Math 306, Spring 2012 First Midterm Exam Solutions

 Name:
 Student ID:

Directions: Check that your test has 9 pages, including this one and the blank one on the bottom (which you can use as scratch paper or to continue writing out a solution if you run out room elsewhere). Please **show all your work**. Write neatly: solutions deemed illegible will not be graded, so no credit will be given. This exam is closed book, closed notes. You have 70 minutes. Good luck!

1. (16 points)
2. (5 points)
3. (5 points)
4. (5 points)
5. (7 points)
6. (8 points)
7. (9 points)
Total (out of 55):
Curved score (out of 100):
Letter grade:

- 1. (2 pts each) Give examples of the following.
 - (a) An integral domain which is not a field.

```
Solution: \mathbb{Z}
```

(b) An infinite ring which is not an integral domain.

Solution: $\mathbb{Z} \times \mathbb{Z}$

(c) A unique factorization domain that is not a principal ideal domain.

Solution: $\mathbb{Z}[x]$

(d) A field of order 8.

Solution: $\mathbb{Z}_2[x]/(x^3 + x + 1)$

(e) A cubic polynomial in $\mathbb{Z}[x]$ that is irreducible by Eisenstein Criterion.

Solution: $x^3 - 2$

(f) A quadratic polynomial in $\mathbb{Z}_5[x]$ that is irreducible.

Solution: $x^2 + x + 1$

(g) A transcendental field extension L: K.

Solution: \mathbb{C} : \mathbb{Q}

(h) A field L such that $[L: \mathbb{Q}(\pi)] = 2$.

Solution: $\mathbb{Q}(\sqrt{\pi})$

2. (5 pts) Let K be a subfield of \mathbb{C} . Let α be algebraic over K with minimal polynomial m. Show that there is an isomorphism

$$K[x]/(m) \cong K(\alpha).$$

Please be sure to verify that your isomorphism is well-defined. (Note that another way to do this is to exhibit a surjective homomorphism from K[x] to $K(\alpha)$ whose kernel is (m).)

Solution: This was outlined in class, but here are the details: The isomorphism, call it ϕ , is given by $\phi([p(x)]) = p(\alpha)$. To see that this is well-defined, suppose p(x) and q(x) are both representatives of the same class in K[x]/(m). This means that they differ by an element of the ideal (m), i.e.

$$p(x) = q(x) + r(x)m(x)$$

where r(x) is some polynomial over K. But then

$$p(\alpha) = q(\alpha) + r(\alpha)m(\alpha) = q(\alpha)$$

because $m(\alpha) = 0$.

Also, ϕ is clearly a homomorphism since

$$\begin{split} \phi(p(x)+r(x)) &= p(\alpha)+r(\alpha) = \phi(p(x))+\phi(r(x))\\ \phi(p(x)r(x)) &= p(\alpha)r(\alpha) = \phi(p(x))\phi(r(x)). \end{split}$$

For injectivity, suppose $[p(x)] \neq [r(x)]$. Then it must be that $p(\alpha) \neq r(\alpha)$ because otherwise it would follow that $p(\alpha) - r(\alpha) = 0 = m(\alpha)$ or $p(\alpha) = m(\alpha) + r(\alpha)$, which means that [p(x)] = [r(x)]. For surjectivity, given $p(\alpha) \in K(\alpha)$, we have $\phi([p(x)]) = p(\alpha)$. 3. (5 pts) Determine whether the polynomial $f(x) = \frac{2}{9}x^5 + \frac{5}{3}x^4 + x^3 + \frac{1}{3}$ is reducible over \mathbb{Q} .

Solution: The given polynomial f(x) is reducible if and only if $9f(x) = 2x^5 + 15x^4 + 9x^3 + 3$ is. However, 9f(x) is irreducible by Eisenstein criterion with p = 3.

4. (5 pts) List all the irreducible monic quadratic polynomials in $\mathbb{Z}_2[x]$. Justify your answer.

