because the public key is a one-way function, it must be virtually
impossible for anybody to reverse it and decrypt Alice’s messages.

(2) However, Alice needs to decrypt the messages being sent to her. She
must therefore have a private key, some special piece of information,
which allows her to reverse the effect of the public key. Therefore, Alice
(and Alice alone) has the power to decrypt any messages sent to her.

At the heart of Rivest’s asymmetric cipher is a one-way function based on
the sort of modular functions described earlier in the chapter. Rivest’s
one-way function can be used to encrypt a message—the message, which
is effectively a number, is put into the function, and the result is the
ciphertext, another number. I shall not describe Rivest’s one-way function
in detail (for which see Appendix J), but I shall explain one particular
aspect of it, known simply as N, because it is N that makes this one-way
function reversible under certain circumstances, and therefore ideal for
use as an asymmetric cipher.

N is important because it is a flexible component of the one-way func-
tion, which means that each person can choose a different value of N, and
personalize the one-way function. In order to choose her personal value of
N, Alice picks two prime numbers, p and 4, and multiplies them together. A
prime number is one that has no divisors except itself and 1. For example,
7 is a prime number because no numbers except 1 and 7 will divide into it
without leaving a remainder. Likewise, 13 is a prime number because no
numbers except 1 and 13 will divide into it without leaving a remainder.
However, 8 is not a prime number, because it can be divided by 2 and 4.

So, Alice could choose her prime numbers to be p = 17,159 and ¢4 =
10,247. Multiplying these two numbers together gives N = 17,159 x
10,247 = 175,828,273, Alice’s choice of N effectively becomes her public
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encryption key, and she could print it on her business card, post it on the
Internet, or publish it in a public key directory along with everybody
else’s value of N. If Bob wants to encrypt a message to Alice, he looks up
Alice’s value of N (175,828,273) and then inserts it into the general form
of the one-way function, which would also be public knowledge. Bob
now has a one-way function tailored with Alice’s public key, so it could
be called Alice’s one-way function. To encrypt a message to Alice, he
takes Alice’s one-way function, inserts the message, notes down the result
and sends it to Alice.

At this point the encrypted message is secure because nobody can deci-
pher it. The message has been encrypted with a one-way function, so
reversing the one-way function and decrypting the message is, by defini-
tion, very difficult. However, the question remains—how can Alice
decrypt the message? In order to read messages sent to her, Alice must
have a way of reversing the one-way function. She needs to have access
to some special piece of information that allows her to decrypt the mes-
sage. Fortunately for Alice, Rivest designed the one-way function so that
it is reversible to someone who knows the values of p and ¢, the two prime
numbers that are multiplied together to give N. Although Alice has told
the world that her value for Nis 175,828,273, she has not revealed her val-
ues for p and ¢, so only she has the special information required to
decrypt her own messages.

We can think of N as the public key, the information that is available
to everybody, the information required to encrypt messages to Alice.
Whereas, p and 4 are the private key, available only to Alice, the infor-
mation required to decrypt these messages.

The exact details of how p and 4 can be used to reverse the one-way
function are outlined in Appendix J. However, there is one question that
must be addressed immediately. If everybody knows N, the public key,
then surely people can deduce p and ¢, the private key, and read Alice’s
messages? After all, N was created from p and 4. In fact, it turns out that if
N is large enough, it is virtually impossible to deduce p and 4 from N, and
this is perhaps the most beautiful and elegant aspect of the RSA asym-
metric cipher.

Alice created N by choosing p and ¢, and then multiplying them
together. The fundamental point is that this is in itself a one-way function.
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To demonstrate the one-way nature of multiplying primes, we can take
two prime numbers, such as 9,419 and 1,933, and multiply them together.
With a calculator it takes just a few seconds to get the answer, 18,206,927,
However, if instead we were given 18,206,927 and asked to find the prime
factors (the two numbers that were multiplied to give 18,206,927) it
would take us much longer. If you doubt the difficulty of finding prime
factors, then consider the following. It took me just ten seconds to gener-
ate the number 1,709,023, but it will take you and a calculator the best part
of an afternoon to work out the prime factors.

