Math 305, Quiz 7 Solutions November 29, 2007

	Name:
(1)	(5 pts) Use the extended version of Sylow's Theorem to show that every group of order 6 has only one subgroup of order 3. Also give an example of a group of order 6 with more than one subgroup of order 2.
	Solution: By Sylow's Theorem, n_3 is congruent to 1 mod 3 so it can be only 1 or 4. But n_3 also has to divide 2, so it must be 1. For the second part, S_3 is an example.
(2)	$(5 \mathrm{\ pts})$ Give an example of a finite ring which is not an integral domain and an example of a noncommutative ring with unit.
	Solution: Any \mathbb{Z}_n where n is composite; ring of matrices $M(n,\mathbb{Z})$ for any $n \geq 2$.