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Report on joint work with Sheel Ganatra

Proof of a conjecture (C., Schwarz, Cielebak - Latchev, Eliashberg)
from 2003 relating two topological field theories:

The string topology of a closed oriented manifold M,

The Floer - symplectic field theory of its cotangent bundle
T ∗M.
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Background

A symplectic structure on a 2n-dimensional manifold N is a closed,
nondegenerate 2-form, ω ∈ Ω2N.

For each x ∈ N
ωx : TxN × TxN → R

which satisfies

skew symmetry: ωx(u, v) = −ωx(v , u)

nondegeracy: ω(u, v) = 0 for all v ∈ TxM iff u = 0.

Example: (R2n, ω0), where ω0 =
∑n

i=1 dxi ∧ dyi .
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Define
Sp2n = GL(R2n, ω0)

That is, ψ ∈ GL2n(R) lies in Sp2n iff ψ∗ω0 = ω0.

Now let

J0 =

(
0n −In
In 0n

)
Then ψ ∈ Sp2n iff

ψT J0ψ = J0.

Recall that A ∈ GLn(C) iff A−1J0A = J0. It is now easy to verify
the following:

Sp2n ∩ O(2n) = Sp2n ∩ GLn(C) = O(2n) ∩ GLn(C) = U(n).
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Lemma

U(n) ⊂ Sp2n is a maximal compact subgroup, and Sp2n/U(n) is
contractible.

Corollary

Every symplectic manifold (N, ω) has an almost complex structure,
and the space of almost complex structure lifting its given
symplectic structure is contractible.

An almost complex structure J compatible with a symplectic
structure ω is one in which

TxN × TxN → R
(u, v)→ ωx(u, Jxv)

is a Riemannian metric.
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Important Example: Let Mn be closed, p : T ∗M → M its
cotangent bundle. For x ∈ M, u : TxM → R, define

α(x , u) : T(x ,u)(T ∗M)
Dp−−→ TxM

u−→ R

α ∈ Ω1(T ∗M) is the “Liouville 1-form”.

dα = ω ∈ Ω2(T ∗M) is symplectic.

If N ⊂ M is a submanifold, then its conormal bundle
cn(N) ⊂ T ∗M is a Lagrangian submanifold. (A Lagrangian
submanifold L of a symplectic manifold Q is defined by the
property that ω(u, v) = 0 for all u, v ∈ TxL.)
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Given an exact symplectic manifold (N2n, ω) with ω = dη, one can
define the Symplectic Floer homology, SH∗(N, ω). Its defined by
doing a type of infinite dimensional Morse theory on the free loop
space, LN.

Let L0N ⊂ LN be the path component consisting of null
homotopic loops. Consider the symplectic action functional

A : L0N → R

γ →
∫
D2

γ̃∗(ω)

where γ̃ : D2 → N is an extension (null homotopy) of γ : S1 → N.
This is well defined by Stokes’ theorem, since∫

D2

γ̃∗(ω) =

∫
S1

γ∗(η)

(Note if (N, ω) is not exact one can define A on the universal
cover of L0N.)
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One then perturbs A by a “periodic time dependent Hamiltonian”

H : R/Z× N → R

to get a functional

AH : L0N → R

γ →
∫
S1

γ∗η − H(t, γ(t))dt (1)

so that AH has non degenerate critical points.
If one chooses a compatible almost complex structure J, one has
an induced metric, which allows the definition of a Morse-type
chain complex (the “Floer complex”)

· · ·
∂q+1−−−→ Cq

∂q−→ Cq−1 → · · ·
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The boundary maps

∂[a] =
∑
b

na,b[b]

where na,b = #M(a, b) = gradient flow lines (counted with sign).

θ : R→ LN such that
dθ

dt
+∇JAH = 0.

(Recall the gradient ∇ depends on the metric, which in this case is
given by a choice of J.) If view θ : R× S1 → N with coordinates,
t ∈ R/Z, s ∈ R, then the gradient flow equation becomes the
perturbed Cauchy Riemann PDE:

∂sθ − J∂tθ − JXH(t, θ(t, s)) = 0.

where XH is the Hamiltonian vector field on S1 × N defined by

ω(XH(t, x), v) = −dH(t,x)(v)

“J-pseudoholomorphic cylinders”
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Now restrict to the case (N, ω) = (T ∗M, ω).

Theorem

(Viterbo, Abbondandolo-Schwarz, Salamon-Weber) If M is Spin,
then

SH∗(T ∗M, ω) ∼= H∗(LM).

(If M is not spin, one must use twisted coefficients.)
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Our goal is to relate two 2D open-closed topological field theories.
Both have open boundary conditions defined by closed, oriented
submanifolds {N ⊂ M}

              1)   String topology of M:   










        where










                                                             Chas -Sullivan pairing










              (Chas-Sullivan,   C.- Jones,   Godin,   Kupers)
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       2).  Floer symplectic field theory of T*M.   



