This system of asymmetric cryptography, known as RSA, is said to be a
form of public key cryptography. To find out how secure RSA is, we can exam-
ine it from Eve’s point of view, and try to break a message from Alice to
Bob. To encrypt a message to Bob, Alice must look up Bob’s public key. To
create his public key, Bob picked his own prime numbers, p, and g;, and
multiplied them together to get Nj. He has kept p; and ¢ secret, because
these make up his private decryption key, but he has published N, which
is equal to 408,508,091. So Alice inserts Bob’s public key N into the gen-
eral one-way encryption function, and then encrypts her message to him.
When the encrypted message arrives, Bob can reverse the function and
decrypt it using his values for p; and g5, which make up his private key.
Meanwhile, Eve has intercepted the message en route. Her only hope of
decrypting the message is to reverse the one-way function, and this is possi-
ble only if she knows p, and g5. Bob has kept pp and g5 secret, but Eve, like
everybody else, knows Ny is 408,508,091. Eve then attempts to deduce the
values for pg and g5 by working out which numbers would need to be mul-
tiplied together to get 408,508,091, a process known as factoring.

Factoring is very time-consuming, but exactly how long would it take
Eve to find the factors of 408,508,091? There are various recipes for trying
to factor Nj. Although some recipes are faster than others, they all essen-
tially involve checking each prime number to see if it divides into Nj
without a remainder. For example, 3 is a prime number, but it is not a fac-
tor of 408,508,091 because 3 will not perfectly divide into 408,508,091.
So Eve moves on to the next prime number, 5. Similarly, 5 is not a factor,
so Eve moves on to the next prime number, and so on. Eventually, Eve
arrives at 18,313, the 2,000th prime number, which is indeed a factor of
408,508,091. Having found one factor, it is easy to find the other one,
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which turns out to be 22,307. If Eve had a calculator and was able to check
four primes a minute, then it would have taken her 500 minutes, or more
than 8 hours, to find p; and 4. In other words, Eve would be able to work
out Bob’s private key in less than a day, and could therefore decipher the
intercepted message in less than a day.

This is not a very high level of security, but Bob could have chosen
much larger prime numbers and increased the security of his private key.
For example, he could have chosen primes that are as big as 1065 (this
means 1 followed by 65 zeros, or one hundred thousand, million, mil-
lion, million, million, million, million, million, million, million, mil-
lion). This would have resulted in a value for N that would have been
roughly 1065 x 1065, which is 10130, A computer could multiply the two
primes and generate N in just a second, but if Eve wanted to reverse the
process and work out p and ¢, it would take inordinately longer. Exactly
how long depends on the speed of Eve’s computer. Security expert Sim-
son Garfinkel estimated that a 100 MHz Intel Pentium computer with 8
MB of RAM would take roughly 50 years to factor a number as big as
10130, Cryptographers tend to have a paranoid streak and consider worst-
case scenarios, such as a worldwide conspiracy to crack their ciphers. So,
Garfinkel considered what would happen if a hundred million personal
computers (the number sold in 1995) ganged up together. The result is
that a number as big as 10130 could be factored in about 15 seconds.
Consequently, it is now generally accepted that for genuine security it is
necessary to use even larger primes. For important banking transactions,
N tends to be at least 10398, which is ten million billion billion billion
billion billion billion billion billion billion billion billion billion billion
billion billion billion billion billion billion times bigger than 10130, The
combined efforts of a hundred million personal computers would take
more than one thousand years to crack such a cipher. With sufficiently
large values of p and ¢, RSA is impregnable.

The only caveat for the security of RSA public key cryptography is that
at some time in the future somebody might find a quick way to factor N.
It is conceivable that a decade from now, or even tomorrow, somebody
will discover a method for rapid factoring, and thereafter RSA will
become useless. However, for over two thousand years mathematicians
have tried and failed to find a shortcut, and at the moment factoring
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remains an enormously time-consuming calculation. Most mathematic-
ians believe that factoring is an inherently difficult task, and that there is
some mathematical law that forbids any shortcut. If we assume they are
right, then RSA seems secure for the foreseeable future.

