
Math 306 Topics in Algebra, Spring 2013

Homework 9 Solutions

(1) (5 pts) Show that, when R is a commutative ring and M is an R-module, HomR(M,M) is an R-algebra.

Solution: It is not hard to show that HomR(M,M) is indeed an R-module (we talked about this in class). To
show it is an R-algebra, have map

R −→ HomR(M,M)

r 7−→ fr : M →M, m 7→ rm

This map lands in the center of HomR(M,M) since, for any g ∈ HomR(M,M), (g ◦ fr)(m) = g(fr(m)) =
g(rm) = rg(m) (the last equality uses that g is a module homomorphism), while on the other hand we have
(fr ◦ g)(m) = fr(g(m)) = rg(m).

(2) (5 pts) Section 10.2, problem 1 (p. 350).

Solution: Straightforward (using the submodule criterion from class is the most efficient way to do this).

(3) (7 pts) Section 10.2, problem 9 (p. 350).

Solution: Let φ, ψ ∈ HomR(R,M). Suppose φ(1) = ψ(1) = m. Then we must have φ(a) = φ(a · 1) =
aφ(1) = am and ψ(a) = ψ(a · 1) = aψ(1) = am for any a ∈ R (since φ and ψ are homomorphisms). Since a
was arbitrary, φ = ψ. So any homomorphism in HomR(R,M) looks like a map from R to M that sends a to
am for some m. Call this map φm.

Now define a map

f : HomR(R,M) −→M

φm 7−→ m

To see this is an R-module homomorphism, first note that, for any r ∈ R,

(φm + rφm′)(1) = φm(1) + rφm′(1) = m+ rm′ = φm+rm′(1).

Hence
f(φm + rφm′) = f(φm+rm′) = m+ rm′ = f(φm) + rf(φm′).

To see that f is injective, suppose f(φm) = 0. This means m = 0. It follows that φm(r) = 0 for all r. This
means that φm = 0 ∈ HomR(R,M). So the kernel of f is trivial and f is injective.

To see that f is surjective, first show that φm is an R-module homomorphism:

φm(r + ar′) = (r + ar′)m = rm+ ar′m = φm(r) + aφm(r′).

Thus given an m ∈M , there exists a φm ∈ HomR(R,M) such that f(φm) = m.

(4) (5 pts) Section 10.3, problem 4 (p. 356).

Solution: Suppose that A is a finite abelian group (or Z-module) of order n. Then by Lagrange’s Theorem, for
each a ∈ A, na = 0. Hence A is a torsion Z-module. An example of an infinite abelian group that is a torsion
Z-module is

∏∞
i=1 Z/2Z (also Q/Z or polynomials over Z/2Z would do).

(5) (4 pts) Show that the sequence of modules

0 −→ A
i−→ A⊕ C p−→ C −→ 0,

where i and p are the canonical inclusion and projection, is exact.

Solution: For exactness at A, it is clear that the kernel of i is only 0, so i is injective. Similarly it is clear that
p is surjective. Kernel of p is A, which is precisely the image of i, so sequence is exact at A⊕ C.

Notice that i and p are the only maps that make this sequence exact.



(6) (5 pts) Suppose A1 −→ A2 −→ A3 −→ A4 is exact. For 1 ≤ k ≤ 4, set

Ck = ker(Ak −→ Ak+1) = im(Ak−1 −→ Ak) = coker(Ak−2 −→ Ak−1).

(Note that, depending on k, some of these equivalent expressions for Ck may not make sense. For example, to
define C1, you have to use C1 = ker(A1 → A2) since the other two formulations would be in terms of A0 and
A−1 which we do not have. Similarly for C5, you have to use C5 = coker(A3 → A4)). Show that the sequences

0 −→ Ck −→ Ak −→ Ck+1 −→ 0

are exact (you will have to define the maps as well). This therefore gives an example of how an exact sequence
can be broken into (and spliced from) short exact sequences (the picture of how this works was drawn in class).

