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There is Galois theory in algebraic topoogy. A covering space of a f ﬁ I\/ ! }
topological space X is an ordered pair (X, p), where p : X > Xisa H o TH
certain type of continuous map. The elements of the group Cov(X/X) - F R
defined as {homeomorphisms & : X — X : ph = p) are dual to the Appendices .
elements of a Galois group in the following sense. If i : F — Eisthe ;; ,‘ (AL? 15
inclusion, where E/F is a Galois extension, then an automorphism o of E -
lies in the Galois group if and only if i = i. When X is simply connected,
then Cov(i /X) = m(X), the fundamental group of X; moreover, there is
a bijection between the family of all covering spaces of X and the family
of all subgroups of the fundamental group.

I am awed by the genius of Galois (1811-1832). He solved one of the
outstanding mathematical problems of his time, and his solution is beauti-
ful; in so doing, he created two powerful theories, group theory and Galois
theory, and his work is still influential today. And he did all of this at the -
age of 19; he was killed a year later. 1
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Appendix A
Group Theory Dictionary

Abelian group. A group in which multiplication is commutative.

Alternating group A,. The sub isti
: . group of S, consisting of al -
mutations. It has order %n! . " B ofall the cven per

Associativity. For all x, y, z, one has (xy)z = x(yz). It follows that one
does not need parentheses for any product of three or more factors

Automorpkism. An isomorphism of a group with itself,

Commutativity. For all x, y, one has xy = yx.

Conjugate elements. Two eleme: i
. , nts x and y in a group G are ju-
gate if there exists g € G with y = chg“.g g called confu

Conjugate subgmups Two sub
. oups. groups H and K of a gro
conjugate if there exists g € G with group G are called

K=gHg'=(ghg™' :h e H).

Coset of H in G. A subset of G of the form 8H = {gh : h € H}, where

H is a subgroup of G and
g € G. All the cosets of H partiti .
moreover, gH = g'H if and only if g~!¢ ¢ H. partition G;
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Cyclic group. A group G which contains an element g (called a generator)
such that every element of G is some power of g.

Dihedral group Ds,. A group of order 2n containing an element a of order
n and an element b of order 2 such that bab = a™!.

Even permutation. A permutation that is a product of an even number of
transpositions. Every r-cycle, for r odd, is an even permutation.

Factor groups. Given a normal series G = Go D G} D ... D G, = {1},
its factor groups are the groups G;/Giy fori > 0.

Four group V. The subgroup of S4 consisting of

1, (12)(34), (13)(24), and (14)(23);

it is a normal subgroup.

Generator of a cyclic group G. Anelement g € G whose powers give all
the elements of G; a cyclic group may have several different gener-

ators.

Group. A set G equipped with an associative multiplication such that there
is a unique ¢ € G (called the identig of G) with ex = x = xe for
all x € G, and, for each x € G, there is a unique y € G (called the
inverse of x) with yx = e = xy. One usually denotes e by 1 and y
by x~!. (Some of these axioms are redundant.)

Homomorphism. A function f : G — H,where G and H are groups, such
that f(xy) = f(x)f(y) forall x, y € G. One always has f(1) =1

and f(x~h) = fx)~L

Image. Given a homomorphism f : G - H , its image im f is the sub-
group of H consisting of all f(x) forx € G.

Index [G : H]. The number of (left) cosets of a subgroup H in G; it is
equal to |G|/|H| when G is finite.

Isomorphism. A homomorphism that is a bijection.

Kernel. Given a homomorphism f.: G — H, its kernel ker f is the
(necessarily) normal subgroup of G consisting of all x € G with
f(x) = 1. One denotes this by H < G.
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Natural map. If H is a normal subgroup of G, then the natural map is the
homomorphism 7 : G —» G/H defined by  (x) = xH.

Normal series of G. A sequence of subgroups
G=GoDG13...DG”={1}

with each G, a normal sub
; ! group of G;. (A sub )
be a normal subgroup of G.) (A subgroup G; may not

Normal subgroup. A subgroup H of a group G such that, forallg € G

1

gHg™ = {ghg™':he H)=H.

Order |G| of a group G. The number of elements in G.

p-group. A group in which every element has
ime . order some
prime p. If G is finite, the |G| is a power of ’. power of the

Permutation. A bijection of a set to itself; all the permutations of a set X
form a group under composition, denoted by Sy.

Quotient group G/H. If H is a normal subgroup of G, then G/H is the
family of all cosets g H of H with multiplication defined by

gHg'H = gg'H;

the order of G/H is [G : H]; the identi
: N ’ ld 1 3 — .
inverse of gH is g='H. entity element is 1H = H; the

Simple group G. A grou
and &7 group G # {1} whose only normal subgroups are {1}

S .
olvable group. A group having a normal series with abelian factor groups

g f °

Subgn.)up 8enerated by a subset X. The smallest subgroup of G contain
Ing X, denoted by (X), consists of all the products x;%x,® "‘
wherex,eXandtheexponcntsa,b,...,z=:!:1 PR




112 APPENDICES

Sylow p-subgroup of a finite group G. A-subgroup of G of order p", where
p" is the highest power of p dividing |G|. Such subgroups always
exist, and any two such are conjugate, hence isomorphic.