The great advantage of RSA public key cryptography is that it does
away with all the problems associated with traditional ciphers and key
exchange. Alice no longer has to worry about securely transporting the
key to Bob, or that Eve might intercept the key. In fact, Alice does not
care who sees the public key—the more the merrier, because the public
key helps only with encryption, not decryption. The only thing that
needs to remain secret is the private key used for decryption, and Alice
can keep this with her at all times.

RSA was first announced in August 1977, when Martin Gardner wrote
an article entitled “A New Kind of Cipher that Would Take Millions of
Years to Break” for his “Mathematical Games” column in Scientific Ameri-
can. After explaining how public key cryptography works, Gardner issued
a challenge to his readers. He printed a ciphertext and also provided the
public key that had been used to encrypt it:

N = 114,381,625,757,888,867,669,235,779,976,146,612,010,218,296,
721,242,362,562,561,842,935,706,935,245,733,897,830,597,123,563,
958,705,058,989,075,147,599,290,026,879,543,541.

The challenge was to factor N into p and ¢, and then use these numbers to
decrypt the message. The prize was $100. Gardner did not have space to
explain the nitty-gritty of RSA, and instead he asked readers to write to
MIT’s Laboratory for Computer Science, who in turn would send back a
technical memorandum that had just been prepared. Rivest, Shamir and
Adleman were astonished by the three thousand requests they received.
However, they did not respond immediately, because they were con-
cerned that public distribution of their idea might jeopardize their
chances of getting a patent. When the patent issues were eventually
resolved, the trio held a celebratory party at which professors and students
consumed pizzas and beer while stuffing envelopes with technical memo-
randa for the readers of Scientific American.

As for Gardner’s challenge, it would take 17 years before the cipher

i
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would be broken. On April 26, 1994, a team of six hundred volunteers
announced the factors of N:

4 = 3,490,529,510,847,650,949,147,849,619,903,898,133,417,764,
638,493,387,843,990,820,577

p = 32,769,132,993,266,709,549,961,988,190,834,461,413,177,
642,967,992,942,539,798,288,533.

Using these values as the private key, they were able to decipher the mes-
sage. The message was a series of numbers, but when converted into let-
ters it read “the magic words are squeamish ossifrage.” The factoring prob-
lem had been split among the volunteers, who came from countries as far
apart as Australia, Britain, America and Venezuela. The volunteers used
spare time on their workstations, mainframes and supercomputers, each
of them tackling a fraction of the problem. In effect, a network of com-
puters around the world were uniting and working simultaneously in
order to meet Gardner’s challenge. Even bearing in mind the mammoth
parallel effort, some readers may still be surprised that RSA was broken in
such a short time, but it should be noted that Gardner’s challenge used a
relatively small value of N—it was only of the order of 1012%. Today, users
of RSA would pick a much larger value to secure important information.
It is now routine to encrypt a message with a sufficiently large value of N
so that all the computers on the planet would need longer than the age of
the universe to break the cipher.

The Alternative History of Public Key Cryptography

Over the past twenty years, Diffie, Hellman and Merkle have become
world-famous as the cryptographers who invented the concept of public
key cryptography, while Rivest, Shamir and Adleman have been credited
with developing RSA, the most beautiful implementation of public key
cryptography. However, a recent announcement means that the history
books are having to be rewritten. According to the British Government,
public key cryptography was originally invented at the Government
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Communications Headquarters (GCHQ) in Cheltenham, the top-secret
establishment that was formed from the remnants of Bletchley Park after
the Second World War. This is a story of remarkable ingenuity, anony-
mous heroes and a government cover-up that endured for decades.

The story starts in the late 1960s, when the British military began to
worry about the problem of key distribution. Looking ahead to the 1970s,
senior military officials imagined a scenario in which miniaturization of
radios and a reduction in cost meant that every soldier could be in
continual radio contact with his officer. The advantages of widespread
communication would be enormous, but communications would have
to be encrypted, and the problem of distributing keys would be insur-
mountable. This was an era when the only form of cryptography was
symmetric, so an individual key would have to be securely transported to
every member of the communications network. Any expansion in
communications would eventually be choked by the burden of key
distribution. At the beginning of 1969, the military asked James Ellis, one
of Britain’s foremost government cryptographers, to look into ways of
coping with the key distribution problem.

