Math 306, Spring 2012 Midterm 2 Review Solutions

- (1) Determine the splitting field and degree over \mathbb{Q} for the following polynomials.
 - (a) $x^4 + x^2 + 1$
 - (b) $x^4 + 4$
 - (c) $x^6 + x^3 + 1$
 - (d) $x^6 + 1$

Solution:

- (a) We have $x^2 = \frac{-1\pm\sqrt{-3}}{2} = e^{2\pi i/3}$ or $e^{4\pi i/3}$. Hence $x = e^{\pi i/3}$, $e^{2\pi i/3}$, $e^{4\pi i/3}$ or $e^{5\pi i/3}$. Therefore the splitting field is $\mathbb{Q}(e^{\pi i/3}) = \mathbb{Q}(i\sqrt{3})$, so the degree is 2.
- (b) We have $x^4 = 4e^{\pi i}$, $4e^{3\pi i}$, $4e^{5\pi i}$ or $4e^{7\pi i}$, so $x = \sqrt{2}e^{\pi i/4}$, $\sqrt{2}e^{3\pi i/4}$, $\sqrt{2}e^{5\pi i/4}$ or $\sqrt{2}e^{7\pi i/4}$. But each of these is of the form $\pm 1 \pm i$, so the splitting field is $\mathbb{Q}(i)$, which has degree 2 over \mathbb{Q} .
- (c) Notice that $(x^6 + x^3 + 1)(x^3 1) = x^9 1$, so $\mathbb{Q}(e^{2\pi i/9})$ is the splitting field. The polynomial $x^6 + x^3 + 1$ is irreducible over \mathbb{Q} (plug in x+1 for x) with root $e^{2\pi i/9}$. Since $e^{2\pi i/9}$ generates all the roots of x^9-1 , it must generate all the roots of $x^6 + x^3 + 1$. So the degree of the extension is 6.
- (d) The splitting field is $\mathbb{Q}(e^{\pi i/6}) = \mathbb{Q}\left(\frac{\sqrt{3}}{2} + \frac{i}{2}\right) = \mathbb{Q}(\sqrt{3} + i) = \mathbb{Q}(\sqrt{3}, i)$, which has degree 4 over \mathbb{Q} .

(2) Let K be a field.

- (a) Let $a, b \in K$ and $a \neq 0$. Consider the map $\phi: K[t] \to K[t]$ defined by $\phi(f) = f(at + b)$. Prove that ϕ is a K-automorphism of K[t].
- (b) Conversely, let ϕ be a K-automorphism of K[t]. Prove that there are $a, b \in K$ with $a \neq 0$ such that $\phi(f) = f(at + b)$. (Hint: Show that $\deg \phi(t)$ must be 1 by contradiction.)

Solution:

- (a) Clearly ϕ has an inverse $\psi \colon K[t] \to K[t]$ defined by $\psi(g) = g(\frac{t-b}{a})$, so ϕ is bijective. Also, for all $f, g \in K[t]$, we have $\phi(fg) = (fg)(at + b) = f(at + b)g(at + b) = \phi(f)\phi(g)$ and $\phi(f + g) = (f + g)(at + b) = f(at + b)g(at + b) = \phi(f)\phi(g)$ $f(at+b) + q(at+b) = \phi(f) + \phi(q).$
- (b) Suppose that ϕ is a K-automorphism of K[t]. Let $n = \deg \phi(t)$. If $n \leq 0$, then ϕ is not surjective. If $n \geq 2$, then $\deg \phi(g) \neq 1$ for all $g \in K[t]$. Therefore ϕ is not surjective. Therefore $\phi(t)$ has degree 1, i.e. $\phi(t) = at + b$ for some $a, b \in K$ and $a \neq 0$. The map ϕ is determined by $t \mapsto at + b$. In fact $\phi(f) = f(at+b)$ for all $f \in K[t]$, which was shown in (a) to be a K-automorphism.
- (3) Consider the extension K: F and let $\phi: K \to K'$ be an isomorphism. Suppose that $\phi(F) = F'$.
 - (a) If $\sigma \in \text{Gal}(K/F)$, prove that $\phi \sigma \phi^{-1}$ lies in Gal(K'/F').
 - (b) Prove that the map ψ : Gal $(K/F) \rightarrow$ Gal(K'/F'), defined by $\psi(\sigma) = \phi \sigma \phi^{-1}$, is a group isomorphism.
 - Solution:
 - (a) Clearly $\phi \sigma \phi^{-1}$ is a map from K' to K'. Since ϕ and σ are both isomorphisms, then $\phi \sigma \phi^{-1}$ is also an isomorphism. Let $a \in F'$. Then $\phi^{-1}(a) \in F$, so it is fixed by σ . Therefore $\phi \sigma \phi^{-1}(a) = \phi(\phi^{-1}(a)) = a$, so $\phi \sigma \phi^{-1}$ fixes F' and is therefore an F'-automorphism of K'.
 - (b) Clearly, for all $\sigma, \rho \in \text{Gal}(L/K)$, we have