Symmetric group S,. The group of all permutations of {1, 2,...,n}under
composition; it has order n!.

Appendix B
Group Theory Used in the Text

All groups in this appendix are assumed to be finite even though several
of the theorems hold (perhaps with different proofs) in the infinite case as
well. Definitions of terms not defined in this appendix can be found in the
dictionary, Appendix A.

Theorem G.1. Every subgroup S of a cyclic group G = (a) is itself cyclic.

Proof. If S = {1}, then § is cyclic with generator 1. Otherwise, let m be
the least positive integer for which a™ € S; we claim S = (a"). Clearly
{a™) C S. For the reverse inclusion, take s = ak € S. By the division
algorithm, there are integers g and r with 0 <r < m and

k=qgm+r.

But ¢* = a9™*" = (a™)9a’ gives a” € S. If r > 0, the minimality of m is
contradicted; therefore r = 0 and q" = (@™)? € (a™). o

Theorem G.2. (i) Ifa € G is an element of order n, then a™ = 1 if and
only ifn | m.

(ii) If G = {a) is a cyclic group of order n, then a* is a generator of G
ifand only if (k,n) = 1. )

(iii) If a € G has order n, then the order of a is |{a)|.

Proof. (i) Assume that @™ = 1. The division algorithm provides integers
qandr withm =nq +r,when0 <r <n. It follows that a” = a
a™a~" = 1. If r > 0, then we contradict n being the smallest positive
integer with @” = 1. Hence r = 0 and n | m. Conversely, if m = nk, then
a"=a"* = (@)Y =1=1 :

m-ngq .
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(ii) Recall that two integers are relatively prime if and only if some
integral linear combination of them is 1.

If a* generates G, then a € (a*), so that a = a*' for some ¢t € Z.
Therefore a*~! = 1; by (i), n | kt — 1, so there is v € Z with nv = kt — 1.
Therefore, 1 is a linear combination of k and m, and so (k, n) = 1.

Conversely, if (k,n) = 1, then nt + ku = 1 for t, u € Z; hence

a= am+ku = amaku = aku e (ak>.

Therefore every power of a also lies in (a*) and G = (a*).
(iii) The list 1, a, a?, ..., a*~! has no repetitions: if there are i < j with
a' = a/, then a’~ = 1, contradicting n being the smallest exponent for

whicha" = 1. Now {1,a,4?,...,a""'} C (a), and we let the reader prove
the reverse inclusion. It follows that |{a)| = |{1,a,a?,...,a" '} =n. e

Theorem G.3 (Lagrange). If H is a subgroup of a group G, then
|Gl =[G : H}|H]|.

Proof. The relation on G, defined by x ~ y if y = xh for some h € H,
is an equivalence relation whose equivalence classes are the cosets of H.
Therefore, the cosets of H in G partition G. Moreover |H| = |xH| for

every x € G (because h > xh is a bijection), so that |G| is the number of
cosets times their common size. o

It follows that [G : H] = |G|/|H|. In particular, if H is a normal
subgroup of a group G (so that the quotient group G/ H is defined), then

|G/H| =[G : Hl1=|GI|/|H|

when G is finite.

Another consequence of Lagrange’s theorem is that the order of a € G
is a divisor of |G|, for Theorem G.2 shows that the order of a is the order
of the subgroup (a). Hence, a'®! = 1 foralla € G.

If f: G — H is a homomorphism, denote the image of f by im f and
the kernel of f by ker f.

LemmaGud. Let f : G — H be a homomorphism. Then [ isan injection
if and only ifker f = {1).
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Proof. If f is an injection, then x # 1 implies f(x) # f(1) = 1, and
so x ¢ ker f. Conversely, assume ker f = (1} and that f(x) = f(y) for
x,y € G. Then

1=f@FfO) = fOFO™=foy™)

and xy~! € ker f = {1}. Hence x = y and f is an injection. e

Theorem G.5 (First Isomorphism Theorem). Iff:G—> Hisahg-
momorphism, then ker f is a normal subgroup of G and

G/ker f =Zim f.

Proof. Let K = ker f. Let us show K is a subgroup. It does contain 1
(because f(1) = 1);ifx, y € K (sothat f(x) = 1 = f(y)), then f(xy) =
f()f(y) = landxy € K;ifx € K, then f(x™!) = f(x)™' =1
and x~! € K. Furthermore, the subgroup K is normal: if x € K and
g € G, then f(gxg™) = f@)FX)f(®)~ = f(@)f(g)™' = 1 andso
gxg ' e K.

Define ¢ : G/K — im f by ¢(xK) = f(x). Now g is well defined:
if XK = xK, then x’ = xk for some k. € K, and f(x) = f(xk) =
f@x)f(k) = f(x). It is routine to check that ¢ is a homomorphism (be-
cause f is) with im¢ = im f. Finally, ¢ is an injection, by Lemma G.4,
because @(xK) = 1 implies f(x) = 1,hencex € KandxK =K. o

If K, H are subgroups of G, then K v H is the smallest subgroup of
G containing K and H; that is, K Vv H is the subgroup of G generated by
KUH.