Ellis was a curious and slightly eccentric character. He proudly boasted
of traveling halfway around the world before he was even born—he was
conceived in Britain, but was born in Australia. Then, while still a baby,
he returned to London and grew up in the East End of the 1920s. At
school his primary interest was science, and he went on to study physics
at Imperial College before joining the Post Office Research Station at Dol-
lis Hill, where Tommy Flowers had built Colossus, the first codebreaking
computer. The cryptographic division at Dollis Hill was eventually
absorbed into GCHQ, and so on April 1, 1965, Ellis moved to
Cheltenham to join the newly formed Communications-Electronics
Security Group (CESG), a special section of GCHQ devoted to ensuring
the security of British communications. Because he was involved in issues
of national security, Ellis was sworn to secrecy throughout his career.
Although his wife and family knew that he worked at GCHQ, they were
unaware of his discoveries and had no idea that he was one of the nation’s
most distinguished codemakers.

Despite his skills as a codemaker, Ellis was never put in charge of any of
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the important GCHQ research groups. He was brilliant, but he was also
unpredictable, introverted and not a natural team worker. His colleague

Richard Walton recalled:

He was a rather quirky worker, and he didn’t really fit into the day-to-day
business of GCHQ. But in terms of coming up with new ideas he was quite
exceptional. You had to sort through some rubbish sometimes, but he was
very innovative and always willing to challenge the orthodoxy. We would
be in real trouble if everybody in GCHQ was like him, but we can tolerate
a higher proportion of such people than most organizations. We put up
with a number of people like him.

Figure 66 James Ellis.
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One of Ellis’s greatest qualities was his breadth of knowledge. He read any
scientific journal he could get his hands on, and never threw anything
away. For security reasons, GCHQ employees must clear their desks each
evening and place everything in locked cabinets, which meant that Ellis’s
cabinets were stuffed full with the most obscure publications imaginable.
He gained a reputation as a cryptoguru, and if other researchers found
themselves with impossible problems, they would knock on his door in
the hope that his vast knowledge and originality would provide a solu-
tion. It was probably because of this reputation that he was asked to
examine the key distribution problem.

The cost of key distribution was already enormous, and would become
the limiting factor to any expansion in encryption. Even a reduction of 10
per cent in the cost of key distribution would significantly cut the military’s
security budget. However, instead of merely nibbling away at the problem,
Ellis immediately looked for a radical and complete solution. “He would
always approach a problem by asking, “Is this really what we want to do?”
says Walton. “James being James, one of the first things he did was to chal-
lenge the requirement that it was necessary to share secret data, by which I
mean the key. There was no theorem that said you had to have a shared
secret. This was something that was challengeable.”

Ellis began his attack on the problem by searching through his treasure
trove of scientific papers. Many years later, he recorded the moment when he
discovered that key distribution was not an inevitable part of cryptography:

The event which changed this view was the discovery of a wartime Bell
Telephone report by an unknown author describing an ingenious idea for
secure telephone speech. It proposed that the recipient should mask the
sender’s speech by adding noise to the line. He could subtract the noise
afterward since he had added it and therefore knew what it was. The obvi-
ous practical disadvantages of this system prevented it being actually used,
but it has some interesting characteristics. The difference between this and
conventional encryption is that in this case the recipient takes part in the
encryption process . . . So the idea was born.

Noise is the technical term for any signal that impinges on a communi-
cation. Normally it is generated by natural phenomena, and its most
irritating feature is that it is entirely random, which means that removing
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noise from a message is very difficult. If 2 radio system is well designed,
then the level of noise is low and the message is clearly audible, but if the
noise level is high and it swamps the message, there is no way to recover
the message. Ellis was suggesting that the receiver, Alice, deliberately
create noise, which she could measure before adding it to the communi-
cation channel that connects her with Bob. Bob could then send a mes-
sage to Alice, and if Eve tapped the communications channel she would
be unable to read the message because it would be swamped in noise. Eve
would be unable to disentangle the noise from the message. The only
person who can remove the noise and read the message is Alice, because
she is in the unique position of knowing the exact nature of the noise,
having put it there in the first place. Ellis realized that security had been
achieved without exchanging any key. The key was the noise, and only
Alice needed to know the details of the noise.