                  = "Lagrangian intersection Floer homology"

                   defined by a chain complex generated by intersection 

                    points,                        (if transverse)

                        boundary  homomorphisms defined by counting J-holomorphic 

                        disks,

                    

























                  Defined by counting J-holomorphic curves
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Theorem

(C., Ganatra) Given any field k, there are 2D open-closed, positive
boundary, topological field theories, SM and SympT∗M taking
values in Chain Complexes over k, such that

1 When one passes to homology they realize the above theories

2 There is a natural equivalence of chain complex valued field
theories, Φ : SympT∗M

'−→ SM .

Idea:
Use recent methods of classifying TFT’s:

Cobordism hypothesis of Lurie

Costello, Kontsevich-Vlassopolous
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Roughly: 2D “noncompact” (“positive boundary”) oriented
open-closed TFT’s are classified by “Calabi-Yau (A)-∞ categories.”

So we show: The string topology category SM defined by
Blumberg, C., Teleman is Calabi-Yau (actually “Yau-Calabi”) as is
the “Wrapped Fukaya category” W(T ∗M) defined by Seidel,
Fukaya (this part was proved by Ganatra in his thesis) and that

SM ' W(T ∗M)

as CY A∞-categories.
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What is a 2D open-closed TFT?
Let D = {N ⊂ M, N closed, oriented}. Such a field theory is a
monoidal functor Φ : Bordoc

D → ChainComplexes.
Bordoc

D is a category, enriched over chain complexes:
Objects: Closed, oriented 1-manifolds c , with the path components
of ∂c labelled by D.

λ

λ

λ

λ1

2

3

4
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Morphisms = C∗(Moc(c1, c2)) = chains on the moduli space of
oriented open-closed cobordisms:

λλ 12

3

4
5

6 7

λ

λ

λ
λ

λ

λ λ
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Let A be an (A∞) algebra over a field k . Consider its Hochschild
chains CH∗(A) ' A⊗L

A⊗Aop A. It is an (A∞) module over
E (∆) ' C∗(S1). The cyclic chains can be viewed as the homotopy
orbits CC∗(A) ' CH∗(A)⊗L

E(∆) k .

Definition

(Kontsevich, Soibelman) Suppose that A is compact (perfect as a
k-module). A Calabi-Yau (CY) structure is a map

τ̄ : CC∗(A)→ k

such that the composition

τ : A⊗L
A⊗Aop A ' CH∗(A)→ CC∗(A)

τ̄−→ k induces a pairing

A⊗ A→ k

that is homotopy nondegenerate in the sense that the adjoint
A→ A∗ is an equivalence of A-bimodules. “self duality”
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Theorem

(Kontsevich-Soibelman, generalizing Costello) A CY -algebra or
category A gives rise to a (left)-positive boundary open-closed field
theory FA with FA(S1) ' A⊗L

A⊗Aop A. The boundary values
(“D-branes”) of the field theory are D = Ob A. The value of F on
the interval with endpoints labeled by λ1, λ2 ∈ Ob A is given by
MorA(λ1, λ2). The value of FA on the open closed cobordism
below is given by the higher composition laws in A.
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Given an A∞-algebra or category A, let CC−∗ (A) be the “negative
cyclic chains” first defined by Goodwillie. These chains can be
viewed as the homotopy fixed points:

CC−∗ (A) ' RhomE(∆)(k,CH∗(A))

An A∞ algebra A is said to be “smooth” if is perfect as an
A-bimodule. That is, it is perfect as a left module over
A⊗ Aop.

Let A! be the “bimodule dual” of A:

A! = RhomA⊗Aop(A,A⊗ Aop) (' CH∗(A,A⊗ Aop))
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Definition

(Kontsevich-Vlassopolous) A YC -structure (“Yau-Calabi”) on a
smooth A∞-algebra A is an element

σ̄ ∈ CC−∗ (A)

So that if σ ∈ CH∗(A) is the image under the natural map
CC−∗ (A)→ CH∗(A), then

∩σ : A! → A

RhomA⊗Aop(A,A⊗ Aop)→ A⊗L
A⊗Aop A⊗ Aop ' A (2)

is an equivalence of A-bimodules. “self duality as A-bimodules”
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Theorem

(Kontsevich-Vlassopolous) A YC -algebra or category A gives rise
to a (right)-positive boundary open-closed field theory FA with
FA(S1) ' A⊗L

A⊗Aop A. The boundary values (“D-branes”) of the
field theory are D = Ob A. The value of F on the interval with
endpoints labeled by λ1, λ2 ∈ Ob A is given by MorA(λ1, λ2).

Theorem

(C. - Ganatra) The string topology category SM and the wrapped
Fukaya category W(T ∗M) both have naturally occurring
YC -structures whose associated chain complex-valued field theories
yield String topology and the Floer-symplectic field theories
respectively (on the level of homology). Furthermore there is a

natural equivalence W(T ∗M)
'−→ SM that preserves these

YC -structures.

