
Math 306 Topics in Algebra, Spring 2013

Takehome midterm exam solutions

This exam is due Thursday, April 4, by 5 pm. Late exams will not be graded and will receive an automatic
zero. Please slide the exam under my door if I am not in my office. You should work alone, and may use notes,
homework assignments (and everything proved there), and our textbook.

(1) (10 pts) An action of a group G on a set X is said to be transitive if there is only one orbit, i.e. given any
x1, x2 ∈ X, there is a g ∈ G such that gx1 = x2. Now suppose G is finite and the action G × X → X is
transitive. Choose x ∈ X and let H = StabG(x) (the stabilizer of x). Show that |X| = |G/H|. Then deduce
that |G| = |X| · |H|. Thus G can only act transitively on a set which is finite and whose order divides the order
of G.

Solution: Consider the map

ψ : G/H −→ X

gH 7−→ gx

This map is well-defined : gH = g′H ⇐⇒ there is some h ∈ H such that g′ = hg. But then we have

g′x = (gh)x = g(hx) = gx,

and so ψ(g′H) = g′x = gx = ψ(gH).

This map is surjective: Given y ∈ X, there is some g ∈ G such that y = gx (by transitivity), and then
ψ(gH) = gx = y.

This map is injective: If ψ(g1H) = ψ(g2H), we have g1x = g2x, which implies that g−11 (g2x) = (g−11 g2)x = x.

But g−11 g2 fixes x ⇐⇒ g−11 g2 ∈ H; thus there exists an h ∈ H such that g−11 g2 = h, and hence g2H =
(g1h)H = g1H, as required.

So we have a bijection between G/H and X and hence |X| = |G/H|. By Lagrange’s Theorem, we have
|G| = |G/H| · |H| and so it follows that |G| = |X| · |H|.
(Alternatively, one can use the Orbit-Stabilizer Theorem: Since the action is transitive, the orbit of any element
is all of X, so |X| = |Orbit(x)| = |G/H|. Then use Lagrange’s Theorem as above.)

(2) (7 pts) Section 4.5, problem 9 (p. 146).

Solution: SL2(F3) has order 24 (this can be obtained by various ways, including just writing out the elements).
The Sylow 3-subgroups of SL2(F3) satisfy n3 ≡ 1 (mod 3) and n3|8, so n3 = 1 or 4. The four different

subgroups are given by

〈(
1 1
0 1

)〉
,

〈(
1 0
2 1

)〉
,

〈(
2 1
2 0

)〉
,

〈(
2 2
1 0

)〉
. To find them, it suffices

to find one of them and then conjugate it to get the others.

(3) (10 pts) Let p and q be distinct odd primes. Show that any group G of order p3q is not simple.

Solution: We have that np ≡ 1 (mod p) and nq ≡ 1 (mod q). We also have that np|q, so np = 1 or q, and
similarly nq|p3, so nq = 1, p, p2 or p3.

Case 1 : If nq = p3, then there are (p3 − 1)q elements of order q, leaving room for just one Sylow p-subgroup,
which is then normal.

Case 2 : If nq = p2 and np = q (if np = 1, we are done), then p2 ≡ 1 (mod q) and q ≡ 1 (mod p). So p|q − 1
and hence p < q. Also q|(p + 1)(p − 1), so q|p − 1 or q|p + 1. The first case gives q < p which contradicts
p < q. So q|p + 1. But if p < q and q|p + 1, the only possiblity is that p = 2 and q = 3. Since p and q are
assumed to be odd primes, this case is excluded.



Case 3 : If nq = p and np = q, then p ≡ 1 (mod q) and q ≡ 1 (mod p). Then q|p− 1 and p|q− 1 and so p < q
and q < p, a contradiction.

(4) (7 pts) Let σ (rotation by π/2) and ρ (reflection over the x-axis) be the usual generators of the dihedral group
D4. Define a representation φ : D4 → GL2(C) by

φ(σk) =

(
ik 0
0 (−i)k

)
, φ(ρσk) =

(
0 (−i)k
ik 0

)
.

Show that this is indeed a representation and prove that it is irreducible.

