Math 306 Topics in Algebra, Spring 2013 Homework 1, due Friday, February 8

- (1) (4 pts) Compute the number of elements in $\mathbb{Z}_{100}/\langle [15] \rangle$.
- (2) (4 pts) Compute the cosets of S_3 in S_4 and find the index $[S_4:S_3]$
- (3) (4 pts/part)
 - (a) Show that S_n is nonabelian for $n \geq 3$.
 - (b) Decide whether $(245)(1354)(125) \in S_5$ is an even or an odd permutation.
- (4) (4 pts/part)
 - (a) For G a group with operation * and for $a \in G$ define the *centralizer* of a in G to be the set

$$C(a) = \{ x \in g \colon a * x = x * a \}.$$

Show that C(a) is a subgroup of G.

- (b) Find the centralizer of 2 in \mathbb{Z} .
- (5) (5 pts) Let G be a group. Prove that, if G has at least two elements of order 2, then G is not cyclic.
- (6) (a) (4 pts) Consider $\phi \colon \mathbb{Z}_6 \to \mathbb{Z}_3$ given by $\phi([a]_6) = [a]_3$. Prove that ϕ is a well-defined homomorphism and compute ker ϕ .
 - (b) (4 pts) Prove that $\phi: \mathbb{Z}_3 \to \mathbb{Z}_6$ given by $\phi([a]_3) = [a]_6$ is not well-defined.
 - (c) (5 pts) Let $n, m \in \mathbb{Z}_{>1}$. Determine a necessary and sufficient condition required for the function $\phi \colon \mathbb{Z}_n \to \mathbb{Z}_m$ given by $\phi([a]_n) = [a]_m$ to be well-defined and prove your claim. Your claim should be an iff statement.
- (7) (5 pts) Recall that the *dihedral group* of 2n elements, denoted by D_n , is the group generated by two elements ρ and σ satisfying the relations $\rho^n = \sigma^2 = e$ and $\sigma \rho = \rho^{-1} \sigma$. Thus the 2n elements of D_n are

$$D_n = \{e, \rho, \rho^2, ..., \rho^{n-1}, \rho\sigma, \rho^2\sigma, ..., \rho^{n-1}\sigma\}.$$

This group is the symmetry group of a regular n-gon (so D_4 is the group of symmetries of a square). Prove that A_4 and D_6 are not isomorphic. (Hint: Look at elements of order 6.)

- (8) (5 pts) List all the (isomorphism class representatives of) abelian groups of order 240.
- (9) (5 pts) Let G be a group and recall that Z(G) is the center of G (look up the definition if you don't remember). Also recall that Z(G) is a normal subgroup of G, so that we may consider the quotient G/Z(G). Prove that, if G/Z(G) is cyclic, then G is abelian. (Hint: If G/Z(G) is cyclic with generator Z(G)x, show that every element of G can be written in the form $x^n z$ for some $n \in \mathbb{Z}$ and $z \in Z(G)$.)