$$\psi(\sigma\rho) = \phi\sigma\rho\phi^{-1} = \phi\sigma\phi^{-1}\phi\rho\phi^{-1} = \psi(\sigma)\psi(\rho).$$

Showing this is a bijection is not difficult.

- (4) (a) Suppose that char $K = p \neq 0$. Consider the map $\phi: K \to K$ given by $\phi(\alpha) = \alpha^p$ for all $\alpha \in K$. Prove that ϕ is a ring monomorphism. This mapping is called the *Frobenius monomorphism*.
 - (b) Suppose that char K = p > 0. Prove that K is perfect (i.e. every polynomial in K[x] is separable) iff the Frobenius monomorphism is an automorphism.

Solution:

- (a) For all $a, b \in K$, we have $\phi(ab) = (ab)^p = a^p b^p = \phi(a)\phi(b)$ and $\phi(a+b) = (a+b)^p = a^p + b^p = \phi(a) + \phi(b)$. If $\phi(a) = 0$, then $a^p = 0$. Since K is an integral domain, we have a = 0, so ϕ is injective.
- (b) Suppose that K is perfect but the Frobenius monomorphism is not an automorphism, i.e. it is not surjective. Then there is $b \in K$ such that b is not a p-th power. Let g = x - b, which is irreducible. Then $f = x^p - b$ is irreducible (since $\alpha^p \neq b$ for any α , this means that $x^p - b = 0$ has no solutions). However, we know that Df = 0, so f is inseparable (this was a homework problem), contradicting the fact that K is perfect. Therefore the Frobenius monomorphism is an automorphism. Conversely, suppose that K is not perfect. Then there is an irreducible inseparable

$$f = a_0 + a_1 x^p + \dots + a_n x^{np}$$

where $g = a_0 + a_1x + \cdots + a_nx^n$ is irreducible and some a_i is not a *p*-th power. Therefore the Frobenius monomorphism is not surjective, and thus is not an automorphism.

(5) Let $n \in \mathbb{Z}_{\geq 3}$ and let $f = x^n - 1 \in \mathbb{Q}[x]$. If L is the splitting field for n, prove that $\operatorname{Gal}(L/\mathbb{Q})$ is abelian. (Hint: show that an element $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ must send $e^{2\pi i k/n}$ to $e^{2\pi i k/n}$ for some $k \in \mathbb{Z}$ and σ is determined by $e^{2\pi i k/n} \mapsto e^{2\pi i k/n}$.)

Solution: Let $\sigma, \rho \in Gal(L/\mathbb{Q})$. Then σ and ρ are determined by

$$e^{2\pi i/n}\mapsto e^{2\pi i j/n}$$
 and $e^{2\pi i/n}\mapsto e^{2\pi i k/n}$,

respectively. This is because each root of unity has to go to another root of unity. I.e. suppose $\sigma(\zeta) = c$. Then, since σ fixes \mathbb{Q} , we have

$$1 = \sigma(1) = \sigma(\zeta^n) = \sigma(\zeta)^n = c^n,$$

and so $c = \sqrt[n]{1}$. Same for ρ . In addition, it suffices to specify each automorphism on just ζ since where all other roots of unity are sent is determined by this (as they are all powers of ζ).

Then

$$\sigma(\rho(e^{2\pi i/n})) = \sigma(e^{2\pi ik/n}) = e^{2\pi ijk/n} \text{ and } \rho(\sigma(e^{2\pi i/n})) = \sigma(e^{2\pi ij/n}) = e^{2\pi ijk/n}.$$

Since all elements of $\operatorname{Gal}(L/\mathbb{Q})$ are determined by $e^{2\pi i/n}$, it follows that $\sigma \circ \rho = \rho \circ \sigma$ for all automorphisms σ and ρ , so $\operatorname{Gal}(L/\mathbb{Q})$ is abelian.

