
Math 306, Spring 2012

Midterm 2 Review Solutions

(1) Determine the splitting field and degree over Q for the following polynomials.
(a) x4 + x2 + 1
(b) x4 + 4
(c) x6 + x3 + 1
(d) x6 + 1

Solution:
(a) We have x2 = −1±

√
−3

2 = e2πi/3 or e4πi/3. Hence x = eπi/3, e2πi/3, e4πi/3 or e5πi/3. Therefore the splitting

field is Q(eπi/3) = Q(i
√
3), so the degree is 2.

(b) We have x4 = 4eπi, 4e3πi, 4e5πi or 4e7πi, so x =
√
2eπi/4,

√
2e3πi/4,

√
2e5πi/4 or

√
2e7πi/4. But each of

these is of the form ±1± i, so the splitting field is Q(i), which has degree 2 over Q.
(c) Notice that (x6 +x3 +1)(x3− 1) = x9− 1, so Q(e2πi/9) is the splitting field. The polynomial x6 +x3 +1

is irreducible over Q (plug in x+ 1 for x) with root e2πi/9. Since e2πi/9 generates all the roots of x9 − 1,
it must generate all the roots of x6 + x3 + 1. So the degree of the extension is 6.

(d) The splitting field is Q(eπi/6) = Q
(√

3
2 + i

2

)
= Q(

√
3 + i) = Q(

√
3, i), which has degree 4 over Q.

(2) Let K be a field.
(a) Let a, b ∈ K and a 6= 0. Consider the map φ : K[t]→ K[t] defined by φ(f) = f(at+ b). Prove that φ is

a K-automorphism of K[t].
(b) Conversely, let φ be a K-automorphism of K[t]. Prove that there are a, b ∈ K with a 6= 0 such that

φ(f) = f(at+ b). (Hint: Show that deg φ(t) must be 1 by contradiction.)

Solution:
(a) Clearly φ has an inverse ψ : K[t]→ K[t] defined by ψ(g) = g( t−ba ), so φ is bijective. Also, for all f, g ∈ K[t],

we have φ(fg) = (fg)(at + b) = f(at + b) g(at + b) = φ(f)φ(g) and φ(f + g) = (f + g)(at + b) =
f(at+ b) + g(at+ b) = φ(f) + φ(g).

(b) Suppose that φ is a K-automorphism of K[t]. Let n = deg φ(t). If n ≤ 0, then φ is not surjective. If
n ≥ 2, then deg φ(g) 6= 1 for all g ∈ K[t]. Therefore φ is not surjective. Therefore φ(t) has degree
1, i.e. φ(t) = at + b for some a, b ∈ K and a 6= 0. The map φ is determined by t 7→ at + b. In fact
φ(f) = f(at+ b) for all f ∈ K[t], which was shown in (a) to be a K-automorphism.

(3) Consider the extension K : F and let φ : K → K ′ be an isomorphism. Suppose that φ(F ) = F ′.
(a) If σ ∈ Gal(K/F ), prove that φσφ−1 lies in Gal(K ′/F ′).
(b) Prove that the map ψ : Gal(K/F )→ Gal(K ′/F ′), defined by ψ(σ) = φσφ−1, is a group isomorphism.

Solution:
(a) Clearly φσφ−1 is a map from K ′ to K ′. Since φ and σ are both isomorphisms, then φσφ−1 is also an

isomorphism. Let a ∈ F ′. Then φ−1(a) ∈ F , so it is fixed by σ. Therefore φσφ−1(a) = φ(φ−1(a)) = a,
so φσφ−1 fixes F ′ and is therefore an F ′-automorphism of K ′.

(b) Clearly, for all σ, ρ ∈ Gal(L/K), we have

ψ(σρ) = φσρφ−1 = φσφ−1φρφ−1 = ψ(σ)ψ(ρ).

Showing this is a bijection is not difficult.

(4) (a) Suppose that charK = p 6= 0. Consider the map φ : K → K given by φ(α) = αp for all α ∈ K. Prove
that φ is a ring monomorphism. This mapping is called the Frobenius monomorphism.

(b) Suppose that charK = p > 0. Prove that K is perfect (i.e. every polynomial in K[x] is separable) iff the
Frobenius monomorphism is an automorphism.



Solution:
(a) For all a, b ∈ K, we have φ(ab) = (ab)p = apbp = φ(a)φ(b) and φ(a+b) = (a+b)p = ap+bp = φ(a)+φ(b).

If φ(a) = 0, then ap = 0. Since K is an integral domain, we have a = 0, so φ is injective.
(b) Suppose that K is perfect but the Frobenius monomorphism is not an automorphism, i.e. it is not surjective.