In a memorandum, Ellis detailed his thought processes: “The next ques-
tion was the obvious one. Can this be done with ordinary encipherment?
Can we produce a secure encrypted message, readable by the authorized
recipient without any prior secret exchange of the key? This question actually
occurred to me in bed one night, and the proof of the theoretical possibility
took only a few minutes. We had an existence theorem. The unthinkable was
actually possible.” (An existence theorem shows that a particular concept is
possible, but is not concerned with the details of the concept.) In other
words, until this moment, searching for a solution to the key distribution
problem was like looking for a needle in a haystack, with the possibility that
the needle might not even be there. However, thanks to the existence theo-
rem, Ellis now knew that the needle was in there somewhere.

Ellis’s ideas were very similar to those of Diffie, Hellman and Merkle,
except that he was several years ahead of them. However, nobody knew of
Ellis’s work because he was an employee of the British Government and
therefore sworn to secrecy. By the end of 1969, Ellis appears to have reached
the same impasse that the Stanford trio would reach in 1975. He had proved
to himself that public key cryptography (or nonsecret encryption, as he
called it) was possible, and he had developed the concept of separate
public keys and private keys. He also knew that he needed to find a special
one-way function, one that could be reversed if the receiver had access to a
piece of special information. Unfortunately, Ellis was not a mathematician.
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He experimented with a few mathematical functions, but he soon realized
that he would be unable to progress any further on his own.

At this point, Ellis revealed his breakthrough to his bosses. Their reac-
tions are still classified material, but in an interview Richard Walton was
prepared to paraphrase for me the various memoranda that were
exchanged. Sitting with his briefcase on his lap, the lid shielding the
papers from my view, he flicked through the documents:

I can’t show you the papers that I have in here because they still have
naughty words like TOP SECRET stamped all over them. Essentially, James’s
idea goes to the top man, who farms it out, in the way that top men do, so
that the experts can have a look at it. They state that what James is saying is
perfectly true. In other words, they can’t write this man off as a crank. At
the same time they can’t think of a way of implementing his idea in practice.
And so they’re impressed by James’s ingenuity, but uncertain as to how to
take advantage of it.

For the next three years, GCHQ’s brightest minds struggled to find a one-
way function that satisfied Ellis’s requirements, but nothing emerged.
Then, in September 1973, a new mathematician joined the team. Clifford
Cocks had recently graduated from Cambridge University, where he had
specialized in number theory, one of the purest forms of mathematics.
When he joined GCHQ _he knew very little about encryption and the
shadowy world of military and diplomatic communication, so he was
assigned a mentor, Nick Patterson, who guided him through his first few
weeks at GCHQ.

After about six weeks, Patterson told Cocks about “a really whacky
idea.” He outlined Ellis’s theory for public key cryptography, and
explained that nobody had yet been able to find a mathematical function
that fitted the bill. Patterson was telling Cocks because this was the most
titillating cryptographic idea around, not because he expected him to try
to solve it. However, as Cocks explains, later that day he set to work:
“There was nothing particular happening, and so I thought I would think
about the idea. Because I had been working in number theory, it was natu-
ral to think about one-way functions, something you could do but not
undo. Prime numbers and factoring was a natural candidate, and that
became my starting point.” Cocks was beginning to formulate what would
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later be known as the RSA asymmetric cipher. Rivest, Shamir and Adleman
discovered their formula for public key cryptography in 1977, but four
years earlier the young Cambridge graduate was going through exactly the
same thought processes. Cocks recalls: “From start to finish, it took me no
more than half an hour. I was quite pleased with myself. I thought, ‘Ooh,
that’s nice. I've been given a problem, and I've solved it.””

