
Math 306, Spring 2012

Homework 10 Solutions

(1) (5 pts) Let p be prime. Construct a tree contaning all the fields Fpn for n ∈ {1, 2, . . . , 20} and depicting the
subfield structure.

Solution:
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(2) (5 pts) For any prime p, prove that there is an irreducible polynomial f ∈ Zp[x] whose Galois group is Zp.

Solution: Let p be a prime. Consider the polynomial f = xp − x + 1 in Zp[x]. We know that f is irreducible
and, if α is a root of f , then Zp(α) is a splitting field of f . The index [Zp(α) : Zp] = p. Since f is separable,
the extension is Galois, so the fundamental theorem gives Gal(Zp(α)/Zp) ∼= Zp.

(3) (5 pts) Suppose that f ∈ Z[x] is an irreducible quartic whose splitting field L has Galois group S4. Let θ be a
root of f and let M = Q(θ). Prove that M : Q has degree 4 with no proper subfields. (Hint: Your proof should
be by contradiction. You will want to identify the sole subgroup of S4 with 12 elements, and the 4 subgroups
of S4 with 6 elements.)

Solution: The only subgroup of order 12 is A4 and the 4 subgroups of order 6 are the ones isomorphic to S3.
Since θ is a root of an irreducible quartic, then clearly Q(θ) : Q has degree 4, so [M : Q] = 4. Now suppose that
there is an intermediate subfield N of M : Q. Then we have a tower of fields Q ⊆ N ⊆ M ⊆ L. Since L : Q
is Galois, we can take apply the map ∗ to this sequence to give S4 ≥ N∗ ≥ M∗ ≥ 〈e〉. By the Fundamental
Theorem, we must have [S4 : N

∗] = [N : Q] = 2, so N = A4. Also [M∗ : N∗] = [N : M ] = 2, so |M∗| = 6,
i.e. M∗ ∼= S3. Since M∗ ≤ N∗, we have a copy of S3 sitting inside A4, which is a contradiction, since S3 has
elements of odd order and A4 does not.

(4) (5 pts/part) Let L : K be a Galois extension with Galois group G and let α ∈ L. Define the norm and trace of
α respectively as

NL/K(α) =
∏
σ∈G

σ(α) and TrL/K(α) =
∑
σ∈G

σ(α).

(a) By showing that NL/K(α) and TrL/K(α) are fixed by G, prove that the norm and trace of α are both in
K.

(b) Prove that, for all α, β ∈ L, we have

NL/K(αβ) = NL/K(α)NL/K(β) and TrL/K(α+ β) = TrL/K(α) + TrL/K(β).
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(c) Let L = K(
√
D) be a quadratic extension of K. Prove that NL/K(a+ b

√
D) = a2 −Db2 and TrL/K(a+

b
√
D) = 2a.

Solution:
(a) Let α ∈ L and let τ ∈ G. Then

τ(NL/K(α)) = τ

(∏
σ∈G

σ(α)

)
=
∏
σ∈G

τσ(α) =
∏
ρ∈G

ρ(α) = NL/K(α).

We also have

τ(TrL/K(α)) = τ

(∑
σ∈G

σ(α)

)
=
∑
σ∈G

τσ(α) =
∑
ρ∈G

ρ(α) = TrL/K(α).

Since τ is arbitrary, both the norm and the trace of α belong to the fixed field of G, so the norm and the
trace of α lie in K.

(b) Let α, β ∈ L. Then clearly

NL/K(αβ) =
∏
σ∈G

σ(αβ) =
∏
σ∈G

σ(α)σ(β) =
∏
σ∈G

σ(α)
∏
σ∈G

σ(β) = NL/K(α)NL/K(β).

We also have

TrL/K(α+ β) =
∑
σ∈G

σ(α+ β) =
∑
σ∈G

σ(α) + σ(β) =
∑
σ∈G

σ(α) +
∑
σ∈G

σ(β) = TrL/K(α) + TrL/K(β).

(c) If K(
√
D) is a quadratic extension of K, then there are two automorphisms in the Galois group determined

by
√
D 7→

√
D and

√
D 7→ −

√
D. Hence TrL/K(a + b

√
D) = (a + b

√
D) + (a − b

√
D) = 2a and

NL/K(a+ b
√
D) = (a+ b

√
D)(a− b

√
D) = a2 −Db2.

(5) (5 pts) The splitting field of x8 − 2 over Q is given by Q( 8
√
2, i) which is an extension of degree 16 over Q.

If ζ = e2πi/8, then every Q-automorphism of Q( 8
√
2, i) is determined by 8

√
2 7→ ζk 8

√
2 and i 7→ ±i, where

k ∈ {0, 1, . . . , 7}. Let σ be determined by 8
√
2 7→ ζ 8

√
2 and i 7→ i and let τ be determined by 8

√
2 7→ 8

√
2 and

i 7→ −i. The 16-element Galois group G is given by 〈σ, τ〉, where σ8 = τ2 = e and στ = τσ3. Below is a
subgroup lattice for G.
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The subfields are given by Q(
√
2), Q(i 4

√
2), Q(

√
2 i), Q(i), Q, Q((1+ i) 4

√
2), Q(i, 8

√
2), Q(ζ2 8

√
2), Q(ζ3 8

√
2),

Q((1 − i) 4
√
2), Q(i,

√
2), Q(i, 4

√
2), Q(ζ 8

√
2), Q( 4

√
2), Q( 8

√
2). Construct the subfield lattice. No explanation

required.



Solution:
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