Lemma G.6. If K and H are subgroups of G with K normal in G, then
KvH=KH={kh:ke Kandh € H} = HK.

Proof, Clearly KH C K v H. For the reverse inclusiin, it suffices to
prove that K H is a subgroup, for it does contain K U H.

Now khkih; = k(hkih~Y)hh, = (kk;)(hh,) € KH for some k; €
K (because K is normal). Also (kh)~! = h~'%k"! = ("% ')A~} =
kh~! € KH for some k' € K (again, because X is normal). Therefore,
K H is a subgroup.

If hk € HK, then hk = (hkh~')h = k’h € KH for some k' € K, and
so HK C K H; the reverse inclusion is proved similarly. e

If XK and H are subgroups of G with K normal, then the family of those
cosets h K of K withh € H is easily seen to be a subgroup of G/ K. Indeed,
one may check, using Lemma G.6, that this subgroup is KH/K.
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Theorem G.7 (Second Isomorphism Theorem). If K and H are sub-
groups of G with K normal in G, then K N H is a normal subgroup of
H and

H/(KNH)=KH/K.

Proof. Let 7 : G — G/K be the natural map, defined by 7 (x) = x K, and
let f : H — G/K be the restriction & | H. Nowker f = KN H andim f
is the family of all cosets xK in G/K withx € H (hence im f = K H/K).
The first isomorphism theorem now gives the result. o

Theorem G.8 (Third Isomorphism Theorem). If S C K are normal
subgroups of G, then K /S is a normal subgroup of G/S and
(G/S)/(K/S)= G/K.

Proof. The function f : G/S — G/K givenby xS > xK is well defined
because § C K. One checks easily that f is a surjective homomorphism
with kernel K/S, and so the theorem follows from the first isomorphism
theorem. e

Theorem G.9 (Correspondence Theorem). Let K be a normal sub-
group of G, and let S* be a subgroup of G* = G/K.

(i) There is a unique intermediate subgroup S, i.e., K C S C G, with
S/K = S*;

(ii) If S* is a normal subgroup of G*, then S is normal in G;

(iii) [G*: $*) =[G : S

(iv) IfT* is normal in S*, then T is normal in S and
S*/T*= §/T.

Proof. (i) Define S = {x € G : xK € §*).
(i)Ifa € G,and x € S, thenaxa 'K = aKxKa~'K € S*, because
S* is normal in G*; therefore axa™! ¢ §.
(iii)
[G*: $*]

IG*I/18*] = |G/K|/iS/ K]
= (GI/IKD/(SI/IK]) = |GI|/|S| =[G : S].
(iv) T is normal in S, by (ii), and
§*/T* = (S/K)/(T/K)= S/T,
by the third isomorphism theorem. e
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Definition. A group G acts on a set X if there is a function

GxX—X,

denoted by (g, x) > g - x, such that:
() 1-x =x forall x € X, where 1 is the identity in G;

¥
(ii) (gh)-x=g-(h-x)forallxeXandforallg,heG.

Definition. If G acts on X and x € X, then the orbit of x is
Ox)={g-x:g€G}CX,
and the stabilizer of x is the subgroup
G.={geG:g-x=x}CG.

A group G acts transitively on X if, foreachx, y € X, thereexistsg € G
with g - x = y. In this case, O(x) = X.

Every group G acts on itself (here X = G) by conjugation; define
g-x= gxg‘l.
The orbit O(x) of x € G is its conjugacy class:
[yeG:y=gxg™' forsome g € G};
the stabilizer of x is
{geG:x=g-x=gxg '} ={g € G:gx=xg}

(this last subgroup, called the centralizer of x in G, is denoted by Cg(x)).

The reader may check that the family of all orbits partitions X, for the
relation x ~ y on X, defined by y = g-x forsome g € G, isan equivalence
relation on X whose equivalence classes sre the orbits.

Theorem G.10. If G acts on a set X and if x € X, then
0@l =[G : G:1 = |G|/|Gl.
In particular, if G acts transitively on X, where |X| = n, then

|G| = nIle.
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Proof. Define ¢ : O(x) — {the family of all cosets of G, in G} by
¢(g - x) = gG,.

Now ¢ is well defined, forif g-x = h-x (where g, h € G), thenh~'g.x =
x,h7'g € G,, and gG, = hG,. Reversing this argument shows that ¢ is
an injection: if ¢(g - x) = ¢(h - x), then gG, = hG,, h~'g € G, and
& +x = h - x. Finally, ¢ is surjective, for a coset gG, is (g - x). Hence, ¢
is a bijection.