Cocks did not fully appreciate the significance of his discovery. He was
unaware of the fact that GCHQ’s brightest minds had been struggling
with the problem for three years, and had no idea that he had made one
of the most important cryptographic breakthroughs of the century.
Cocks’s naivety may have been part of the reason for his success, allowing
him to attack the problem with confidence, rather than timidly prodding
at it. Cocks told his mentor about his discovery, and it was Patterson who
then reported it to the management. Cocks was quite diffident and very
much still a rookie, whereas Patterson fully appreciated the context of the

Figure 67 Clifford Cocks.
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problem and was more capable of addressing the technical questions that
would inevitably arise. Soon complete strangers started approaching Cocks,
the wonderkid, and began to congratulate him. One of the strangers was
James Ellis, keen to meet the man who had turned his dream into a reality.
Because Cocks still did not understand the enormity of his achievement,
the details of this meeting did not make a great impact on him, and so now,
over two decades later, he has no memory of Ellis’s reaction.

When Cocks did eventually realize what he had done, it struck him
that his discovery might have disappointed G.H. Hardy, one of the great
English mathematicians of the early part of the century. In his The
Mathematician’s Apology, written in 1940, Hardy had proudly stated: “Real
mathematics has no effects on war. No one has yet discovered any war-
like purpose to be served by the theory of numbers.” Real mathematics
means pure mathematics, such as the number theory that was at the heart
of Cocks’s work. Cocks proved that Hardy was wrong. The intricacies of
number theory could now be used to help generals plan their battles in
complete secrecy. Because his work had implications for military com-
munications, Cocks, like Ellis, was forbidden from telling anybody out-
side GCHQ about what he had done. Working at a top-secret govern-
ment establishment meant that he could tell neither his parents nor his
former colleagues at Cambridge University. The only person he could tell
was his wife, Gill, since she was also employed at GCHQ.

Although Cocks’s idea was one of GCHQ’s most potent secrets, it suf-
fered from the problem of being ahead of its time. Cocks had discovered
a mathematical function that permitted public key cryptography, but
there was still the difficulty of implementing the system. Encryption via
public key cryptography requires much more computer power than
encryption via a symmetric cipher like DES. In the early 1970s, comput-
ers were still relatively primitive and unable to perform the process of
public key encryption within a reasonable amount of time. Hence,
GCHQ were not in a position to exploit public key cryptography. Cocks
and Ellis had proved that the apparently impossible was possible, but
nobody could find a way of making the possible practical.

At the beginning of the following year, 1974, Cocks explained his work
on public key cryptography to Malcolm Williamson, who had recently
joined GCHQ as a cryptographer. The men happened to be old friends.

Alice and Bob Go Public 287

They had both attended Manchester Grammar School, whose school
motto is Sapere ande, “Dare to be wise.” While at school in 1968, the two
boys had represented Britain at the Mathematical Olympiad in the Soviet
Union. After attending Cambridge University together, they went their
separate ways for a couple of years, but now they were reunited at
GCHQ. They had been exchanging mathematical ideas since the age of
eleven, but Cocks’s revelation of public key cryptography was the most
shocking idea that Williamson had ever heard. “Cliff explained his idea
to me,” recalls Williamson, “and I really didn’t believe it. I was very sus-
picious, because this is a very peculiar thing to be able to do.”
Williamson went away, and began trying to prove that Cocks had made
a mistake and that public key cryptography did not really exist. He
probed the mathematics, searching for an underlying flaw. Public key
cryptography seemed too good to be true, and Williamson was so
determined to find a mistake that he took the problem home. GCHQ_

Figure 68 Malcolm Williamson.
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employees are not supposed to take work home, because everything they
do is classified, and the home environment is potentially vulnerable to
espionage. However, the problem was stuck in Williamson’s brain, so he
could not avoid thinking about it. Defying orders, he carried his work
back to his house. He spent five hours trying to find a flaw. “Essentially I
failed,” says Williamson. “Instead I came up with another solution to the
problem of key distribution.” Williamson was discovering Diffie-
Hellman-Merkle key exchange, at roughly the same time that Martin
Hellman discovered it. Williamson’s initial reaction reflected his cynical
disposition: “This looks great, I thought to myself. I wonder if I can find
a flaw in this one. I guess I was in a negative mood that day.”

