Math 306: Main Theorems of Galois Theory

Here are the main theorems we will encounter on the way to proving the Fundamental Theorem of Galois Theory.
If a theorem can be found in our book, its number is given in parentheses.

Theorem 1: Let i: K — K’ be an isomorphism. Suppose that m, and mgs are minimal polynomials for aw over
K and 8 over K', respectively, and that mg = i(m). Then there is an isomorphism j: K () — K'(/3) with

jle) = B.

Theorem 2 (5.13): There is a K-isomorphism i: K(«) — K(B) if a and (3 are roots of the same minimal
polynomial f € Klx].

Theorem 3 (9.5): Let i: K — K’ be an isomorphism. Suppose that f € K[z] and X is the splitting field for
f. If K/ — L is a monomorphism such that i(f) splits in L[x], then there is a monomorphism j: ¥ — L such
that j|x = i.

Theorem 4 (9.6): Let i: K — K’ be an isomorphism. Suppose that X is a splitting field for f € K[z] and ¥’
a splitting field for i(f) € K'[x]. Then there is an isomorphism j: ¥ — 3’ such that j|x = i.

Theorem 5 (9.9): A finite extension L: K is normal iff it is a splitting field for some f € K[z].

Theorem 6 (11.3): Let L: K be finite and normal with K C M C L. If 7 € Mong (M, L), then there is
o € Gal(L/K) such that o|y = 7.

Theorem 7 (11.4): If L: K is finite and normal, and if « and [ are zeros in L of the same irreducible
polynomial p € K[z], then there is o € Gal(L/K) such that o(a) = .

Theorem 8: Let L: K be finite and normal, and let « and 3 be zeros in L of the same irreducible polynomial
f € K|z], giving an isomorphism 7: K (a) — K() with 7(a)) = 3. Suppose that g € K(«)[z] is irreducible
with root v and 7.(g) € K(B)[z] has root 5. Then there is 0 € Gal(L/K) such that o(a) = 5 and o(y) = 0.

Theorem 9: Suppose that « is algebraic over K and that K(«): K is normal. If f € K][x] is the minimum
polynomial for o and 3 is a root of f, then there is a unique o € Gal(K (a)/K) such that o(a) = 5.

Theorem 10 (10.1): Every set of distinct monomorphisms K — L is linearly independent over L.
Theorem 11 (10.6): If H is a subgroup of Gal(L/K) and |H| < oo, then [L: HT| = |H]|.
Theorem 12 (11.6): If L: K is finite, then the normal closure of L: K is unique up to isomorphism.

Theorem 13 (11.9): Let L: K be finite. The following are equivalent:

1. L: K is normal;

2. Thereis a normal N: K with N D L such that every K-monomorphism 7: L — N is a K-automorphism
of L;

3. For every M: K with M D L, every K-monomorphism 7: L — M is a K-automorphism of L.



Theorem 14 (11.10): Let L: K be a finite separable extension. Then there are precisely n distinct K-
monomorphisms of L into a normal closure N, where n = [L: K].

Theorem 15 (11.11): Let L: K be separable and normal with [L: K| =n. Then |Gal(L/K)| = n.

Theorem 16 (11.12): Let L: K be finite of degree n. If L: K is normal and separable, then K = GT, where
G = Gal(L/K).

Theorem 17 (11.13): Suppose that K C L C M, where M : K is finite. If [L: K] = n, then the number of
K-monomorphisms from L to M is at most n.

Theorem 18 (11.14): If L: K is finite and G = Gal(L/K) with G = K, then L: K is normal and separable.

Theorem 19 (12.1) — Fundamental Theorem of Galois Theory: Let [L: K| = n, separable and normal.
Recall that % : F — G. Then

1. |Gal(L/K)|=n

2. % and T are inverses (this is the Galois correspondence)

3. f KCMCL,then [L: M] = |M*| and [M: K| = |G|/|M*|
4. M: K is normal iff M* is normal in G

5. If M: K is normal, then Gal(M/K) = G/M*



