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Abstract. This note contains a summary of the significance and influence of configurations space
integrals (or Bott-Taubes integrals) in knot theory and the theory of embeddings more generally. It
was written as an introduction to the collection of papers written by Raoul Bott on this subject, to be
included in the fifth volume of his collected works.

Early 1990s witnessed an emergence of new techniques and points of view in the study of spaces of knots
and spaces of embeddings more generally. One of the most exciting developments was the introduction
of finite type or Vassiliev knot invariants [Vas90]. To explain, any knot invariant V can be extended to
singular knots with n transverse double points via the repeated use of the Vassiliev skein relation:

)− V (V ( ) = V ( ).

Then V is a type n invariant if it vanishes identically on knots with n+1 double points (this definition
first appeared in [BL93]). Thus finite type invariants are, in some sense, those invariants that behave like
polynomials when extended to singular knots. The excitement surrounding these invariants was the (yet
unresolved at the time of writing) conjecture that finite type invariants separate knots. This conjecture
arose from various interesting properties of finite type invariants, including their many connections to
physics and combinatorics – finite type invariants were quickly connected to certain trivalent diagrams
that were reminiscent of Feynman diagrams familiar from physics (standard introductory literature on
finite type invariants that gives more detail on this is [BN95, CDM12]). In 1993, Kontsevich [Kon94]
proved a remarkable theorem that the space of finite type invariants is in fact isomorphic to the dual of
the space of these diagrams modulo some relations. This is now known as the Fundamental Theorem
of Finite Type Invariants. The isomorphism is realized by the famous Kontsevich Integral, a beautiful
but difficult construction that was as ingenious as it was mysterious at the time of its inception.

Raoul Bott was intrigued by Kontsevich’s theorem and wanted to understand it from a more classical
point of view. Kontsevich’s construction indicated that the cohomology of configuration spaces should
play a role and some hints that this might indeed be the case had already appeared in the work
of Guadagnini, Martellini, and Mintchev [GMM89], as well as Bar-Natan [BN], whose approach was
inspired by Chern-Simons Theory. Bott started talking to Cliff Taubes (who occupied the office next to
his) about this, and the result of their conversations was their 1994 seminal paper “On the self-linking
of knots” [BT94] which paved a way for two decades of active research in applications of configuration
space integrals.

The guiding idea of [BT94] was that the familiar linking number of two-component links, given by the
Gauss integral that essentially counts the number of times one link strand crosses another in a projection,
with a sign, should be adaptable to give an invariant (or a family of invariants) of knots. Mimicking the
Gauss integral, the first natural idea is to consider two points moving on the knot, keep track of the
direction between them, and then use this direction map to pull back the canonical volume form from
S2 and integrate it over Conf(2,R), the configuration space of two points in R. If all goes well, the
resulting pushforward form, which is a zero-form on the space of knots, would be an invariant of knots
just like the linking number of two-strand links.
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It turns out that this does not quite work out because one does not obtain a closed form in this way.
However, Bott and Taubes decided to study the next potentially interesting case, that of four points on
the knot with two maps to S2 keeping track of the directions between two pairs of points.

Namely, let K be the space of knots in R
3 (embeddings of a circle in R

3) and let Conf[k,R] be the
Fulton-MacPherson compactification [AS94, FM94] of Conf(k,R) (Ck(R) in the notation of [BT94]),
the configuration space of k points in R. The reason one needs to work with the compactifications
is to ensure that the integrals converge. These compactifications are manifold with corners, and one
of the main contributions of Bott and Taubes from [BT94] was to study the stratification and the
parametrization of their boundary. Then we have a diagram

Conf[4,R]×K
Φ=Φ13×Φ24

//

π

��

S2 × S2

K

where Φij is the compositions of the evaluation map that evaluates a knot on the ith and the jth
point (out of four ordered points) on R, and then takes their normalized difference. Now let symS2 be
the unit volume form on S2 and let α = Φ∗(sym2

S2). Since α and Conf[4,R], the fiber of π, are both
4-dimensional, integration along the fiber, or pushforward, of π thus yields a zero-form π∗α on the space
of knots K.

The question now is if this form is closed, i.e. if it is an element of H0(K), a knot invariant. By
Stokes’ Theorem, this question reduces to checking whether the restriction of the pushforward to the
codimension one boundary of Conf[4,R] vanishes. This boundary has various components corresponding
to how points collide in the compactification. Bott and Taubes argued that, for many faces, the integral
indeed vanishes, but the faces determined by two points colliding at a time (so-called principal faces),
were still a problem.