Then there is b ∈ K such that b is not a p-th power. Let g = x− b, which is irreducible. Then f = xp− b
is irreducible (since αp 6= b for any α, this means that xp − b = 0 has no solutions). However, we know
that Df = 0, so f is inseparable (this was a homework problem), contradicting the fact that K is perfect.
Therefore the Frobenius monomorphism is an automorphism. Conversely, suppose that K is not perfect.
Then there is an irreducible inseparable

f = a0 + a1x
p + · · ·+ anx

np

where g = a0 + a1x+ · · ·+ anx
n is irreducible and some ai is not a p-th power. Therefore the Frobenius

monomorphism is not surjective, and thus is not an automorphism.

(5) Let n ∈ Z≥3 and let f = xn − 1 ∈ Q[x]. If L is the splitting field for n, prove that Gal(L/Q) is abelian.

(Hint: show that an element σ ∈ Gal(L/Q) must send e2πi/n to e2πik/n for some k ∈ Z and σ is determined
by e2πi/n 7→ e2πik/n.)

Solution: Let σ, ρ ∈ Gal(L/Q). Then σ and ρ are determined by

e2πi/n 7→ e2πij/n and e2πi/n 7→ e2πik/n,

respectively. This is because each root of unity has to go to another root of unity. I.e. suppose σ(ζ) = c. Then,
since σ fixes Q, we have

1 = σ(1) = σ(ζn) = σ(ζ)n = cn,

and so c = n
√
1. Same for ρ. In addition, it suffices to specify each automorphism on just ζ since where all

other roots of unity are sent is determined by this (as they are all powers of ζ).
Then

σ(ρ(e2πi/n)) = σ(e2πik/n) = e2πijk/n and ρ(σ(e2πi/n)) = σ(e2πij/n) = e2πijk/n.

Since all elements of Gal(L/Q) are determined by e2πi/n, it follows that σ ◦ ρ = ρ ◦ σ for all automorphisms σ
and ρ, so Gal(L/Q) is abelian.

(6) Let L : K be a field extension. Let H be a subgroup of Gal(L/K) and M be an intermediate subfield. Prove
that H ⊆ H†∗.
Solution: Let h ∈ H and let a ∈ H†. Then h(a) = a. Therefore h fixes everything in H†, so h ∈ H†∗.

(7) For each of the following extensions L : K, find (i) Gal(L/K), (ii) H† for all the subgroups H of Gal(L/K),

(a) Q(
√
1 +
√
3) : Q

(b) L : Z2, where L is the splitting field of x2 + x+ 1 ∈ Z2[x]
(c) L : Z5, where L is the splitting field of (x2 − 2)(x2 − 3) ∈ Z5[x]
(d) L : Z7, where L is the splitting field of x3 − 5 ∈ Z7[x]
(e) L : Z5, where L is the splitting field of (x5 − t)(x5 − u) ∈ Z5(t, u)[x], where t is transcendental over Z5

and u is transcendental over Z5(t)

Solution:
(a) (i) Let ω =

√
1 +
√
3. Then it suffices to see where an eutomorphism sends ω and

√
3 since those

generate all the elements that are in Q(ω) but not in Q. It is not hard to see that an automorphism
of Q(ω) must send ω to ω or to −ω (the only other option is ω →

√
3 but then we would have

ω2 = 1+
√
3→ 3 and an irrational number cannot map to a rational; otherwise our map is not 1−1

since 3 already maps to 3). But it is also not hard to see that both σ1 : ω 7→ ω and σ2 : ω 7→ −ω
must map

√
3 to itself. Hence G = Gal(L/K) ∼= Z2, consisting of σ1 and σ2.

(ii) We have 〈e〉† = Q(ω) and G† = Q(
√
3).



(b) (i) If ζ is a root of x2 + x+ 1, then ζ + 1 is the other root. Hence L = Z2(ζ) and G ∼= Z2.
(ii) We have 〈e〉† = Z2(ζ) and G† = Z2.

(c) (i) Let ζ be a root of x2 − 2. Then the roots of (x2 − 2)(x2 − 3) are ζ, −ζ, 2ζ and −2ζ (2ζ is a root
since (ζ2 − 2)(ζ2 − 3) = ζ4 − 5ζ2 + 6 = (2ζ)4 + 1 = 0 or ζ4 + 1 − 0 or ζ4 = −1 = 4; but also
(2ζ)4 = 16ζ4 = ζ4 = 4). Hence L = Z2(ζ) and G ∼= Z2.

(ii) We have 〈e〉† = Z2(ζ) and G† = Z2.
(d) (i) Let ζ be a root of x3 − 5. Then the other roots are 2ζ and 4ζ. Hence L = Z7(ζ) and G has 3

elements, i.e. G ∼= Z3.
(ii) We have 〈e〉† = Z7(ζ) and G† = Z7.

(e) (i) There is only one automorphism in Gal(L/Z5), so G = {e}. Here L = Z5(γ, δ), where γ is a root of
x5 − t and δ is a root of x5 − u.

(ii) We have 〈e〉† = L.