Solution: For k = 1, 2, 3, the exactness of

0 −→ Ck −→ Ak −→ Ck+1 −→ 0

simply comes down to the fact that, given a homomorphism f : M → N , the sequence

0 −→ ker(f)
i−→M

f−→ im(f) −→ 0

is exact. For the last one (k = 4), we have a sequence

0 −→ C4 = im(A3 → A4)
i−→ A4

quotient−→ C5 = coker(A3 → A4) −→ 0

but this is clearly also exact.

(7) (4 pts/part) For this problem, recall that by an extension we mean the entire exact sequence

0 −→ A
f−→ B

g−→ C −→ 0,

so that if there are two sequences with the same modules but different homomorphisms between them, we
consider those extensions to be different.
(a) Show that any extension of C by A has |C| · |A| elements (sometimes this number is infinity).
(b) How many inequivalent extensions of Z/3Z by Z/2Z are there? How about extensions of Z/2Z by Z/3Z?
(c) If p is a prime, show that there are exactly p inequivalent abelian extensions of Z/pZ by Z/pZ: the split

extension and the extensions

0 −→ Z/pZ p−→ Z/p2Z i−→ Z/pZ −→ 0

where p is multiplication by p and i is the multiplication by i for 1 ≤ i ≤ p− 1.

Solution:
(a) Using exactness and First Isomorphism Theorem, we argued in class that B/ Im(f) ∼= C, and, since f is

injective, Im(f) ∼= A. Hence B/A ∼= C and so |B|/|A| = |C|. In other words, if A and C are fixed, we
must have, for any extension B, that |B| = |C| · |A|.

(b) By part (a), the extension in both case has to have size six. It also has to be a Z-module, so it has to be
an abelian group. The only abelian group of size six is Z/6Z ∼= Z/2Z ⊕ Z/3Z. So the only extension in
both cases is the split extension. (If we were talking about exact sequences of groups, and not just abelian
groups, then S3 would actually also be an extension of Z/3Z by Z/2Z, but not the other way around.)

(c) To see that the given extensions are really extensions, note that p is clearly injective, that Im(p) =
{0, p, 2p, ..., (p− 1)p} = ker(i), and that i is surjective since Z/pZ is cyclic of prime order and i is a non-
zero homomorphism (any nonzero homomorphism to Z/pZ must be surjective since any of the elements
generates the group, so that if a non-zero element is in the image of the homomorphism, so is every other
element of Z/pZ). So these extensions, along with the split one, give p extensions of Z/pZ by Z/pZ. It is
not hard to see that these are inequivalent (one square in the map between two of these sequences would
not commute).



To see that this is all of them, first note that, by part (a), the only possibilities for an extension are
Z/pZ ⊕ Z/pZ and Z/p2Z, since those are the only non-isomorphic abelian groups of order p2. The first
one gives the split extension and there are no other maps that work with this extension; inclusion and
projection are the only possibility. So this leaves Z/p2Z as the only possibility. So suppose we have an
exact sequence

0 −→ Z/pZ f−→ Z/p2Z g−→ Z/pZ −→ 0

All the groups in this sequence are cyclic. Since f is injective, it must send 1 to an element of order p in
Z/p2Z, namely one of p, 2p, ..., (p−1)p. In any case, the image is the unique subgroup of Z/p2Z or order
p. It is not hard to show that all choices of sending the generator to an element of order p will result in
equivalent extensions, so we might as well assume that f(1) = p and so f is indeed the map p from above.

The kernel of g now has to be this subgroup of Z/p2Z or order p. Now, g is determined by where it sends
the generator, and setting g(1) = i, 1 ≤ i ≤ p − 1 determines all the nontrivial homomorphisms. Each
one of these is precisely multiplication by i and is surjective. Furthermore, the kernel of each of these is
precisely as desired, so this takes care of all the possibilities.


