Calabi-Yau categories, string topology, and Floer field theory

Ralph L. Cohen

Stanford University

Goodwillie 60th birthday conference, Dubrovnik, Croatia June, 2014

Report on joint work with Sheel Ganatra

Proof of a conjecture (C., Schwarz, Cielebak - Latchev, Eliashberg) from 2003 relating two topological field theories:

- The string topology of a closed oriented manifold *M*,
- The Floer symplectic field theory of its cotangent bundle T^*M .

Background

A symplectic structure on a 2*n*-dimensional manifold *N* is a closed, nondegenerate 2-form, $\omega \in \Omega^2 N$.

For each $x \in N$

$$\omega_{x}: T_{x}N \times T_{x}N \to \mathbb{R}$$

which satisfies

- skew symmetry: $\omega_x(u,v) = -\omega_x(v,u)$
- nondegeracy: $\omega(u, v) = 0$ for all $v \in T_X M$ iff u = 0.

Example: $(\mathbb{R}^{2n}, \omega_0)$, where $\omega_0 = \sum_{i=1}^n dx_i \wedge dy_i$.

Define

$$Sp_{2n} = GL(\mathbb{R}^{2n}, \omega_0)$$

That is, $\psi \in GL_{2n}(\mathbb{R})$ lies in Sp_{2n} iff $\psi^*\omega_0 = \omega_0$. Now let

$$J_0 = \begin{pmatrix} 0_n & -I_n \\ I_n & 0_n \end{pmatrix}$$

Then $\psi \in Sp_{2n}$ iff

$$\psi^{\mathsf{T}} J_0 \psi = J_0.$$

Recall that $A \in GL_n(\mathbb{C})$ iff $A^{-1}J_0A = J_0$. It is now easy to verify the following:

$$Sp_{2n}\cap O(2n)=Sp_{2n}\cap GL_n(\mathbb{C})=O(2n)\cap GL_n(\mathbb{C})=U(n).$$

Lemma

 $U(n) \subset Sp_{2n}$ is a maximal compact subgroup, and $Sp_{2n}/U(n)$ is contractible.

Corollary

Every symplectic manifold (N, ω) has an almost complex structure, and the space of almost complex structure lifting its given symplectic structure is contractible.

An almost complex structure J compatible with a symplectic structure ω is one in which

$$egin{aligned} & T_X \mathsf{N} imes T_X \mathsf{N} o \mathbb{R} \ & (u,v) o \omega_x(u,J_xv) \end{aligned}$$

is a Riemannian metric.

Important Example: Let M^n be closed, $p : T^*M \to M$ its cotangent bundle. For $x \in M$, $u : T_xM \to \mathbb{R}$, define

$$\alpha(x, u): T_{(x, u)}(T^*M) \xrightarrow{Dp} T_x M \xrightarrow{u} \mathbb{R}$$

 $\alpha \in \Omega^1(T^*M)$ is the "Liouville 1-form".

 $d\alpha = \omega \in \Omega^2(T^*M)$ is symplectic.

If $N \subset M$ is a submanifold, then its conormal bundle $cn(N) \subset T^*M$ is a Lagrangian submanifold. (A Lagrangian submanifold *L* of a symplectic manifold *Q* is defined by the property that $\omega(u, v) = 0$ for all $u, v \in T_x L$.)

Given an exact symplectic manifold (N^{2n}, ω) with $\omega = d\eta$, one can define the Symplectic Floer homology, $SH_*(N, \omega)$. Its defined by doing a type of infinite dimensional Morse theory on the free loop space, LN.

Let $L_0 N \subset LN$ be the path component consisting of null homotopic loops. Consider the symplectic action functional

$$egin{aligned} \mathcal{A} &: \mathcal{L}_0 \mathcal{N} o \mathbb{R} \ & & & & & \ & & & \gamma o \int_{D^2} ilde{\gamma}^*(\omega) \end{aligned}$$

where $\tilde{\gamma}: D^2 \to N$ is an extension (null homotopy) of $\gamma: S^1 \to N$. This is well defined by Stokes' theorem, since

$$\int_{D^2} ilde{\gamma}^*(\omega) = \int_{\mathcal{S}^1} \gamma^*(\eta)$$

(Note if (N, ω) is not exact one can define A on the universal cover of L_0N .)

