
Math 306 Topics in Algebra, Spring 2013

Homework 7 Solutions

(1) (5 pts) Let G be a finite group. Show that the function

C[G]× C[G] −→ C

(f1, f2) 7−→ 〈f1, f2〉 =
1

|G|
∑
g∈G

f1(g)f2(g)

defines an inner product on C[G].

Solution: We have

〈c1f1 + c2f2, f3〉 =
1

|G|
∑
g∈G

(c1f1 + c2f2)(g)f3(g)

=
1

|G|
∑
g∈G

(
c1f1(g)f3(g) + c2f2(g)f3(g)

)
=

1

|G|
∑
g∈G

c1f1(g)f3(g) +
1

|G|
∑
g∈G

c2f2(g)f3(g)

= c1
1

|G|
∑
g∈G

f1(g)f3(g) + c2
1

|G|
∑
g∈G

f2(g)f3(g)

= c1〈f1, f3〉+ c2〈f2, f3〉
Also

〈f1, f2〉 =
1

|G|
∑
g∈G

f1(g)f2(g)

1

|G|
∑
g∈G

f1(g)f2(g)

1

|G|
∑
g∈G

f1(g) f2(g)

1

|G|
∑
g∈G

f1(g) f2(g) = 〈f2, f1〉

Lastly, we have

〈f, f〉 = 1

|G|
∑
g∈G

f(g)f(g) =
1

|G|
∑
g∈G
|f(g)|2.

This sum is greater than or equal to zero and is zero if and only if f(g) = 0 for all g ∈ G.

(2) Instead of taking the trace of φg to define the character, one might try to do the same by taking the determinant
of φg instead. This problem shows that this is not as useful since such a character would tell us nothing about
non-abelian simple groups (and these are important).

For φ a representation of a finite group G, define a function

detφ : G −→ C×

g 7−→ (detφ)(g) = det(φg)

(a) (4 pts) Show detφ is a representatation (and hence it’s a character since characters are same as represen-
tations for one-dimensional representations).



(b) (5 pts) Show that if G is a non-abelian simple group, then detφ is the trivial character.

Solution:
(a) Follows from the multiplicativity of the determinant.
(b) Since detφ is a homomorphism, its kernel is a normal subgroup of G. Since G is simple, it must be that

ker(detφ) = {e} or ker(detφ) = G. If the former is true, then detφ is injective, and its image is a
subgroup of C×, which is abelian. This G would be isomorphic to an abelian group, but this cannot by by
assumption. So it must be that ker(detφ) = G, in which case detφ is the trivial homomorphism.

(3) (4 pts) Show that χφ⊕ψ = χφ + χψ.

Solution: The matrix for each (φ ⊕ ψ)g is a block matrix with blocks φg and ψg. The trace of a matrix like
that is the sum of the traces of the blocks. Hence χφ + χψ.

(4) (5 pts/part)
(a) Suppose A is a matrix over C of finite order, i.e. An = I for some positive integer n. Show that the

eigenvalues λi of A are the nth roots of unity, namely they satisfy λni = 1. (Hint: Use the result that A is
diagonalizable, which in turn follows from fact that for a representation of a finite group G, there exists a
matrix T such that TφgT

−1 is diagonal for all g ∈ G. Then look up what diagonalizability has to do with
eigenvalues.)

(b) Prove that for an irreducible representation of a finite group G,

χφ(g) = λ1 + · · ·+ λd,

where λi are the eigenvalues of φg and d is the dimension of φ.
(c) Show that, if a complex number ω is a root of unity, then ω−1 = ω.

(d) Prove that χφ(g
−1) = χφ(g).

Solution:
(a) If A is diagonalizable, then it is a basic result of linear algebra that its diagonal entries are its (distinct)

eigenvalues λi. Denote this diagonal matrix by D. Then

Dn = (TAT−1)n = TAnT−1 = TIT−1 = TT−1 = I

But powers of a diagonal matrix are obtained by taking powers of its diagonal entries. Thus it follows that
λni = 1 as desired.

(b) Since G is finite, φg has finite order. Hence, by the previous part, there exists a matrix T such that
TφgT

−1 = D, where D is diagonal with eigenvalues λi as the diagonal entries. Since characters take the
same value on similar matrices, we have

χφ(g) = Tr(φg) = Tr(TφgT
−1) = Tr(D) = λ1 + · · ·+ λd.

(c) A conjugate of a complex number reiθ is re−iθ. If ω is a root of unity, then it has the form eiθ/n for some
n (but the important thing is that r = 1; if r 6= 1, then (reiθ)n = rneiθn, and this number could not have
size (modulus) 1). Then

ωω = eiθ/ne−iθ/n = e0 = 1.

So ω is the inverse of ω.
(d) Consider

χφ(g
−1) = Tr(φg−1) = Tr(φ−1g ).

Since trace is same on similar matrices, by part (a) we can replace φg by the diagonal matrix with diagonal
entries the eigenvalues λi, and consequently we can replace φg−1 by the diagonal matrix whose entries are

λ−1i (since to obtain the inverse of a diagonal matrix, you take the inverse of the diagonal entries). Thus

Tr(φg−1) =
∑
i

λ−1i .



Since λi are roots of unity, by part (b) we have

Tr(φg−1) =
∑
i

λi.

But this sum is precisely Tr(φg) (or rather the trace of the conjugate of the diagonal matrix replacing φg).
I.e. the sum is precisely χφ.

(5) (5 pts) Recall that, in the proof of the theorem that a representation φ is irreducible iff 〈χφ, χφ〉 = 1, we
assumed φ ∼ m1φ1 ⊕ · · · ⊕msφs and then claimed that

〈χφ, χφ〉 = m2
1 + · · ·+m2

s.

