Math 306 Topics in Algebra, Spring 2013
Takehome midterm exam solutions

This exam is due Thursday, April 4, by 5 pm. Late exams will not be graded and will receive an automatic
zero. Please slide the exam under my door if | am not in my office. You should work alone, and may use notes,
homework assignments (and everything proved there), and our textbook.

(1) (10 pts) An action of a group G on a set X is said to be transitive if there is only one orbit, i.e. given any
x1,22 € X, there is a g € G such that gxy = x2. Now suppose G is finite and the action G x X — X is
transitive. Choose x € X and let H = Stabg(x) (the stabilizer of ). Show that |X| = |G/H|. Then deduce
that |G| = | X|-|H|. Thus G can only act transitively on a set which is finite and whose order divides the order
of G.

Solution: Consider the map
Yv:G/H — X
gH — gx
This map is well-defined: gH = gH <= there is some h € H such that ¢’ = hg. But then we have
gz = (gh)x = g(hz) = g,

and so Y(¢'H) = g'x = gx = ¢ (gH).

This map is surjective: Given y € X, there is some g € G such that y = gz (by transitivity), and then
Y(gH) =gz =y.

This map is injective: If (g1 H) = 1 (g2H), we have g1z = gox, which implies that gl_l(ggx) = (gl_lgg)x =z
But gl_lgg fixes r <— gl_lgg € H; thus there exists an h € H such that gflgg = h, and hence goH =
(g1h)H = g1H, as required.

So we have a bijection between G/H and X and hence |X| = |G/H|. By Lagrange's Theorem, we have
|G| =|G/H| - |H| and so it follows that |G| = |X|- |H].

(Alternatively, one can use the Orbit-Stabilizer Theorem: Since the action is transitive, the orbit of any element
is all of X, so |X| =|Orbit(x)| = |G/H|. Then use Lagrange's Theorem as above.)

(2) (7 pts) Section 4.5, problem 9 (p. 146).

Solution: SLy(F3) has order 24 (this can be obtained by various ways, including just writing out the elements).
The Sylow 3-subgroups of SLs(F3) satisfy n3 = 1 (mod 3) and n3|8, so ng = 1 or 4. The four different

subgroups are given by << (1) 1 >> << ; (1) >> <( ; (1) )> << ? (2) >> To find them, it suffices

to find one of them and then conjugate it to get the others.

(3) (10 pts) Let p and ¢ be distinct odd primes. Show that any group G of order p3q is not simple.

Solution: We have that n, =1 (mod p) and ny; = 1 (mod ¢g). We also have that n,|q, so n, =1 or ¢, and
similarly ny|p3, so n, = 1,p, p? or p?.

Case 1: If ng = p3, then there are (p® — 1)q elements of order ¢, leaving room for just one Sylow p-subgroup,
which is then normal.

Case 2: If n, = p? and n, = q (if n, = 1, we are done), then p> =1 (mod ¢) and ¢ =1 (mod p). So plg — 1
and hence p < ¢q. Also ¢q|(p+ 1)(p — 1), so q|p — 1 or ¢|p + 1. The first case gives ¢ < p which contradicts
p < gq. Soq|p+ 1. Butif p < q and ¢|p+ 1, the only possiblity is that p = 2 and ¢ = 3. Since p and ¢ are
assumed to be odd primes, this case is excluded.



Case 3: If ng =p and n, = ¢, then p=1 (mod ¢) and ¢ =1 (mod p). Then ¢g|p—1and pl|g—1andsop < ¢
and ¢ < p, a contradiction.

(4) (7 pts) Let o (rotation by 7/2) and p (reflection over the x-axis) be the usual generators of the dihedral group
D,. Define a representation ¢: Dy — GLy(C) by

o) = (G Oy ) eeh=(8 ).

Show that this is indeed a representation and prove that it is irreducible.