By 1975, James Ellis, Clifford Cocks and Malcolm Williamson had dis-
covered all the fundamental aspects of public key cryptography, yet they
all had to remain silent. The three Britons had to sit back and watch as
their discoveries were rediscovered by Diffie, Hellman, Merkle, Rivest,
Shamir and Adleman over the next three years. Curiously, GCHQ dis-
covered RSA before Diffie-Hellman-Merkle key exchange, whereas in
the outside world, Diffie-Hellman-Merkle key exchange came first. The
scientific press reported the breakthroughs at Stanford and MIT, and the
researchers who had been allowed to publish their work in the scientific

Figure 69 Malcolm Williamson (second from left) and Clifford Cocks (extreme right)
arriving for the 1968 Mathematical Olympiad.
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journals became famous within the community of cryptographers. A
quick look on the Internet with a search engine turns up 15 Web pages
mentioning Clifford Cocks, compared to 1,382 pages that mention
Whitfield Diffie. Cocks’s attitude is admirably restrained: “You don’t get
involved in this business for public recognition.” Williamson is equally dis-
passionate: “My reaction was ‘Okay, that’s just the way it is.” Basically, I just
got on with the rest of my life.”

Williamson’s only qualm is that GCHQ failed to patent public key
cryptography. When Cocks and Williamson first made their break-
throughs, there was agreement among GCHQ management that patenting
was impossible for two reasons. First, patenting would mean having to
reveal the details of their work, which would have been incompatible with
GCHQ’s aims. Second, in the early 1970s it was far from clear that math-
ematical algorithms could be patented. When Diffie and Hellman tried to
file for a patent in 1976, however, it was evident that they could be
patented. At this point, Williamson was keen to go public and block Diffie
and Hellman’s application, but he was overruled by his senior managers,
who were not farsighted enough to see the digital revolution and the
potential of public key cryptography. By the early 1980s Williamson’s
bosses were beginning to regret their decision, as developments in com-
puters and the embryonic Internet made it clear that RSA and Diffie-
Hellman-Merkle key exchange would both be enormously successful
commercial products. In 1996, RSA Data Security, Inc., the company
responsible for RSA products, was sold for $200 million.

Although the work at GCHQ was still classified, there was one other
organization that was aware of the breakthroughs that had been achieved
in Britain. By the early 1980s America’s National Security Agency knew
about the work of Ellis, Cocks and Williamson, and it is probably via the
NSA that Whitfield Diffie heard a rumor about the British discoveries. In
September 1982, Diffie decided to see if there was any truth in the rumor,
and he traveled with his wife to Cheltenham in order to talk to James Ellis
face-to-face. They met at a local pub, and very quickly Mary was struck by
Ellis’s remarkable character:

We sat around talking, and I suddenly became aware that this was the
most wonderful person you could possibly imagine. The breadth of his
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mathematical knowledge is not something I could confidently discuss, but
he was a true gentleman, immensely modest, a person with great generosity
of spirit and gentility. When I say gentility, I don’t mean old-fashioned and
musty. This man was a chevalier. He was a good man, a truly good man. He
was a gentle spirit.