If G acts transitively, then O(x) = X and |O(x)| = n = |X|; hence
n =[G : G;] =1G|/|G,|, and |G| = n|G,|. e

Corollary G.11. [fx € G, then
the number of conjugates of x =[G : Cg(x)].
Proof. This is the special case of G acting on itself by conjugation. e

Lemma G.12. If p is a prime not dividing m (p { m) and ifk > 1, then

k
p'm
p { ( ).
p*
Proof. Write the binomial coefficient as follows:

(pkm> _ pm(p*m — 1)---(p"m—i)---(p"m—p"+1)
pt pk(pk_1)...(pk_i)...(pk_pk+1)

By Euclid’s lemma, any factor p of the numerator (or of the denominator)
arises from a factor of p*m —i (orof p*—i). If im, p) = land 1 < i < p*,
then p' | mp* — i if and only if p* | i. Therefore, the highest power of p
dividing p*m — i is the same as the highest power of p dividing p* — i
(because p t m). Every factor of p upstairs is thus canceled by a factor of
p downstairs, and hence the binomial coefficient has no factor D e

Theorem G.13 (Sylow). If G is a group of order p*m, where p isa prime
not dividing m, then G contains a subgroup of order p*,

Proof. (Wielandt) If X is the family of all subsets of G of cardinality p*,

then Lemma G.12 shows that p 1 1X]. Let G act on X by left translation:
if B C G and |B| = p*, then

g-B={gh:beB)
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There is some orbit O(B) with p 1 |{O(B)| (otherwise p divides the cardi-
nality of every orbit, hence p divides |X|). Choose such a subset B € X.
Now |G|/|Gs) = [G : Gp]l = |O(B)] is prime to p; it follows that
|Gg| = p*m’ > p* forsome m’ | m. On the other hand, if by € B and
g € Gp, thenghpc g-B = B (definition of stabilizer); moreover, if g and
h are distinct elements of G g, then ghg and hby are distinct elements of B.
Therefore |Gp| < |B| = p*, and so G is a subgroup of order p*. o

Definition. If |G| = p*m, where p is a prime not dividing m, then a sub-
group of G of order p* is called a Sylow p-subgroup of G.

One knows that any two Sylow p-subgroups of a group G are isomor-
phic (indeed, they are conjugate), and that 'there are exactly 1+ rp of them
for some integer r > 0.

Corollary G.14 (Cauchy). If p is a prime dividing |G|, then G contains
an element of order p.

Proof. Let H be a Sylow p-subgroup of G and choose x € H* = H-(1}.
By Lagrange’s theorem, the order of x is p* lfor some ¢t. If t = 1, we are
done; if t > 1, then it is easy to see that xP"” has order p. o

Lemma G.15. Every finite abelian group G # (1) contains a subgroup of
prime index.

Proof. We first prove that if G has composite order rs, then G has a proper
subgroup. Choose x € G with x # 1. If x has order < rs, then {x)isa
proper subgroup; otherwise, x has order rs and (x") is a proper subgroup.
The proof of the lemma is by induction on the number k of (not necessar-
ily distinct) prime factors of |G|. If k = 1, then G has prime order and {1)
has prime index. If k > 1, the first paragraph gives a proper subgroup H,
necessarily normal (because G is abelian), and so the quotient group G/H
is defined. By induction, G/H has a subgroup S* of prime index, and the
correspondence theorem gives a subgroup S of G of prime index. e

Theorem G.16. A group G # {1} is solvable (it has a normal series
with abelian factor groups) if and only if G has a normal series with factor
groups of prime order. '

Proof. Sufficiency is obvious; we prove necessity by induction on |G|. As-

sume that
G=GyDG D---DG,={1}
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is a normal series with G;/ G, abelian for all i; we may further assume
that G # G,. By Lemma G.15, the abelian group G/G), has a (necessarily
normal) subgroup S* of prime index; the correspondence theorem gives an
intermediate subgroup § (G O § O G;) with S normal in G and with

[G : S] = [G/G, : §*] prime. Now S is a solvable group (consider the
normal series

SDGlDGzD-”DGn={1};

:S'/ G is abelian because it is a subgroup of the abelian group G/G,), and
induction provides a normal series of it with factor groups of prime order. e

Corollary G.17. Every solvable group has a normal subgroup of prime
index.

Recall that the commutator of elements x, y € G is
[x, yl = xyx~'y~L.

The commutator subgroup G’ of G is the subgroup generated by all the
commutators (the product of two commutators may not be a commutator).
Note that G’ is a normal subgroup of G, forif a € G, then

alx, yla™! = [axa™!, aya™'};
moreover, G/ G’ is abelian.

Lemma G.18. If H is a normal subgroup of G, then G/ H is abelian ifand
only if G’ C H.

Proof. If G/H is abelian, then for all x,yegG,
xyH =xHyH = yHxH = yxH,

anld 50 .T:yx‘l y~! € H; it follows that G’ C H because every generator of
G’ lies in H. Conversely, if G’ C H, then the third isomorphism theorem

§h0ws that G/H is a quotient group of the abelian group G/G’, and hence
itis abelian. e

Definition. The higher commutator subgroups are defined inductively:
GO — G: GU+D G,

that is, G“*! is the commutator subgroup of G,
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Lemma G.19. A group G is solvable if and only if G = {1} for some n.