Show that this equation indeed holds.

Solution: The matrix for φ is a block matrix whose blocks are the matrices for miφi. It is then immediate that

χφ = Tr(φ) =
s∑
i=i

Tr(miφi) =
s∑
i=i

miTr(φi) =
s∑
i=i

miχφi

(we can pull out mi since it appears in each diagonal term of the ith block). So then we have

〈χφ, χφ〉 = 〈
s∑
i=i

miχφi ,
s∑
j=i

mjχφj 〉.

However, inner product is linear by definition (and you verified this in an earlier problem for the inner product
we’re using here), so that the above can be computed by “foiling” the inner product. We thus have

〈χφ, χφ〉 =
∑

1≤i,j≤n
〈miχφi ,mjχφj 〉.

By orthogonality relations, the above inner products are only nonzero when i = j in which case they are 1 and
we get

〈χφ, χφ〉 =
∑

1≤i≤n
〈miχφi ,miχφi〉 =

∑
1≤i≤n

m2
i 〈χφi , χφi〉 =

∑
1≤i≤n

m2
i

as desired (because of linearity, we were able to take each mi out as well).

(6) (a) (4 pts) Show that a finite group G is abelian if and only if it has |G| irreducible representations (over C).
(b) (5 pts) Use part (a) to show Z/nZ is abelian. Do this without using that Z/nZ has n conjugacy classes.

Solution:
(a) A finite group is abelian iff each element is its own conjugacy class. Thus |G| = |Cl(G)|. But we know by

a theorem from class that |Cl(G)| is the number of irreducible representations of G.
(b) For 0 ≤ k ≤ n− 1, define representations

φk : Z/nZ −→ C×

m 7−→ e2πimk/n

As we know from class and previous homework, each φk is a well-defined irreducible representation, and
all n of them are distinct. By the previous part, it follows that Z/nZ is abelian.

(7) This problem explores the regular representation over C and the associated character. The formula you will in
part in part (d) is an important application of representation theory to group theory.

Recall from an earlier homework that the (left) regular representation of a finite group G is given by

L : G −→ GL(F [G])

g 7−→ Lg(v) = gv.



(We also defined it in class using the dual vector space of F [G], but for this problem, we’ll stick to the original
definition above.)
(a) (7 pts) Prove that the character of the regular representation is given by

χL : G −→ C

g 7−→ χL(g) =

{
|G|, g = 1,

0, g 6= 1.

(b) (5 pts) We observed in class that every representation φ of G breaks up as

φ ∼ m1φ1 ⊕ · · · ⊕msφs,

where φ1, ..., φs is the complete set of irreducible representations of G (some of the mi’s might be zero).
Prove that 〈χφ, χφi〉 = mi. (Hint: Use an earlier exercise and the linearity of the inner product.)

(c) (7 pts) Suppose di are the degrees of the irreducible representations φi of G. Show that if φ = Lg, the
mi’s from the previous part are precisely the degrees di. In other words, show that the decomposition

L ∼ d1φ1 ⊕ · · · ⊕ dsφs
holds.

(d) (4 pts) Prove that

|G| = d21 + · · ·+ d2s.

Solution:
(a) Let G = {g1, ..., gn}, where n = |G|. Let v = gj (each v is a linear combination of gj ’s and in particular

it suffices to define L on the gj since they are the basis). Then Lg(gj) = ggj . Thus if we regard Lg as a
matrix with respect to the basis G with the ordering g1, ..., gn, we have

(Lg)ij =

{
1, gi = ggj ;

0, otherwise
=

{
1, g = gig

−1
j ;

0, otherwise.

This is because g sends gj to gi, so, to represent this in matrix notation, we think of gj and gi as basis
vectors with zeros except in the jth or ith slot; then the matrix that sends gj vector to gi vector is precisely
(Lg)ij as defined above.
In particular, when i = j, we get

(Lg)ii =

{
1, g = 1;

0, g 6= 1.

From this it then follows that

χL(g) = Tr(Lg) =

{
|G|, g = 1;

0, g 6= 1.

(b) It follows from an earlier problem that

χφ = m1χφ1 + · · ·+msχφs .

Then

〈χφ, χφi〉 = 〈m1χφ1 + · · ·+msχφs , χφi〉
= m1〈χφ1 , χφi〉+ · · ·+mi〈χφi , χφi〉+ · · ·+ms〈χφs , χφi〉
= m1 · 0 + · · ·+mi · 1 + · · ·+ms · 0
= mi

The next to last equality is the orthogonality relations for characters.



(c) Since the result from the previous part in fact shows that the decomposition of a representation is unique
and that a representation is determined up to equivalence to its character, it suffices to check the inner
product of χL with the χφi :

〈χL, χφi〉 =
1

|G|
∑
g∈G

χL(g)χφi(g) =
1

|G|
|G| · χi(1) = χφi(1) = deg φi = di.

Here we have used:
• Result about χL(g) from part (a);
• In class we observed that χφi(1) is the trace of the identity matrix, and it hence gives the dimension

of the vector space, i.e. the degree of the representation φi; and consequently
• χφi(1) is a real number, and so χφi(1) = χφi(1).

(d) From the previous part, we know
L ∼ d1φ1 ⊕ · · · ⊕ dsφs.

Consequently,
χL = d1χφ1 + · · ·+ dsχφs .

(we used this in part (b) already). Evaluating this equation at 1, we have

χL(1) = d1χφ1(1) + · · ·+ dsχφs(1).

We know from part (a) that χL(1) = |G| and we recalled in part (c) that χφi(1) = di. So the above
equation becomes

|G| = d1 · d1 + · · ·+ ds · ds,
as desired.