Note: The fact that W(T ∗M) and SM are equivalent as A∞
categories was proved in 2011 by Abouzaid.
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Conjecture

(Kontsevich) (maybe proved by Ginzburg) If A is both compact
and smooth, then CY ⇐⇒ YC .

Note: In the case where both CY and YC are satisfied, then the
field theory is defined on the full cobordism category (i.e no
positive boundary condition is required).

Let X be a compact Calabi-Yau variety, then the category of
coherent sheaves, Coh(X ) is CY . Coh(X ) is smooth iff X is
smooth. In this case it is also YC . The associated field theory is
the “B-model”
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Idea of proof Why is there a YC structure on SM?

Lemma

If C1 ⊂ C2 generates (i.e the thick subcategory generated by C1 is
C2), and if both C1 and C2 are smooth, then C1 is YC if and only if
C2 is YC .
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Theorem

If M is a closed, oriented n-manifold, the C∗(ΩM) is YC .

Note: C∗(ΩM) = EndSM (point). So by the lemma, this would
prove that SM is YC .

Sketch of proof. Recall Goodwillie proved that

CH∗(C∗(ΩM) ' C∗(LM).

Also observe

LMhS1
= MapS1(ES1, LM) = MapS1(ES1 × S1,M) ' M.
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So therefore there is a chain map

C∗(M) ' C∗(LMhS1
)→ RhomC∗(S1)(k,CH∗(C∗(ΩM)) (3)

= CC−∗ (C∗(ΩM)). (4)

Definition

We say that a cycle σ̄ ∈ CC−∗ (C∗(ΩM)) is of fundamental type if
its homology class [σ̄] ∈ HC−(C∗(ΩM)) is the image of the
fundamental class

H∗(M)→ HC−∗ (C∗(ΩM)) (5)

[M]→ [σ̄]. (6)
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Claim. Any cycle σ̄ ∈ CC−∗ (C∗(ΩM)) of fundamental type defines
a YC structure on C∗(ΩM).

Proof. Let A = C∗(ΩM). We need to show that if σ ∈ CH∗(A) is
the image of σ̄ ∈ CC−∗ (A), then

∩σ : RhomA⊗Aop(A,A⊗ Aop)→ A

is an equivalence.

That is, we need to show

∩[σ] : ExtA⊗Aop(A,P)→ TorA⊗Aop(A,P)

is an isomorphism, where P = A⊗ Aop.
Now since A = C∗(ΩM) is a connective Hopf algebra,
ExtA⊗Aop(A,P) ∼= ExtA(k ,Pad). (Similarly for Tor).
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Since A = C∗(ΩM) this becomes

∩[σ] : H∗(M; Pad) = ExtC∗(ΩM)(k,Pad)→ TorC∗(ΩM)(k ,Pad)

(7)

= H∗(M,Pad) (8)

(coefficients are twisted by modules over C∗(ΩM).)

Since σ̄ is of fundamental type, the fact that this is an
isomorphism is Poincaré duality with these twisted coefficients
(Dwyer-Greenlees-Iyengar).

Ralph L. Cohen CY categories, string topology, and Floer field theory



Ganatra proved that W(T ∗M) is YC in his thesis. Moreover we
have a functor defined by a variant of a construction of
Abbondandolo and Schwarz,

AS :W(T ∗M)→ SM

which is seen to be an equivalence of categories by an argument of
Abouzaid. Now must check that the YC -structures are preserved.
(Technically the most complicated.)
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There are two other features.

1 We say that an augmented DGA A is “strongly smooth” if A
is smooth and k is a perfect module over A (so in particular
TorA(k , k) is finite.) C∗(ΩM) is strongly smooth if M is
closed.

Theorem

Let A be a strongly smooth DGA over k. Suppose B is a DGA
that is Koszul dual to A. That is,

B ' RhomA(k , k) A ' RhomB(k , k).

They A is YC if and only if B is CY . Furthermore, their associated
field theories FA and FB are dual.

Note: Since A and B are Koszul dual, HH∗(A) ∼= HH∗(B)∗

(Jones-McCleary) (For THH this is due to J. Campbell.)

Example A = C∗(ΩM), B = C ∗M, M simply connected.
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Lurie’s cobordism hypothesis says that an extended TFT with
values in C (a symmetric monodical (∞, 2)-category) are classified
by “Calabi-Yau objects” in C.

Conjecture 1. A is a CY category in the sense of Kontsevich if and
only if A is a CY object in the sense of Lurie in the (∞, 2)-category
CAT = Categories, Bimodules, and Maps of Bimodules.

2. A is a YC category in the sense of Kontsevich if and only if A is
a CY object in the sense of Lurie in CAT op.

Caution: Need finiteness conditions!

This is a joint project with Ganatra and A. Blumberg.
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