Proof. If G is solvable, then there is a normal series
G=GyDG;D---DG,= {1}

with each factor group G;/ G4, abelian. We prove, by induction on i, that

G; D GY; this will give the result. If i = 0, then G; = Gy = G. Assume,

by induction, that G; D G¥; then G| > G = G+, But G;/Giy,

abelian implies G4, D G}, by Lemma G.18, and 50 G;; O G¢*D,
Conversely, if G™ = {1} (of course, G = G’), then

G=G">5G6Y>5G6%>...06" = {1}
is a normal series with abelian factor groups; hence G is solvable. e

Theorem G.20. If G is a solvable group, then every subgroup and every
quotient group of G is also solvable.

Proof. If H is a subgroup of G, then it is easy to prove by induction that
H® ¢ GY for all i. Hence, G™ = {1} implies H® = (1} and H is
solvable,

If p : G — K is a surjective homomorphism, then ¢(G’) = K': if
uvu~lv~! is a commutator in K, choose x,y € G with ¢(x) = u and
¢(y) = v; then p(xyx~'y~!) = uvu~'v~!. One proves easily, by induc-
tion, that 9(G¥) = K@ for all i. Hence, if G is solvable, then G™ = {1}
for some n and K™ = {1}; therefore K is solvable. Now take K = G/N,
where N is any normal subgroup of G, and take ¢ to be the natural map
G—>G/N. o

Theorem G.21. Let G be a group with normal subgroup H. If H and
G/H are solvable groups, then G is solvable.

Proof. Let
G/H=G"=G;D>G;D---DG,={1}

be a normal series with abelian factor groups. By the correspondence the-
orem, there is a series

G=GQDG|D'/'-DG,,,=H

with each G; normal in G;_; and with abelian factor groups. Since H is
solvable, there is a normal series

H=Hy,D>DH D>-.--DH,={l}

GROUP THEORY USED IN THE TEXT 121

with abelian factor groups. Splicing these two series together gives a nor-
mal series for G with abelian factor groups. e

One can also prove this result using the criterion in Lemma G.19.
Definition. The center of a group G is
Z(G)={geG:gx=xg foral x € G}.

It is easy to see that Z(G) is an abelian normal subgroup of G.

It is also easy to prove that g € Z(G) if and only if the conjugacy
class of g is {g}, so that |Z(G)| is the number of conjugacy classes of
cardinality 1.

" There are groups G with Z(G) = {1}; for example, Z(S3) = {1}.

Lemma G.22. If p isaprime and G # {1} is a p-group, then Z(G) # {1}.

Proof. Partition G into its conjugacy classes: using our remark above
about conjugacy classes of cardinality 1, there is a disjoint union

G=Z(G)UCiU...UC,,

where the C; are the conjugacy classes of cardinality larger than 1. If we
choose x; € C;, then Corollary G.11 gives

IGl =1Z(®)I + Y _[G : Co(x)].

By Lagrange’s theorem, p divides [G : Cg(x;)] for all i (f x; ¢ Z(G),
then Cg(x;) # G and [G : Cg(x;)] # 1), and so p divides |Z(G)|. e

Theorem G.23. Every p-group G is solvable, and hence it has a normal
subgroup of index p if G # {1).
Proof. We prove that G is solvable by induction on |G|. If |G] # 1,
then Z(G) # ({1}, by Lemma G.22. If Z(G) = G, then G is abelian,
hence solvable. If Z(G) # G, then G/Z(G) is a p-group of order < |G|,
hence it is solvable, by induction. Since Z (G) is solvable, being abelian,
Theorem G.21 shows that G is solvable.

As G is solvable, the second statement follows from Corollary G.17. »

Let us pass from abstract groups to permutation groups; Cayley’s theo-
rem shows that this is no loss in generality,

Recall that Sy, the symmetric group on a set X, is the set of all permuta-
tions (bijections) of X under composition. If X = (x,,..., x,), then there
is an isomorphism Sy — S, (namely, @ > 906~!, where 8(x;) = i) and
one usually identifies these two groups.
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Theorem G.24 (Cayley). Every group G of order n is (isomorphic to) a
subgroup of S,.

Proof. If a € G, then the function A, : G — G, defined by x +> ax, is
a bijection, for its inverse is A,-1 : x > a~1x; hence A, € Sg (of course,
Sg = S,). Define A : G — Sg by a = A,. It remains to prove that X is an

injective homomorphism.
Ifa, b € G are distinct, then A, # A, (because these two functions have
different values on 1 € G). Finally, A is a homomorphism:

AaAp 1 x = bx > a(bx)
and
Agp i X > (ab)x,

so the associative law implies A,p = AgAp, as desired. o

Lemma G.25. The alternating group A, is generated by the 3-cycles.

Proof. If ¢ € A,, then @ = 1 - - - T,, Where each 7; is a transposition and
m is even; hence
a = (T1)(T3T4) - - (Tme1Tmn)-

If 754 and 7y, are not disjoint, then their product is a 3-cycle: Tap—1Tor =
(ab)(ac) = (ach);'? if they are disjoint, then

Tak-172k = (ab)(cd) = (ab)(bc)(be)(cd) = (bea)(cdb).
Therefore « is a product of 3-cycles. o

Lemma G.26. The commutator subgroup of S, is A,.