Solution: To show φ is a well-defined homomorphism is straightforward. The key observations are that multi-
plication of diagonal and anti-diagonal matrices produces diagonal and anti-diagonal matrices and that i has
order 4.

To show φ is irreducible, it suffices to show that the given matrices have no common eigenvectors. In particular,
can look at matrices φ(σ) and φ(ρσ). The eigenvalues of the first are i and −i with eigenspaces generated by
(1, 0) and (0, 1). These, however, are not eigenvectors of φ(ρσ) since φ(ρσ)(1, 0) = (0, i) and φ(ρσ)(0, 1) =
(i, 0).

(Alternatively, one could check that 〈χφ, χφ〉 = 1, which would mean that φ is irreducible.)

(5) (10 pts) Suppose φ : G→ GL(V ) is equivalent to a decomposable representation. Show that φ is decomposable.
(We stated this in class but did not prove it.)

Solution: Let ψ : G→ GL(W ) be a decomposable representation with φ ∼ ψ and let T : V → W be a vector
space isomorphism with φg = T−1ψgT . Suppose W1 and W2 are nontrivial invariant subspaces of W with
W =W1 ⊕W2. Since T is an equivalence, we have a commutative diagram

V

T
��

φg // W

T
��

W
ψg

// W

In other words, Tφg = ψgT for all g ∈ G. Let V1 = T−1(W1) and V2 = T−1(W2). Then we have V = V1⊕V2:
If v ∈ V1 ∩ V2, then Tv ∈ W1 ∩W2 = {0} and so Tv = 0. But T is injective, so v = 0. Also, if v ∈ V , then
Tv = w1 + w2 for some w1 ∈W1, w1 ∈W2, and then v = T−1w1 + T−1w2 ∈ V1 + V2.

Finally we have to show that V1 and V2 are G-invariant: If v ∈ Vi, then φgv = T−1ψgTv. But Tv ∈ Wi

implies ψgTv ∈Wi since Wi is G-invariant. Therefore

φgv = T−1ψgTv = T−1ψgTv ∈ T−1(Wi) = Vi,

as required.

(6) (5 pts/part)
(a) Let G be a finite abelian group and φ : G→ GLn(C) a representation. Show that there exists an invertible

matrix T such that T−1φgT is diagonal for all g ∈ G (so T is independent of g).
(b) Let A be an n × n matrix of finite order, i.e. Ak = I for some positive integer k. Show that A is

diagonalizable, i.e. it is similar to a diagonal matrix. (This is an important theorem in linear algebra.)

Solution:
(a) Since φ is completely reducible (as G is a finite group), φ ∼ φ1 ⊕ φ2 ⊕ · · · ⊕ φm, where the equivalence is

given by some matrix T . Since G is abelian, all the φi are one-dimensional, i.e. complex numbers (and so
m = dim(V ) = n). Thus the matrix for φg is a diagonal matrix (it is a block matrix with each block of
size one). So, for each g, T−1φgT is diagonal.
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(b) Define a representation Z/kZ → GLn(C) by 1 7→ A. This is well-defined since Ak = 1. Since Z/kZ is
finite and abelian, previous part says that there exists a matrix T such that T−1φ1T = T−1AT is diagonal.

(7) (10 pts) We say a representation is faithful if the corresponding group action is. Show that, if G is a finite
group and φ : G → GL(V ) is a faithful irreducible complex representation, then Z(G) (the center of G) is
cyclic. (Hint: Show that Z(G) is isomorphic to a finite subgroup of C×.)

Solution: Unravelling the definitions, a representation φ is faithful if different elements g of G are represented
by different transformations φg. In other words, the homomorphism φ : G→ GL(V ) is injective.

Now, let φ : G → GL(V ) be a faithful irreducible complex representation. Let z ∈ Z(G), so gz = zg for all
g ∈ G. Consider the automorphism

φz : V −→ V

v 7−→ φzv

This is a G-map and is hence by Schur’s Lemma just multiplication by a constant, say µz. Then the map

Z(G) −→ C×

z 7−→ µz

is a representation of Z(G) and is faithful (since φ is), i.e. injective. Thus Z(G) is isomorphic to a finite
subgroup of C×, and is hence cyclic.
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