Math 306: Main Theorems of Galois Theory

Here are the main theorems we will encounter on the way to proving the Fundamental Theorem of Galois Theory. If a theorem can be found in our book, its number is given in parentheses.

Theorem 1: Let $i: K \to K'$ be an isomorphism. Suppose that m_{α} and m_{β} are minimal polynomials for α over K and β over K', respectively, and that $m_{\beta} = i(m_{\alpha})$. Then there is an isomorphism $j: K(\alpha) \to K'(\beta)$ with $j(\alpha) = \beta$.

Theorem 2 (5.13): There is a *K*-isomorphism $i: K(\alpha) \to K(\beta)$ if α and β are roots of the same minimal polynomial $f \in K[x]$.

Theorem 3 (9.5): Let $i: K \to K'$ be an isomorphism. Suppose that $f \in K[x]$ and Σ is the splitting field for f. If $K' \to L$ is a monomorphism such that i(f) splits in L[x], then there is a monomorphism $j: \Sigma \to L$ such that $j|_K = i$.

Theorem 4 (9.6): Let $i: K \to K'$ be an isomorphism. Suppose that Σ is a splitting field for $f \in K[x]$ and Σ' a splitting field for $i(f) \in K'[x]$. Then there is an isomorphism $j: \Sigma \to \Sigma'$ such that $j|_K = i$.

Theorem 5 (9.9): A finite extension L: K is normal iff it is a splitting field for some $f \in K[x]$.

Theorem 6 (11.3): Let L: K be finite and normal with $K \subseteq M \subseteq L$. If $\tau \in Mon_K(M, L)$, then there is $\sigma \in Gal(L/K)$ such that $\sigma|_M = \tau$.

Theorem 7 (11.4): If L: K is finite and normal, and if α and β are zeros in L of the same irreducible polynomial $p \in K[x]$, then there is $\sigma \in Gal(L/K)$ such that $\sigma(\alpha) = \beta$.

Theorem 8: Let L: K be finite and normal, and let α and β be zeros in L of the same irreducible polynomial $f \in K[x]$, giving an isomorphism $\tau: K(\alpha) \to K(\beta)$ with $\tau(\alpha) = \beta$. Suppose that $g \in K(\alpha)[x]$ is irreducible with root γ and $\tau_*(g) \in K(\beta)[x]$ has root β . Then there is $\sigma \in \text{Gal}(L/K)$ such that $\sigma(\alpha) = \beta$ and $\sigma(\gamma) = \delta$.

Theorem 9: Suppose that α is algebraic over K and that $K(\alpha)$: K is normal. If $f \in K[x]$ is the minimum polynomial for α and β is a root of f, then there is a unique $\sigma \in \text{Gal}(K(\alpha)/K)$ such that $\sigma(\alpha) = \beta$.

Theorem 10 (10.1): Every set of distinct monomorphisms $K \to L$ is linearly independent over L.

Theorem 11 (10.6): If H is a subgroup of Gal(L/K) and $|H| < \infty$, then $[L: H^{\dagger}] = |H|$.

Theorem 12 (11.6): If L: K is finite, then the normal closure of L: K is unique up to isomorphism.

Theorem 13 (11.9): Let *L*: *K* be finite. The following are equivalent:

- 1. L: K is normal;
- 2. There is a normal N: K with $N \supset L$ such that every K-monomorphism $\tau: L \to N$ is a K-automorphism of L;
- 3. For every M: K with $M \supset L$, every K-monomorphism $\tau: L \to M$ is a K-automorphism of L.

Theorem 14 (11.10): Let L: K be a finite separable extension. Then there are precisely n distinct K-monomorphisms of L into a normal closure N, where n = [L: K].

Theorem 15 (11.11): Let L: K be separable and normal with [L: K] = n. Then |Gal(L/K)| = n.

Theorem 16 (11.12): Let L: K be finite of degree n. If L: K is normal and separable, then $K = G^{\dagger}$, where G = Gal(L/K).

Theorem 17 (11.13): Suppose that $K \subseteq L \subseteq M$, where M : K is finite. If [L : K] = n, then the number of K-monomorphisms from L to M is at most n.

Theorem 18 (11.14): If L: K is finite and G = Gal(L/K) with $G^{\dagger} = K$, then L: K is normal and separable.

Theorem 19 (12.1) – Fundamental Theorem of Galois Theory: Let [L: K] = n, separable and normal. Recall that $*: \mathcal{F} \to \mathcal{G}$. Then

- 1. |Gal(L/K)| = n
- 2. * and † are inverses (this is the *Galois correspondence*)
- 3. If $K \subseteq M \subseteq L$, then $[L \colon M] = |M^*|$ and $[M \colon K] = |G|/|M^*|$
- 4. M: K is normal iff M^* is normal in G
- 5. If M : K is normal, then $Gal(M/K) \cong G/M^*$