Proof. Since S,/ A, is abelian (it has order 2), Lemma G.18 gives S, C A,.
Since A, is generated by the 3-cycles, it suffices to prove every o = (ijk)
is a commutator. Since o has order 3, 0 = o* = (%)% But

o? = (ikj) = (ij) k),

18We multiply permutations from right to left:

(o1)a =o0(r(a))

because we are composing functions: that is, o7 : @ +> Ta a(ta).. In particular,
(ab)(ac) = (ach) because

(ab)(ac) :ar> c > c; ber,—»a; cHar b
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so that ‘
o = o* = (ij)(ik)j)(ik);
this is a commutator because (ij) = (ij)~! and (ik) = (ik)~!. o

Lemma G.27. Ify = (io, i1, ... ,ir-1) isak-cycle in S, and o € Sy, then
aya~lis also a k-cycle; indeed,

aya"' = (aig, @iy, ... , ®ig_1).
Conversely, if y' = (ig, iy, ... , ix_,) is another k-cycle, then there exists

o € S, withy' =aya~!.

Proof. If € # ai;,0 < j <k—1,thena"¢ # i; and so y (@~ '€) = a7'¢;
therefore aya™: £ +> a~ £ > a~ 'L > ¢; that is, aya~! fixes £. If
€ =aij,thenaya™ : £ = ai; > i; - ijy > aijy (read subscripts
mod k). Hence aya~! and (i, aiy, . .. , @it_) are equal.

Conversely, given y and y’, choose a permutation « with ai; = i; for
all j. Then the first part of the proof shows that y’ = aya~!. e

Remark. The same technique proves the lemma with y a cycle replaced
by y a product of disjoint cycles.

Lemma G.28. If H is a subgroup of a group G of index 2, then H is a
normal subgroup of G.

Proof. Ifa € Ganda ¢ H,thenaH N H = @ and, by hypothesis,
aH U H = G; hence aH is the complement of H. Since HaN H = @, it
follows that Ha C aH; that is, after multiplying on the right by a~!

H CaHa™'.

This inclusion holds for every a € G, so we may replace a by a~! to obtain
H C a”'Ha; thatis, aHa™' C H. Therefore, H is a normal subgroup
of G. o

Theorem G.29. The alternating group A, is the only subgroup of S, hav-
ing index 2.

Proof. If [S, : H] = 2, then H is normal in S, by Lemma G.28, and
Lemma G.18 gives A, = S, C H (for S,/ H has order 2, hence is abelian).
But |A,| =n!/2 = |H|,andso H = A,. e

We are going to prove that As is a simple group.
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Lemma G.30. (i) There are 20 3-cycles in Ss, and they are all conjugate
in Ss.

(ii) All 3-cycles are conjugate in As.

Proof. (i) The number of 3-cycles (abc) is 5 x 4 x 3/3 = 20 (one divides
by 3 because (abc) = (bca) = (cab)). The conjugacy of any two 3-cycles
follows at once from Lemma G.27.

(ii) Given 3-cycles y, y’, one must find an even permutation o with y =
aya~!. This can be done directly, but it involves consideration of various
cases; here is another proof.

If ¢ = (123) and Cs(e) is the centralizer of @ in Ss, then Corollary G.11
gives 20 = [Ss : Cs(@)]; hence |Cs(x)| = 6. But we can exhibit the six
elements that commute with «:

1, -, o 45), @5«, (@45’

Only the first three of these are even permutations, and so |Cx @)} =3,
where C,(a) is the centralizer of « in As. By Corollary G.11, the number
of conjugates of & in As is [As : Ca(@)] = |As|/|Ca(@)| = 60/3 = 20.
Therefore, all 3-cycles are conjugate to @ = (123) in As. o

Theorem G.31. A; is a simple group.

Proof. If H # {1} is a normal subgroup of As and if & € H, then every
conjugate of o in As also lies in H. In particular, if H contains a 3-cycle,
then it contains all 3-cycles, by Lemma G.30(i); but then H = As, by
Lemma G.25.

Leto € H,o # 1. After a harmless relabeling, we may assume either
o = (123), 0 = (12)(34), or 0 = (12345) (these are the only possible
cycle structures of (even) permutations in As). If & = (123), then H = As,
as we have noted above. If 0 = (12)(34), define t = (12)(35); then

tot ! = (r1t2)(r314) = (12)(d5)

and
tot'o” = (354) € H.

Finally, if o = (12345), define T = (132); then
ot o =(010203) = (234)

and
torlo™! = (134).

In each case, H must contain a 3-cycle. Therefore, As contains no proper
normal subgroups # {1} and hence it is simple. e
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One can prove, by induction, that A, is simple for all n > 5.
The next counting lemma is useful.

Lemma G.32, If A and B are subgroups of a finite group G, then
AN B{|AB| = |A||B|,
where AB is the subset {ab : a € A and b € B}.