Solution: To show ¢ is a well-defined homomorphism is straightforward. The key observations are that multi-
plication of diagonal and anti-diagonal matrices produces diagonal and anti-diagonal matrices and that 7 has
order 4.

To show ¢ is irreducible, it suffices to show that the given matrices have no common eigenvectors. In particular,
can look at matrices ¢(o) and ¢(po). The eigenvalues of the first are i and —i with eigenspaces generated by
(1,0) and (0,1). These, however, are not eigenvectors of ¢(po) since ¢(po)(1,0) = (0,i) and ¢(po)(0,1) =
i, 0).

(
(Alternatively, one could check that (x4, Xs) = 1, which would mean that ¢ is irreducible.)
(
(

(5)

10 pts) Suppose ¢: G — GL(V) is equivalent to a decomposable representation. Show that ¢ is decomposable.
We stated this in class but did not prove it.)

Solution: Let ©: G — GL(W') be a decomposable representation with ¢ ~ 1) and let T': V' — W be a vector
space isomorphism with ¢, = T‘lng. Suppose W7 and Ws are nontrivial invariant subspaces of W with
W = Wy & Ws. Since T is an equivalence, we have a commutative diagram

v w
T T

W——W
g

In other words, T'¢, = 1,1 forall g € G. Let V; = T~Y(Wy) and Vo = T—1(W>). Then we have V = V; @ Va:
If v e ViNVy, then Tv € Wy N Wy = {0} and so Tv = 0. But T is injective, so v = 0. Also, if v € V, then
Tv = wy + wy for some w; € Wy, wy € Wa, and then v = T 1w, + T 1wy € Vi + Va.

Finally we have to show that Vi and Vz are G-invariant: If v € V;, then ¢,v = T~ 1 Tv. But Tv € W;
implies ¥,Tv € W; since W; is G-invariant. Therefore

pgv =T W, Tv =T "1, Tv e T*(W;) =V;
as required.

(6) (5 pts/part)
(a) Let G be a finite abelian group and ¢: G — GL,,(C) a representation. Show that there exists an invertible
matrix 7" such that T~ 1¢,T is diagonal for all g € G (so T is independent of g).
(b) Let A be an n x n matrix of finite order, i.e. A¥ = I for some positive integer k. Show that A is
diagonalizable, i.e. it is similar to a diagonal matrix. (This is an important theorem in linear algebra.)

Solution:
(a) Since ¢ is completely reducible (as G is a finite group), ¢ ~ ¢1 @ P2 @ - - - @ ¢y, Where the equivalence is
given by some matrix T'. Since G is abelian, all the ¢; are one-dimensional, i.e. complex numbers (and so
m = dim(V') = n). Thus the matrix for ¢, is a diagonal matrix (it is a block matrix with each block of
size one). So, for each g, T'¢,T is diagonal.
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(b) Define a representation Z/kZ — GL,(C) by 1+ A. This is well-defined since A* = 1. Since Z/kZ is
finite and abelian, previous part says that there exists a matrix 7" such that 71T = T~' AT is diagonal.

(7) (10 pts) We say a representation is faithful if the corresponding group action is. Show that, if G is a finite
group and ¢: G — GL(V) is a faithful irreducible complex representation, then Z(G) (the center of G) is
cyclic. (Hint: Show that Z(G) is isomorphic to a finite subgroup of C*.)

Solution: Unravelling the definitions, a representation ¢ is faithful if different elements g of G are represented
by different transformations ¢,. In other words, the homomorphism ¢: G — GL(V') is injective.

Now, let ¢: G — GL(V) be a faithful irreducible complex representation. Let z € Z(G), so gz = zg for all
g € G. Consider the automorphism

¢,V —V
v ¢U
This is a G-map and is hence by Schur's Lemma just multiplication by a constant, say p,. Then the map
Z(G) —C*
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is a representation of Z(G) and is faithful (since ¢ is), i.e. injective. Thus Z(G) is isomorphic to a finite
subgroup of C*, and is hence cyclic.