One then perturbs \mathcal{A} by a "periodic time dependent Hamiltonian"

$$H: \mathbb{R}/\mathbb{Z} \times N \to \mathbb{R}$$

to get a functional

$$\mathcal{A}_{H}: L_{0}N \to \mathbb{R}$$
$$\gamma \to \int_{\mathcal{S}^{1}} \gamma^{*}\eta - H(t, \gamma(t))dt$$
(1)

so that \mathcal{A}_H has non degenerate critical points.

If one chooses a compatible almost complex structure J, one has an induced metric, which allows the definition of a Morse-type chain complex (the "Floer complex")

$$\cdots \xrightarrow{\partial_{q+1}} C_q \xrightarrow{\partial_q} C_{q-1} \rightarrow \cdots$$

The boundary maps

$$\partial[a] = \sum_{b} n_{a,b}[b]$$

where $n_{a,b} = #\mathcal{M}(a, b) =$ gradient flow lines (counted with sign).

$$heta:\mathbb{R} o LN$$
 such that $rac{d heta}{dt}+
abla_J\mathcal{A}_H=0.$

(Recall the gradient ∇ depends on the metric, which in this case is given by a choice of *J*.) If view $\theta : \mathbb{R} \times S^1 \to N$ with coordinates, $t \in \mathbb{R}/\mathbb{Z}$, $s \in \mathbb{R}$, then the gradient flow equation becomes the perturbed Cauchy Riemann PDE:

$$\partial_s \theta - J \partial_t \theta - J X_H(t, \theta(t, s)) = 0.$$

where X_H is the Hamiltonian vector field on $S^1 \times N$ defined by

$$\omega(X_H(t,x),v) = -dH_{(t,x)}(v)$$

"J-pseudoholomorphic cylinders"

Now restrict to the case $(N, \omega) = (T^*M, \omega)$.

Theorem

(Viterbo, Abbondandolo-Schwarz, Salamon-Weber) If M is Spin, then

$$SH_*(T^*M,\omega) \cong H_*(LM).$$

(If M is not spin, one must use twisted coefficients.)

Our goal is to relate two 2D open-closed topological field theories. Both have open boundary conditions defined by closed, oriented submanifolds $\{N \subset M\}$

1) String topology of M:
$$\mathcal{S}_{M}$$

a. $\mathcal{S}_{M}(S') = H_{*} LM$
b. $\mathcal{S}_{M}(\underbrace{N_{1}, N_{2}}{N_{2}}) = H_{*}(\mathcal{P}_{M}(N_{1}, N_{2}))$

where

$$P_{H}(N_{1},N_{2}) = \{ \gamma: [D_{1}] \rightarrow M : \gamma(0) \in \mathbb{N}_{1}, \gamma(1) \in \mathbb{N}_{2} \}$$

C.
$$S_{M}(\overset{\frown}{\overset{\frown}{\overset{\frown}{\overset{\bullet}}}) = Chas$$
-Sullivan pairing
 $H_{p}LM \times H_{q}LM \xrightarrow{{\overset{\bullet}{\overset{\bullet}}}} H_{pq}M$
Chas-Sullivan, C.- Jones, Godin, Kupers)

2). Floer symplectic field theory of T*M. Symptom

a.
$$\operatorname{Symp}_{\mathcal{T}_{\mathcal{H}}}(S') = \operatorname{SH}_{*}(T^{\mathcal{H}}, w) \cong \operatorname{H}_{*}LM$$

b. $\operatorname{Symp}_{\mathcal{T}_{\mathcal{H}}}(\underbrace{K_{\mathcal{H}_{i}}}_{\mathcal{H}_{i}}) = \operatorname{HF}_{*}(T^{*}M_{j} \operatorname{cn}(N_{i}), \operatorname{cn}(N_{i}))$

