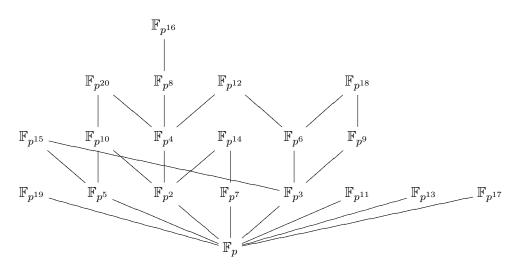
Math 306, Spring 2012 Homework 10 Solutions

(1) (5 pts) Let p be prime. Construct a tree containing all the fields \mathbb{F}_{p^n} for $n \in \{1, 2, ..., 20\}$ and depicting the subfield structure.

Solution:



- (2) (5 pts) For any prime p, prove that there is an irreducible polynomial f ∈ Z_p[x] whose Galois group is Z_p. Solution: Let p be a prime. Consider the polynomial f = x^p - x + 1 in Z_p[x]. We know that f is irreducible and, if α is a root of f, then Z_p(α) is a splitting field of f. The index [Z_p(α): Z_p] = p. Since f is separable, the extension is Galois, so the fundamental theorem gives Gal(Z_p(α)/Z_p) ≅ Z_p.
- (3) (5 pts) Suppose that $f \in \mathbb{Z}[x]$ is an irreducible quartic whose splitting field L has Galois group S_4 . Let θ be a root of f and let $M = \mathbb{Q}(\theta)$. Prove that $M : \mathbb{Q}$ has degree 4 with no proper subfields. (Hint: Your proof should be by contradiction. You will want to identify the sole subgroup of S_4 with 12 elements, and the 4 subgroups of S_4 with 6 elements.)

Solution: The only subgroup of order 12 is A_4 and the 4 subgroups of order 6 are the ones isomorphic to S_3 . Since θ is a root of an irreducible quartic, then clearly $\mathbb{Q}(\theta)$: \mathbb{Q} has degree 4, so $[M:\mathbb{Q}] = 4$. Now suppose that there is an intermediate subfield N of $M:\mathbb{Q}$. Then we have a tower of fields $\mathbb{Q} \subseteq N \subseteq M \subseteq L$. Since $L:\mathbb{Q}$ is Galois, we can take apply the map * to this sequence to give $S_4 \geq N^* \geq M^* \geq \langle e \rangle$. By the Fundamental Theorem, we must have $[S_4:N^*] = [N:\mathbb{Q}] = 2$, so $N = A_4$. Also $[M^*:N^*] = [N:M] = 2$, so $|M^*| = 6$, i.e. $M^* \cong S_3$. Since $M^* \leq N^*$, we have a copy of S_3 sitting inside A_4 , which is a contradiction, since S_3 has elements of odd order and A_4 does not.

(4) (5 pts/part) Let L: K be a Galois extension with Galois group G and let $\alpha \in L$. Define the norm and trace of α respectively as

$$\mathsf{N}_{L/K}(lpha) = \prod_{\sigma \in G} \sigma(lpha)$$
 and $\mathsf{Tr}_{L/K}(lpha) = \sum_{\sigma \in G} \sigma(lpha).$

- (a) By showing that $N_{L/K}(\alpha)$ and $Tr_{L/K}(\alpha)$ are fixed by G, prove that the norm and trace of α are both in K.
- (b) Prove that, for all $\alpha, \beta \in L$, we have

$$\mathsf{N}_{L/K}(\alpha\beta) = \mathsf{N}_{L/K}(\alpha)\mathsf{N}_{L/K}(\beta) \text{ and } \mathsf{Tr}_{L/K}(\alpha+\beta) = \mathsf{Tr}_{L/K}(\alpha) + \mathsf{Tr}_{L/K}(\beta).$$

(c) Let $L = K(\sqrt{D})$ be a quadratic extension of K. Prove that $N_{L/K}(a + b\sqrt{D}) = a^2 - Db^2$ and $\text{Tr}_{L/K}(a + b\sqrt{D}) = 2a$.