Diffie and Ellis discussed various topics, from archaeology to how rats in
the barrel improve the taste of cider, but whenever the conversation
drifted toward cryptography, Ellis gently changed the subject. At the end
of Diffie’s visit, as he was ready to drive away, he could no longer resist
directly asking Ellis the question that was really on his mind: “Tell me
about how you invented public key cryptography?” There was a long
pause. Ellis eventually whispered: “Well, I don’t know how much I should
say. Let me just say that you people did much more with it than we did.”
Although GCHQ were the first to discover public key cryptography,
this should not diminish the achievements of the academics who redis-
covered it. It was the academics who were the first to realize the potential
of public key encryption, and it was they who drove its implementation.
Furthermore, it is quite possible that GCHQ would never have revealed
their work, thus blocking a form of encryption that would enable the
digital revolution to reach its full potential. Finally, the discovery by the
academics was wholly independent of GCHQ’s discovery, and on an
intellectual par with it. The academic environment is completely isolated
from the top-secret domain of classified research, and academics do not
have access to the tools and secret knowledge that may be hidden in the
classified world. On the other hand, government researchers always have
access to the academic literature. One might think of this flow of infor-
mation in terms of a one-way function—information flows freely in one
direction, but it is forbidden to send information in the opposite direction.
When Diffie told Hellman about Ellis, Cocks and Williamson, his atti-
tude was that the discoveries of the academics should be a footnote in the
history of classified research, and that the discoveries at GCHQ should
be a footnote in the history of academic research. However, at that stage
nobody except GCHQ, NSA, Diffie and Hellman knew about the classi-
fied research, and so it could not even be considered as a footnote.
By the mid-1980s, the mood at GCHQ was changing, and the man-
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agement considered publicly announcing the work of Ellis, Cocks and
Williamson. The mathematics of public key cryptography was already
well established in the public domain, and there seemed to be no reason
to remain secretive. In fact, there would be distinct benefits if the British
revealed their groundbreaking work on public key cryptography. As
Richard Walton recalls:

We flirted with the idea of coming clean in 1984. We began to see advantages
for GCHQ being more publicly acknowledged. It was a time when the gov-
emnment security market was expanding beyond the traditional military and
diplomatic customer, and we needed to capture the confidence of those who
did not traditionally deal with us. We were in the middle of Thatcherism, and
we were trying to counter a sort of “government is bad, private is good” ethos.
So, we had the intention of publishing a paper, but that idea was scuppered
by that blighter Peter Wright, who wrote Spycatcher. We were just warming up
senior management to approve this release, when there was all this hoo-ha
about Spycatcher. Then the order of the day was “heads down, hats on.”

Peter Wright was a retired British intelligence officer, and the publication
of Spycatcher, his memoirs, was a source of great embarrassment to the
British government. It would be another 13 years before GCHQ even-
tually went public—28 years after Ellis’s initial breakthrough. In 1997
Clifford Cocks completed some important unclassified work on RSA,
which would have been of interest to the wider community, and which
would not be a security risk if it were to be published. As a result, he was
asked to present a paper at the Institute of Mathematics and its Applica-
tions Conference to be held in Cirencester. The room would be full of
cryptography experts. A handful of them would know that Cocks, who
would be talking about just one aspect of RSA, was actually its unsung
inventor. There was a risk that somebody might ask an embarrassing ques-
tion, such as “Did you invent RSA?” If such a question arose, what was
Cocks supposed to do? According to GCHQ policy he would have to
deny his role in the development of RSA, thus forcing him to lie about
an issue that was totally innocuous. The situation was clearly ridiculous,
and GCHQ decided that it was time to change its policy. Cocks was given
permission to begin his talk by presenting a brief history of GCHQ’s con-
tribution to public key cryptography.
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On December 18, 1997, Cocks delivered his talk. After almost three
decades of secrecy, Ellis, Cocks and Williamson received the acknowl-
edgment they deserved. Sadly, James Ellis had died just one month earlier
on November 25, 1997, at the age of seventy-three. Ellis joined the list of
British cipher experts whose contributions would never be recognized
during their lifetimes. Charles Babbage’s breaking of the Vigenére cipher
was never revealed during his lifetime, because his work was invaluable to
British forces in the Crimea. Instead, credit for the work went to Friedrich
Kasiski. Similarly, Alan Turing’s contribution to the war effort was unpar-
alleled, and yet government secrecy demanded that his work on Enigma
could not be revealed.

In 1987, Ellis wrote a classified document that recorded his contribu-
tion to public key cryptography, which included his thoughts on the
secrecy that so often surrounds cryptographic work:

Cryptography is a most unusual science. Most professional scientists aim to
be the first to publish their work, because it is through dissemination that
the work realizes its value. In contrast, the fullest value of cryptography is
realized by minimizing the information available to potential adversaries.
Thus professional cryptographers normally work in closed communities to
provide sufficient professional interaction to ensure quality while main-
taining secrecy from outsiders. Revelation of these secrets is normally only
sanctioned in the interests of historical accuracy after it has been demon-
strated that no further benefit can be obtained from continued secrecy.