= "Lagrangian intersection Floer homology" defined by a chain complex generated by intersection points, $e_n(N_1) \land e_n(N_2)$ (if transverse) boundary homomorphisms defined by counting J-holomorphic disks, $e_n(V_1)$

Defined by counting J-holomorphic curves

Ralph L. Cohen

CY categories, string topology, and Floer field theory

Theorem

(C., Ganatra) Given any field k, there are 2D open-closed, positive boundary, topological field theories, S_M and $Symp_{T^*M}$ taking values in Chain Complexes over k, such that

- **0** When one passes to homology they realize the above theories
- **2** There is a natural equivalence of chain complex valued field theories, $\Phi : Symp_{T^*M} \xrightarrow{\simeq} S_M$.

Idea:

Use recent methods of classifying TFT's:

- Cobordism hypothesis of Lurie
- Costello, Kontsevich-Vlassopolous

Roughly: 2D "noncompact" ("positive boundary") oriented open-closed TFT's are classified by "Calabi-Yau (A)- ∞ categories."

So we show: The string topology category S_M defined by Blumberg, C., Teleman is Calabi-Yau (actually "Yau-Calabi") as is the "Wrapped Fukaya category" $\mathcal{W}(T^*M)$ defined by Seidel, Fukaya (this part was proved by Ganatra in his thesis) and that

 $\mathcal{S}_M \simeq \mathcal{W}(T^*M)$

as CY A_{∞} -categories.

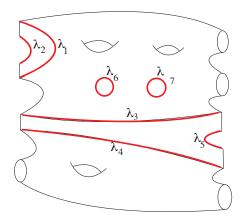
What is a 2D open-closed TFT?

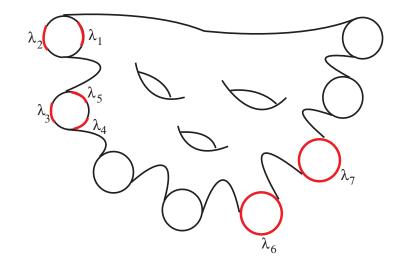
Let $\mathcal{D} = \{N \subset M, N \text{ closed, oriented}\}$. Such a field theory is a monoidal functor $\Phi : Bord_{\mathcal{D}}^{oc} \to ChainComplexes.$

 $Bord_{\mathcal{D}}^{oc}$ is a category, enriched over chain complexes:

Objects: Closed, oriented 1-manifolds c, with the path components of ∂c labelled by \mathcal{D} .

Morphisms = $C_*(\mathcal{M}^{oc}(c_1, c_2))$ = chains on the moduli space of oriented open-closed cobordisms:





Let A be an (A_{∞}) algebra over a field k. Consider its Hochschild chains $CH_*(A) \simeq A \otimes_{A \otimes A^{op}}^{L} A$. It is an (A_{∞}) module over $E(\Delta) \simeq C_*(S^1)$. The cyclic chains can be viewed as the homotopy orbits $CC_*(A) \simeq CH_*(A) \otimes_{E(\Delta)}^{L} k$.

Definition

(Kontsevich, Soibelman) Suppose that A is compact (perfect as a k-module). A Calabi-Yau (CY) structure is a map

$$ar{ au}: \mathit{CC}_*(\mathit{A})
ightarrow k$$

such that the composition

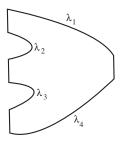
 $\tau: A \otimes_{A \otimes A^{op}}^{L} A \simeq CH_{*}(A) \rightarrow CC_{*}(A) \xrightarrow{\bar{\tau}} k \text{ induces a pairing}$

$$A \otimes A \to k$$

that is homotopy nondegenerate in the sense that the adjoint $A \rightarrow A^*$ is an equivalence of A-bimodules. "self duality"

Theorem

(Kontsevich-Soibelman, generalizing Costello) A CY-algebra or category A gives rise to a (left)-positive boundary open-closed field theory \mathcal{F}_A with $\mathcal{F}_A(S^1) \simeq A \otimes^L_{A \otimes A^{op}} A$. The boundary values ("D-branes") of the field theory are $\mathcal{D} = Ob A$. The value of \mathcal{F} on the interval with endpoints labeled by $\lambda_1, \lambda_2 \in Ob A$ is given by $Mor_A(\lambda_1, \lambda_2)$. The value of \mathcal{F}_A on the open closed cobordism below is given by the higher composition laws in A.



