Math 305, Quiz 6 October 31, 2007

Name:_____

(1) (5 pts) Prove that, if $\theta: G \to H$ is a homomorphism, then $\text{Ker}(\theta)$ is a normal subgroup of G (you can assume it is a subgroup).

(2) (5 pts) Given homomorphisms $\alpha \colon G \to H$ and $\beta \colon H \to K$, show that $\operatorname{Ker}(\alpha) \subseteq \operatorname{Ker}(\beta \circ \alpha)$, but that equality need not hold.