Solution:

(a) Let $\alpha \in L$ and let $\tau \in G$. Then

$$\tau(\mathsf{N}_{L/K}(\alpha)) = \tau\left(\prod_{\sigma \in G} \sigma(\alpha)\right) = \prod_{\sigma \in G} \tau\sigma(\alpha) = \prod_{\rho \in G} \rho(\alpha) = \mathsf{N}_{L/K}(\alpha).$$

We also have

$$\tau(\mathrm{Tr}_{L/K}(\alpha)) = \tau\left(\sum_{\sigma \in G} \sigma(\alpha)\right) = \sum_{\sigma \in G} \tau \sigma(\alpha) = \sum_{\rho \in G} \rho(\alpha) = \mathrm{Tr}_{L/K}(\alpha).$$

Since τ is arbitrary, both the norm and the trace of α belong to the fixed field of G, so the norm and the trace of α lie in K.

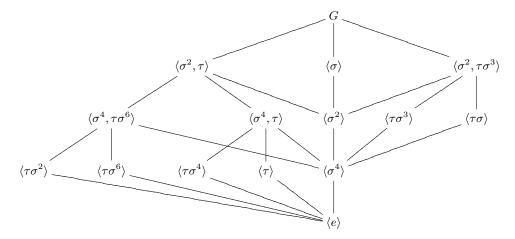
(b) Let $\alpha, \beta \in L$. Then clearly

$$\mathsf{N}_{L/K}(\alpha\beta) = \prod_{\sigma \in G} \sigma(\alpha\beta) = \prod_{\sigma \in G} \sigma(\alpha)\sigma(\beta) = \prod_{\sigma \in G} \sigma(\alpha) \prod_{\sigma \in G} \sigma(\beta) = \mathsf{N}_{L/K}(\alpha)\mathsf{N}_{L/K}(\beta).$$

We also have

$$\mathsf{Tr}_{L/K}(\alpha+\beta) = \sum_{\sigma\in G} \sigma(\alpha+\beta) = \sum_{\sigma\in G} \sigma(\alpha) + \sigma(\beta) = \sum_{\sigma\in G} \sigma(\alpha) + \sum_{\sigma\in G} \sigma(\beta) = \mathsf{Tr}_{L/K}(\alpha) + \mathsf{Tr}_{L/K}(\beta).$$

- (c) If $K(\sqrt{D})$ is a quadratic extension of K, then there are two automorphisms in the Galois group determined by $\sqrt{D} \mapsto \sqrt{D}$ and $\sqrt{D} \mapsto -\sqrt{D}$. Hence $\operatorname{Tr}_{L/K}(a + b\sqrt{D}) = (a + b\sqrt{D}) + (a - b\sqrt{D}) = 2a$ and $\operatorname{N}_{L/K}(a + b\sqrt{D}) = (a + b\sqrt{D})(a - b\sqrt{D}) = a^2 - Db^2$.
- (5) (5 pts) The splitting field of $x^8 2$ over \mathbb{Q} is given by $\mathbb{Q}(\sqrt[8]{2}, i)$ which is an extension of degree 16 over \mathbb{Q} . If $\zeta = e^{2\pi i/8}$, then every \mathbb{Q} -automorphism of $\mathbb{Q}(\sqrt[8]{2}, i)$ is determined by $\sqrt[8]{2} \mapsto \zeta^k \sqrt[8]{2}$ and $i \mapsto \pm i$, where $k \in \{0, 1, \dots, 7\}$. Let σ be determined by $\sqrt[8]{2} \mapsto \zeta \sqrt[8]{2}$ and $i \mapsto i$ and let τ be determined by $\sqrt[8]{2} \mapsto \sqrt[8]{2}$ and $i \mapsto -i$. The 16-element Galois group G is given by $\langle \sigma, \tau \rangle$, where $\sigma^8 = \tau^2 = e$ and $\sigma\tau = \tau\sigma^3$. Below is a subgroup lattice for G.



The subfields are given by $\mathbb{Q}(\sqrt{2})$, $\mathbb{Q}(i\sqrt[4]{2})$, $\mathbb{Q}(\sqrt{2}i)$, $\mathbb{Q}(i)$, \mathbb{Q} , $\mathbb{Q}((1+i)\sqrt[4]{2})$, $\mathbb{Q}(i,\sqrt[8]{2})$, $\mathbb{Q}(\zeta^2\sqrt[8]{2})$, $\mathbb{Q}(\zeta^3\sqrt[8]{2})$, $\mathbb{Q}((1-i)\sqrt[4]{2})$, $\mathbb{Q}(i,\sqrt{2})$, $\mathbb{Q}(i,\sqrt{2})$, $\mathbb{Q}(\sqrt[4]{2})$, $\mathbb{Q}(\sqrt[4]{2})$, $\mathbb{Q}(\sqrt[8]{2})$. Construct the subfield lattice. No explanation required.