Proof. We are going to use the following fact. If X and Y are finite sets
and ¢ : X — Y is a surjection for which |o~!(y)| = |p~1(y")| for all
y,y €Y, then |Y| = X|/lp~' (y)I.

Define ¢ : A x B — AB by (a, b) > ab; of course, ¢ is a surjection.
We claim that

¢~ ab) = {(ac,c™'b) : c € AN B).

It is clear that (ac,c™'b) € ¢~ '(ab). Conversely, if (a, 8) € p~'(ab),
then ab = aB, where € A and B € B. Hence,a"'a = Bb~! € AN B;
if ¢ is their common value, then

(a, B) = (ac,c'b).
Therefore, |¢~!(ab)] = |AN B| and |AB| = |A x B|/JANB|. o

Corollary G.33. The only normal subgroups of Ss are {1}, As, and Ss.

Proof. Let H # {1} be a normal subgroup of Ss. The second isomorphism
theorem gives H N As a normal subgroup of As; as As is a simple group,
either HNAs = As or HNAs = (1}. Inthe first case, As C H and H = As
or H = Ss. In the second case, there is # € H with h ¢ As, so that
HAs = §s. Since HN As = {1}, Lemma G.32 gives |H| = |Ss|/|As| = 2.
Ifh € H,h # 1, then h = (ab) (the only other elements of order 2 have
the form (ab)(cd), and they are even permutations). It is easy to find a
conjugate distinct from 4, and this contradicts the normality of H. e

Theorem G.34. S, is solvable for n < 4, but it is not solvable forn =35,

Proof. If m < n, then S,, is (isomorphic to) a subgroup of S,. Since every
subgroup of a solvable group is itself solvable (Theorem G.20), it suffices
to show that S, is solvable and Ss is not solvable.

Here is a normal series of S4 that has abelian factor groups:

S4DA4DV___){1},
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where V is the four group (the factor groups have orders 2, 3, 4, respec-
tively, hence are abelian).

Were S5 solvable, then its subgroup As would also be solvable. Since As
is simple, its only normal series is As D {1}, and the (only) factor group is
the nonabelian group As/{1} = As. e

We now discuss Exercise 106, the group theoretic basis of the computa-
tion of the Galois groups of irreducible quartic polynomials over Q.

First of all, we list the subgroups G of 4 whose order is a multiple of 4.
If |G| = 4, then the only abstract groups G are Z4 and Z; x Z,, and both
occur as subgroups of S4 (in particular, V = Z, x Z). There is a subgroup
of order 8 isomorphic to the dihedral group D, namely, the symmetries
of a square regarded as permutations of the 4 corners; since a subgroup of
order 8 is a Sylow 2-subgroup of S, all subgroups of order 8 are isomorphic
to Ds. Theorem G.29 shows that A, is the only subgroup of order 12 and,
of course, S, itself is the only subgroup of order 24.

If G C S and V is the four group (which is a normal subgroup of Sy),
then the second isomorphism theorem gives GNV < G and

G/GNV GV/V CS/V.

Define
m=|G/GNV|

it follows that m is a divisor of [Ss : V] = 24/4 = 6 (S4/V = §3, but we
do not need this fact.)

Theorem G.35 (Exercise 106). Let G C S have order a multiple of 4
andletm ={G/GNV|.
(i) Ifm=06,then G = S4;
(ii) ifm =3, then G = Ay
Gii) ifm =1, thenG = V;
(iv) ifm=2,then G = DgorZsor V.

Proof. If m = 6 or 3, then |G| > 12 (1G] is divisible by 3 and, by hypoth-
esis, 4). By Theorem G.29, Ay is the only subgroup of Sy of order 12, and
s0 A4 C G in either case. But V C Ay. It follows easily that m = 6 forces
G = S;andm = 3 forces G = As. |

Ifm=1,thenG = GNV and G C V; since |G| is a multiple of 4, it
follows that G = V. .

If m = 2, then |G| = 2|G N V|; since |V| = 4, we have |G N V| = 1,
2, or 4. We cannot have |G N V| = 1 lest |G| = 2, which is not a multiple
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0f4.. If|GNV|=4,then |G| = 8and G = Dg (as we remarked above,
Dg is a Sylow 2-subgroup). If |GN V] =2, then |G| =4and G = Z, or
V (these are the only abstract groups of order 4). e

The possibility m = 2 and G = V can occur. Let G be the following
isomorphic copy of V in Sy:

G = {1, (12)(34), (12), (34)}.

Notethat GNV = {1,(12)(34)} and m = |G/G N V| = 4/2 = 2. This
group G does not act transitively on (1, 2, 3, 4} because, for example, there
isno g € G with g(1) = 3. Exercise 107 invokes the extra hypothesis of G
acting transitively to eliminate the case G = V from the list of candidates
for G whenm =2,

Lemma G.36. If G is a group and H is a subgroup of index n, then there
is a homomorphism ¢ : G — S, withkerp C H.