Given an A_{∞} -algebra or category A, let $CC_*^-(A)$ be the "negative cyclic chains" first defined by Goodwillie. These chains can be viewed as the homotopy fixed points:

$$CC^{-}_{*}(A) \simeq Rhom_{E(\Delta)}(k, CH_{*}(A))$$

- An A_∞ algebra A is said to be "smooth" if is perfect as an A-bimodule. That is, it is perfect as a left module over A ⊗ A^{op}.
- Let A[!] be the "bimodule dual" of A:

$$A^{!} = Rhom_{A \otimes A^{op}}(A, A \otimes A^{op}) (\simeq CH^{*}(A, A \otimes A^{op}))$$

Definition

(Kontsevich-Vlassopolous) A YC-structure ("Yau-Calabi") on a smooth A_{∞} -algebra A is an element

 $\bar{\sigma} \in CC^-_*(A)$

So that if $\sigma \in CH_*(A)$ is the image under the natural map $CC_*^-(A) \to CH_*(A)$, then

 $\cap \sigma : A^{!} \to A$ $Rhom_{A \otimes A^{op}}(A, A \otimes A^{op}) \to A \otimes^{L}_{A \otimes A^{op}} A \otimes A^{op} \simeq A \qquad (2)$

is an equivalence of A-bimodules. "self duality as A-bimodules"

Theorem

(Kontsevich-Vlassopolous) A YC-algebra or category A gives rise to a (right)-positive boundary open-closed field theory \mathcal{F}_A with $\mathcal{F}_A(S^1) \simeq A \otimes_{A \otimes A^{op}}^L A$. The boundary values ("D-branes") of the field theory are $\mathcal{D} = Ob A$. The value of \mathcal{F} on the interval with endpoints labeled by $\lambda_1, \lambda_2 \in Ob A$ is given by $Mor_A(\lambda_1, \lambda_2)$.

Theorem

(C. - Ganatra) The string topology category S_M and the wrapped Fukaya category $W(T^*M)$ both have naturally occurring YC-structures whose associated chain complex-valued field theories yield String topology and the Floer-symplectic field theories respectively (on the level of homology). Furthermore there is a natural equivalence $W(T^*M) \xrightarrow{\simeq} S_M$ that preserves these YC-structures.

Note: The fact that $\mathcal{W}(T^*M)$ and \mathcal{S}_M are equivalent as A_∞ categories was proved in 2011 by Abouzaid.

Conjecture

(Kontsevich) (maybe proved by Ginzburg) If A is both compact and smooth, then $CY \iff YC$.

Note: In the case where both CY and YC are satisfied, then the field theory is defined on the full cobordism category (i.e no positive boundary condition is required).

Let X be a compact Calabi-Yau variety, then the category of coherent sheaves, Coh(X) is CY. Coh(X) is smooth iff X is smooth. In this case it is also YC. The associated field theory is the "B-model"

Idea of proof Why is there a YC structure on S_M ?

Lemma

If $C_1 \subset C_2$ generates (i.e the thick subcategory generated by C_1 is C_2), and if both C_1 and C_2 are smooth, then C_1 is YC if and only if C_2 is YC.

Theorem

If M is a closed, oriented n-manifold, the $C_*(\Omega M)$ is YC.

Note: $C_*(\Omega M) = End_{\mathcal{S}_M}(point)$. So by the lemma, this would prove that \mathcal{S}_M is *YC*.

