Math 306, Spring 2012 Second Midterm Exam, April 12, 2012

 Name:
 Student ID:

Directions: Check that your test has 8 pages, including this one and the blank one on the bottom (which you can use as scratch paper or to continue writing out a solution if you run out room elsewhere). Please **show all your work**. Write neatly: solutions deemed illegible will not be graded, so no credit will be given. This exam is closed book, closed notes. You have 70 minutes. Good luck!

1. (16 points)
2. (15 points)
3. (7 points)
4. (9 points)
5. (12 points)
6. (9 points)
Total (out of 68):
Curved score (out of 100):
Letter grade:

- 1. (2 pts each) Give examples of the following.
 - (a) An angle that cannot be trisected.
 - (b) A splitting field of $x^4 + 4 \in \mathbb{Q}[x]$.
 - (c) An irreducible cubic polynomial $f \in \mathbb{Q}[x]$ such that $[L \colon \mathbb{Q}] = 6$, where L is the splitting field of f.
 - (d) A nonnormal extension.
 - (e) An inseparable extension.
 - (f) A nontrivial \mathbb{Q} -automorphism $\sigma : \mathbb{Q}(\sqrt{2}, \sqrt{3}) \to \mathbb{Q}(\sqrt{2}, \sqrt{3})$.
 - (g) An extension $L \colon K$ such that $\operatorname{Gal}(L/K) \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.
 - (h) An extension L: K such that $Gal(L/K) \cong \mathbb{Z}_3$.

2. (a) (10 pts) Prove that, if L is the splitting field of some $f \in K[x]$, then the extension L: K is normal. (This is one direction of Theorem 5.)

(b) (5 pts) Prove that, if L is algebraic over K and every element of L belongs to an intermediate field that is normal over K, then L is normal over K.

3. (7 pts) Let p be prime and let $b \in \mathbb{Z}_p$ be fixed. If α is a root of the polynomial $f = x^p - x + b \in \mathbb{Z}_p[x]$, prove that $\mathbb{Z}_p(\alpha)$ is a normal extension of \mathbb{Z}_p . (Hint: You may use without proof that, for all $c \in \mathbb{Z}_p$, $c^p = c$.)

4. (a) (4 pts) State a lemma relating the degrees of $K(\alpha, \beta)$, $K(\alpha)$, and $K(\beta)$ over K if the degrees of the minimal polynomials of α and β are relatively prime.

(b) (5 pts) Use part (a) to show that the degree of the splitting field of $x^p - 2 \in \mathbb{Q}[x]$, p prime, is p(p-1).

5. (a) (5 pts) Let $\zeta = e^{2\pi i/5}$. Prove that $\mathbb{Q}(\zeta)$ is a normal extension of \mathbb{Q} and determine with proof the Galois group Gal $(\mathbb{Q}(\zeta)/\mathbb{Q})$. (Hint: It suffices to verify the order of one particular element in the Galois group.)

(b) (7 pts) Let $n \in \mathbb{Z}_{\geq 3}$ be fixed and let $\zeta = e^{2\pi i/n}$. Prove that $Gal(\mathbb{Q}(\zeta)/\mathbb{Q})$ is abelian.

6. (a) (4 pts) State the Galois Correspondence. Be sure to define the maps * and \dagger .

(a) (5 pts) Show by example that maps * and \dagger need not be inverses of each other in general.