Solution: All possible monic quadratic polynomials over $\mathbb{Z}_2[x]$ are x^2 , $x^2 + x$, $x^2 + 1$, and $x^2 + x + 1$. The first two are clearly reducible. The third has 1 as a zero and it factors as (x + 1)(x + 1). The last is the only one that is irreducible since, if it factored as (x + a)(x + b), we would have to have a + b = 1 and ab = 0 but this system has no solutions in \mathbb{Z}_2 .

5. (a) (4 pts) Show directly that the polynomial $f = x^4 + x^3 + x^2 + x + 1$ is irreducible over \mathbb{Q} . Do not use general facts we know from class about polynomials of this form.

Solution: See notes from class for proof of why $x^{p-1} + x^{p-2} + \cdots + x + 1$ is irreducible over \mathbb{Q} for any prime p and let p = 5.

(b) (3 pts) Find $\alpha \in \mathbb{C}$ such that f is the minimal polynomial for α . (Hint: You should be able to just say what α is without any work.) What subgroup of \mathbb{C} does α generate?

Solution: Any fifth primitive root of unity is a root of this polynomial, so for example, $\alpha = e^{2\pi i/5}$ works. This α generates the group of fifth roots of unity.

- 6. (4 pts each) Let p and q be distinct primes in \mathbb{Z} .
 - (a) Prove that $\mathbb{Q}(\sqrt{p},\sqrt{q})$ is a simple extension of \mathbb{Q} .

Solution: This was a homework problem.

(b) Prove that $\alpha = \sqrt{p} + \sqrt{q}$ is algebraic over \mathbb{Q} by exhibiting (with justification) an appropriate quartic polynomial in $\mathbb{Q}[x]$ with α as a root.

Solution: This was a homework problem.

- 7. Let α and β be complex numbers, and let \mathbb{A} be the collection of algebraic numbers over \mathbb{Q} . Do not assume in this problem that \mathbb{A} is a field.
 - (a) (4 pts) Prove that, if α and β belong to \mathbb{A} , then $\alpha + \beta$ and $\alpha\beta$ both belong to \mathbb{A} .

Solution: (This is essentially a problem from the review exercises.) Certainly we know that $\mathbb{Q}(\alpha, \beta)$: \mathbb{Q} is a finite extension, since both α and β are algebraic over \mathbb{Q} . Now $\alpha\beta$ and $\alpha + \beta$ both lie in $\mathbb{Q}(\alpha, \beta)$, so $\mathbb{Q}(\alpha\beta) \subseteq \mathbb{Q}(\alpha, \beta)$ and $\mathbb{Q}(\alpha + \beta) \subseteq \mathbb{Q}(\alpha, \beta)$. Therefore by the Tower Law, we conclude that both $\mathbb{Q}(\alpha\beta)$: \mathbb{Q} and $\mathbb{Q}(\alpha + \beta)$: \mathbb{Q} are finite, so $\alpha\beta$ and $\alpha + \beta$ are both algebraic over \mathbb{Q} .

(b) (5 pts) If $\beta \in \mathbb{A}$ is nonzero, let $f = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} + x^n$ be its minimum polynomial over \mathbb{Q} . Prove that $\beta^{-1} \in \mathbb{A}$ by explicitly finding a monic polynomial in $\mathbb{Q}[x]$ which has β^{-1} as a root.

Solution: First note that c_0 is nonzero, for otherwise f would be reducible. Now $c_0 + c_1\beta + \cdots + c_{n-1}\beta^{n-1} + \beta^n = 0$, so

$$0 = c_0\beta^{-n} + c_1\beta^{-n+1} + \dots + c_{n-1}\beta^{-1} + 1 = c_0(\beta^{-1})^n + c_1(\beta^{-1})^{n-1} + \dots + c_{n-1}\beta^{-1} + 1 = 0.$$

Since $c_0 \neq 0$, we can write

$$0 = (\beta^{-1})^n + \frac{c_1}{c_0} (\beta^{-1})^{n-1} + \dots + \frac{c_{n-1}}{c_0} \beta^{-1} + \frac{1}{c_0}.$$

Hence

$$x^{n} + \frac{c_{1}}{c_{0}}x^{n-1} + \dots + \frac{c_{n-1}}{c_{0}}x + \frac{1}{c_{0}}$$

is the polynomial that we want.