The ingenious solution was to introduce another space that had precisely the same problematic boundary.
Then the difference of integrals over Conf[4,R] and this new space should then indeed be a closed
form. It turns out that thinking geometrically about what kind of boundary this space should have leads
naturally to its definition. The geometry suggests that we want a space of four configuration points
in R

3, three of which are constrained to lie on a knot, and we want to keep track of three directions
between the points on the knot and the one off the knot. Then the collision of the “free” point with
the points on the knot produces precisely the three principal faces from the initial setup.

To make this precise, Bott and Taubes define the pullback space

(1) Conf[3, 1;K,R3] //

��

Conf[4,R]

proj

��

Conf[3,R]×K
eval

// Conf[3,R]

where eval is the evaluation map and proj the projection onto the first there points of a configuration.
(Conf[3, 1;K,R3] is C3,1 in the notation of [BT94].) There is now an evident map

π′ : Conf[3, 1;K,R3] −→ K

whose fiber over a knot K ∈ K is precisely the configuration space of four points, three of which are
constrained to lie on K. Bott and Taubes show that the map π′ is a smooth bundle and so one can
perform integration along its fiber. So let

Φ = Φ14 × Φ24 ×Φ34 : Conf[3, 1;K3,R3] −→ (S2)3
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be the map giving the three directions between the points on the knot and the free point. The relevant
maps are thus

Conf[3, 1;K,R3]
Φ

//

π′

��

(S2)3

K

As before, let α′ be the pullback form Φ∗(sym3
S2). This form can be integrated along the fiber

Conf[3, 1;K,R3 ] over K. Both the form and the fiber are 6-dimensional, so integration gives a zero-form
π′

∗
α′ on K. The main result of [BT94] is

Theorem 0.1. The zero-form

π∗α− π′

∗
α′

is closed, i.e. it is a knot invariant.

Bott and Taubes dubbed this a “self-linking” invariant because of its origins in the linking number as
described above.

It turns out that same statement was proved in [BN] and [GMM89] but from very different points
of view. Bott and Taubes’ proof is geometrically intuitive, but it is topological and requires a deep
understanding of the Fulton-MacPherson compactifications and integration along the fiber. It proceeds
by a careful analysis of how the pushforward restricts to all the codimension-one faces and that all the
restrictions either vanish or cancel out. For summaries of the main features of [BT94], the reader might
want to consult two other papers in this collection, [Bot97] and [Bot96], both of which are based on
the talks Bott gave on this subject. Some more detail can also be found in [Vol07].

A helpful feature of the Bott-Taubes construction is that the combinatorics of compactified configuration
spaces is easily kept track of in terms of diagrams. The situation corresponding to integration over
Conf[4,R] can be depicted with the left diagram in the picture below and the one corresponding to
Conf[3, 1;K,R3 ] to the one on the right:

4

2

4

3

1

23

1

These diagrams, as it turns out, are precisely some of the trivalent diagrams one encounters in the theory
of finite type invariants mentioned at the beginning of this note. It so happens that Dylan Thurston
was a senior at Harvard the year that Bott and Taubes worked out the results of [BT94], and Bott gave
Thurston the project of further investigating their self-linking invariant. Thurston not only succeeded
in showing that the Bott-Taubes invariant is a finite type two invariant, but vastly generalized the
construction. Namely, starting with a trivalent diagram with p points on a circle, k points off the circle,
and some number of edges between them, Thurston, in analogy with Conf[3, 1;K,R3], defines a space
Conf[p, q;K,R3] and a map to the product of as many sphere as there are edges. Then integrating the
pullback of the product of volume forms along the canonical map Conf[p, q;K,R3] → K produces a
zero-form on K. Thurston shows that, fixing a positive integer n and taking the sum of integrals (with
signs, a normalizing factor, and modulo some relations from finite type theory) over all diagrams with
p+ q = 2n gives a type n knot invariant. Furthermore, this gives all finite type invariants (by varying a
functional on the space of trivalent diagrams). Thurston’s result thus gives an alternative proof of the
Fundamental Theorem of Finite Type Invariants, i.e. an alternative to the Kontsevich Integral.
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Thurston’s work appears in [Thu], but was unfortunately never published (a recounting and a slight
expansion of Thurston’s work appears in [Vol07]). Nevertheless, his results were very influential in the
theory of finite type invariants. For example, his construction was generalized to links and homotopy
links in [KMV13], were used for placing finite type invariants in the context of calculus of functors
in [Vol06], and were even extended to the setting of invariants of vector fields in [KV]. Recent work
[KKV] also gives an interpretation of Milnor invariants, classical objects in knot theory, via Thurston-like
configuration space integrals indexed on trees.