(6) Let L: K be a field extension. Let H be a subgroup of Gal(L/K) and M be an intermediate subfield. Prove that H ⊆ H^{†*}.

Solution: Let $h \in H$ and let $a \in H^{\dagger}$. Then h(a) = a. Therefore h fixes everything in H^{\dagger} , so $h \in H^{\dagger *}$.

- (7) For each of the following extensions L: K, find (i) Gal(L/K), (ii) H^{\dagger} for all the subgroups H of Gal(L/K),
 - (a) $\mathbb{Q}(\sqrt{1+\sqrt{3}}):\mathbb{Q}$
 - (b) $L: \mathbb{Z}_2$, where L is the splitting field of $x^2 + x + 1 \in \mathbb{Z}_2[x]$
 - (c) $L: \mathbb{Z}_5$, where L is the splitting field of $(x^2 2)(x^2 3) \in \mathbb{Z}_5[x]$
 - (d) $L: \mathbb{Z}_7$, where L is the splitting field of $x^3 5 \in \mathbb{Z}_7[x]$
 - (e) $L: \mathbb{Z}_5$, where L is the splitting field of $(x^5 t)(x^5 u) \in \mathbb{Z}_5(t, u)[x]$, where t is transcendental over \mathbb{Z}_5 and u is transcendental over $\mathbb{Z}_5(t)$

Solution:

- (i) Let ω = √1 + √3. Then it suffices to see where an eutomorphism sends ω and √3 since those generate all the elements that are in Q(ω) but not in Q. It is not hard to see that an automorphism of Q(ω) must send ω to ω or to -ω (the only other option is ω → √3 but then we would have ω² = 1 + √3 → 3 and an irrational number cannot map to a rational; otherwise our map is not 1-1 since 3 already maps to 3). But it is also not hard to see that both σ₁: ω ↦ ω and σ₂: ω ↦ -ω must map √3 to itself. Hence G = Gal(L/K) ≅ Z₂, consisting of σ₁ and σ₂.
 - (ii) We have $\langle e \rangle^{\dagger} = \mathbb{Q}(\omega)$ and $G^{\dagger} = \mathbb{Q}(\sqrt{3})$.

- (i) If ζ is a root of $x^2 + x + 1$, then $\zeta + 1$ is the other root. Hence $L = \mathbb{Z}_2(\zeta)$ and $G \cong \mathbb{Z}_2$. (b)
- (i) We have $\langle e \rangle^{\dagger} = \mathbb{Z}_2(\zeta)$ and $G^{\dagger} = \mathbb{Z}_2$. (i) Let ζ be a root of $x^2 2$. Then the roots of $(x^2 2)(x^2 3)$ are ζ , $-\zeta$, 2ζ and -2ζ (2ζ is a root since $(\zeta^2 2)(\zeta^2 3) = \zeta^4 5\zeta^2 + 6 = (2\zeta)^4 + 1 = 0$ or $\zeta^4 + 1 0$ or $\zeta^4 = -1 = 4$; but also $(2\zeta)^4 = 16\zeta^4 = \zeta^4 = 4$). Hence $L = \mathbb{Z}_2(\zeta)$ and $G \cong \mathbb{Z}_2$. (c)
 - (ii) We have $\langle e \rangle^{\dagger} = \mathbb{Z}_2(\zeta)$ and $G^{\dagger} = \mathbb{Z}_2$.
- (i) Let ζ be a root of $x^3 5$. Then the other roots are 2ζ and 4ζ . Hence $L = \mathbb{Z}_7(\zeta)$ and G has 3 (d) elements, i.e. $G \cong \mathbb{Z}_3$.
 - (ii) We have $\langle e \rangle^{\dagger} = \mathbb{Z}_7(\zeta)$ and $G^{\dagger} = \mathbb{Z}_7$.
- (i) There is only one automorphism in Gal (L/\mathbb{Z}_5) , so $G = \{e\}$. Here $L = \mathbb{Z}_5(\gamma, \delta)$, where γ is a root of (e) $x^5 - t$ and δ is a root of $x^5 - u$.
 - (ii) We have $\langle e \rangle^{\dagger} = L$.