Sketch of proof. Recall Goodwillie proved that

 $CH_*(C_*(\Omega M) \simeq C_*(LM).$

Also observe

$$LM^{hS^1} = Map_{S^1}(ES^1, LM) = Map_{S^1}(ES^1 \times S^1, M) \simeq M.$$

So therefore there is a chain map

$$C_*(M) \simeq C_*(LM^{hS^1}) \to Rhom_{C_*(S^1)}(k, CH_*(C_*(\Omega M)))$$
(3)
= $CC_*^-(C_*(\Omega M)).$ (4)

Definition

We say that a cycle $\bar{\sigma} \in CC^-_*(C_*(\Omega M))$ is of fundamental type if its homology class $[\bar{\sigma}] \in HC^-(C_*(\Omega M))$ is the image of the fundamental class

$$H_*(M) \to HC_*^-(C_*(\Omega M)) \tag{5}$$
$$[M] \to [\bar{\sigma}]. \tag{6}$$

Claim. Any cycle $\bar{\sigma} \in CC^{-}_{*}(C_{*}(\Omega M))$ of fundamental type defines a *YC* structure on $C_{*}(\Omega M)$.

Proof. Let $A = C_*(\Omega M)$. We need to show that if $\sigma \in CH_*(A)$ is the image of $\bar{\sigma} \in CC^-_*(A)$, then

$$\cap \sigma : Rhom_{A \otimes A^{op}}(A, A \otimes A^{op}) \to A$$

is an equivalence.

That is, we need to show

$$\cap [\sigma] : Ext_{A \otimes A^{op}}(A, P) \to Tor_{A \otimes A^{op}}(A, P)$$

is an isomorphism, where $P = A \otimes A^{op}$. Now since $A = C_*(\Omega M)$ is a connective Hopf algebra, $Ext_{A \otimes A^{op}}(A, P) \cong Ext_A(k, P^{ad})$. (Similarly for Tor).

Since
$$A = C_*(\Omega M)$$
 this becomes

$$\cap[\sigma] : H^*(M; P^{ad}) = Ext_{C_*(\Omega M)}(k, P^{ad}) \to Tor_{C_*(\Omega M)}(k, P^{ad})$$
(7)
$$= H_*(M, P^{ad})$$
(8)

(coefficients are twisted by modules over $C_*(\Omega M)$.)

Since $\bar{\sigma}$ is of fundamental type, the fact that this is an isomorphism is Poincaré duality with these twisted coefficients (Dwyer-Greenlees-Iyengar).

Ganatra proved that $\mathcal{W}(T^*M)$ is YC in his thesis. Moreover we have a functor defined by a variant of a construction of Abbondandolo and Schwarz,

$$AS: \mathcal{W}(T^*M) \to \mathcal{S}_M$$

which is seen to be an equivalence of categories by an argument of Abouzaid. Now must check that the *YC*-structures are preserved. (Technically the most complicated.)

There are two other features.

We say that an augmented DGA A is "strongly smooth" if A is smooth and k is a perfect module over A (so in particular Tor_A(k, k) is finite.) C_{*}(ΩM) is strongly smooth if M is closed.

Theorem

Let A be a strongly smooth DGA over k. Suppose B is a DGA that is Koszul dual to A. That is,

 $B \simeq Rhom_A(k, k)$ $A \simeq Rhom_B(k, k).$

They A is YC if and only if B is CY. Furthermore, their associated field theories \mathcal{F}_A and \mathcal{F}_B are dual.

Note: Since A and B are Koszul dual, $HH_*(A) \cong HH_*(B)^*$ (Jones-McCleary) (For *THH* this is due to J. Campbell.)

Example $A = C_*(\Omega M)$, $B = C^*M$, M simply connected.

Lurie's cobordism hypothesis says that an extended TFT with values in $\mathcal C$ (a symmetric monodical $(\infty,2)$ -category) are classified by "Calabi-Yau objects" in $\mathcal C.$

Conjecture 1. *A* is a CY category in the sense of Kontsevich if and only if *A* is a *CY* object in the sense of Lurie in the $(\infty, 2)$ -category CAT = Categories, Bimodules, and Maps of Bimodules.

2. A is a YC category in the sense of Kontsevich if and only if A is a CY object in the sense of Lurie in CAT^{op} .

Caution: Need finiteness conditions!

This is a joint project with Ganatra and A. Blumberg.