Proof. Let X be the family of all cosets of H in G; since | X| = n, it is easy
to see that Sy = S, (where Sy is the group of all permutations of X). For
8 € G, define ¢(g) : X — X by¢(g) : aH — gaH (where a € G);
note that ¢(g) is a bijection, for its inverse is ¢(g~!). To see that ¢ is a
homomorphism, compute:

p(gg):aH — (gghaH;
9(8)p(g8):aH + g'aH > g(g'aH).

If (p.(g) is the identity on X, then ¢(g) : aH — aH foralla € G; in
particular, ¢(g) : H— H,sothatgH =Handgec H. o

Theorem G.37. Ag has no subgroups of prime index.

P_roof. Now Ag is a simple group of order 360 = 23 - 32. 5 (in fact, A isa
simple group of order %n! foralln > 5). If H is a subgroup of prime index,
then [A¢ : H] = 2, 3, or 5. By Lemma G.36, there is a homomorphism
@ : A¢ — S,, where n = 2,3, or 5, with kerp C H;in particular, ker ¢ is
a nom}al\subgroup of Ag with ker g # Ag. Since Ag is simple, kerg = {1}
and g is an injection. But this is impossible because |Ss] =120 < 360. o

Lemma G.38. Ss has no subgroups of order 30 or of order 40.

Proof. If H is a subgroup of order 30, then H has index [Ss : H] =
120/30 = 4. Lemma G.36 gives a homomorphism ¢ : S5 — $, with
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kerg C H. But ker ¢ is a normal subgroup of Ss, and so its order must be
1, 60, or 120 (Corollary G.33). Since | H| = 30, it follows that ker ¢ = {1},
and Ss is isomorphic to a subgroup of S,, a contradiction. A similar argu-
ment shows that Ss has no subgroup of index 3. o

Theorem G.39. If o is a 5-cycle in Ss and t is a transposition in Ss, then
(C!, T) = Ss.

Proof. Let H = (o, t) be the subgroup generated by « and 7. We may
assume that ¢ = (12345) and © = (1i). Now some power of a, say, ot
carries i into 1, so that Lemma G.27 gives a*(1i)a~* = (j 1) for some j
(actually, j = a*1). Note thati # j because a* does not commute with
(1i). But (1i)(1j) = (1 j i), an element of order 3. The order of H is thus
divisible by 2, 3, and 5, hence |H| > 30. By Lemma G.38, |H| = 60 or
120. If |H| = 60, then H = As, by Theorem G.29; but H # As because
T € H is an odd permutation. Therefore H = Ss. o

A more computational proof shows first that every transposition can be
obtained from « and t, and then that Ss is generated by the transpositions.

Theorem G.40. A subgroup H of Ss is solvable if and only if |H| < 24.

Proof. We leave to the reader the fact that every group of order < 24
is solvable (whether or not it is a subgroup of Ss; indeed, every group of
order < 60 is solvable).

Since |Ss| = 120, the only divisors of |Ss] iarger than 24 are 30, 40, 60,
and 120. Now S itself is not solvable, by Theorem G.34; also, As is the
only subgroup of order 60 (Theorem G.29), and it is not solvable because
it is simple and not abelian (Theorem G.31). Lemma G.38 completes the

proof. e

Theorem G.40 is used in Exercise 111. It is implicit in the second part
of this exercise that S5 does have a subgroup of order 20; the normalizer of
a Sylow 5-subgroup is such a subgroup, where the normalizer Ng(P) of a
subgroup P of G is defined as:

No(P)={geG:gPg™' = P}.

Of course, S5 does have a solvable subgroup of order 24, namely, Ss.
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Appendix C
Ruler-Compass Constructions

We are going to show that the classical Greek problems: squaring the circle,
duplicating the cube, and trisecting an angle, are impossible to solve. Aswe
:shall see, the discussion uses only elementary field theory; no Galois theory
is required.

If is clear one that can trisect a 60° angle with a protractor (or any other
device than can measure an angle); after all, one can divide any number
by 3. Therefore, it is essential to state the problems carefully and to agree
on certain ground rules. The Greek problems specify that only two tools are
allowed, and each must be used in only one way. Let P and Q be points
in the plane; we denote the line segment with endpoints P and Q by PQ,
and we denote the length of this segment by |PQ\. A ruler (or straight-
edge) is a tool that can draw the line L(P, Q) determined by P and Q; a
compass is a tool that draws the circle with radius | P Q| and center either
P or Q; denote these circles by C(P; Q) or C (Q; P), respectively. Since
every construction has only a finite number of steps, we shall be able to
define “constructible” points inductively.

. (?iven the plane, we establish a coordinate system by first choosing two
distinct points, A and A; call the line they determine the x-axis. Use a com-
pass to draw the two circles C(A; A) and C(A; A) of radius | AZ| with cen-
tf:rs A and A, respectively. These two circles intersect in two points; the
line they determine is called the y- awis; it is the perpendicular bisector of
AA, ?nd it intersects the x-axis in a point O, called the origin. We define
the distance {O A| to be 1. We have introduced coordinates in the plane; in
particular, A = (1,0) and 4 = (-1, 0). '

>