The next generalization of the Bott-Taubes integrals was performed by Cattaneo, Cotta-Ramusino, and
Longoni in [CCRL02]. The idea there was that there was no reason to restrict the attention to trivalent
diagrams and they now allowed the vertices of the diagram to have valence greater than three. The rest
of Thurston’s setup remained the same, but the result was that now the cohomology classes produced
on K were not just zero-dimensional. Furthermore, one could this way obtain cohomology classes of
Kn, spaces of knots in R

n for n > 3 (even though there is no knotting in these spaces, they are very
interesting and have rich topology). It was then shown in[CCRL02] that, for n > 3, there is a cochain
map

Dk,m −→ Ω(n−3)k+m(Kn)

between the bigraded complex of at least trivalent diagrams on the left (with the interesting differential
given by contractions of edges) and the complex of deRham forms on Kn on the right. In the subsequent
work [CCRL05], Cattaneo, Cotta-Ramusino, and Longoni use this to show that, given any i > 0 and
n > 3, Kn has nontrivial cohomology in dimension greater than i. Algebraic structure on the complex
of diagrams Dk,m were further examined in [Lon04].

For a survey of the original Bott-Taubes construction, Thurston’s generalization, and Cattaneo, Cotta-
Ramusino, and Longoni work, the reader might be interested in consulting [Vol13].

That Cattaneo was involved with configuration space integrals was no accident. He was a postdoc
at Harvard when Bott approached him after one of Cattaneo’s talks. Bott wanted to understand the
perturbative Chern-Simons 3-manifold invariants by extending the work he and Taubes did in [BT94].
This resulted in a collaboration that produced the papers [BC98, BC99]. In these articles, Cattaneo and
Bott produce invariants of manifolds M with framing f and a fixed Riemannian metric:

IΓ(M,f) = AΓ(M) + φ(Γ)CS(M,f),

where Γ is a diagram, AΓ(M) is a configuration space integral in the spirit of those in [BT94], φ(Γ) is a
real number associated to Γ, and CS(M,f) is the Chern-Simons integral of the Levi-Civita connection
of M with respect to f . This expression depends on the framing f , but if M is a rational homology
sphere, one obtains true invariants

JΓ(M) = AΓ(M)− 4θ(Γ)AΘ(M).

Here AΘ(M) is the “self-linking” integral, namely the integral over the simplest diagram with one chord
connecting two vertices on the circle. The above is the main result of [BC98], while the extension
to nontrivial local coefficient system was performed in [BC99]. This investigation has its roots in the
work of Witten who initiated the study of invariants of manifolds out of Chern-Simons theory, and
is an alternative to Kontsevich’s way of doing this from [Kon94]; note that this very much mimics
the situation described above where Bott and Taubes set out to understand and give an alternative
approach to Kontsevich’s proof of the Fundamental Theorem of Finite Type Invariants. In fact, Bott
and Cattaneo’s results are very much related to finite type invariants of homology spheres which has
been a productive field of investigation in the last fifteen years. Cattaneo himself has recently returned
to the study of configuration space integrals in the context of Chern-Simons theory [CM10].

We have already seen how the paper “On the self-linking of knots” has generated various branches
of investigation – Thurston extending from four points to more and Cattaneo, Cotta-Ramusino, and
Longoni generalizing from trivalent diagrams to arbitrary valence. Yet another direction is to generalize



CONFIGURATION SPACE INTEGRALS 5

the space of knots. The work of Sakai [Sak10] and its expansion by Sakai and Watanabe [SW12] is
relevant in this direction. Namely, they consider embeddings of Rk in R

n and use configuration space
integrals to produce nontrivial cohomology classes of this space with certain conditions on k and n. This
work generalizes classes produced by others [CR05, Wat07] and complements work by Arone and Turchin
[AT14] who show, using homotopy-theoretic methods, that the homology of the space of embeddings
of Rk in R

n is given by a certain graph complex for n ≥ 2k + 2. Sakai has further used configuration
space integrals to produce a cohomology class of K in degree one that is related to the Casson invariant
[Sak08] and has given a new interpretation of the Haefliger invariant for embeddings of Rk in R

n for
some k and n [Sak10]. In an interesting bridge between two different points of view on spaces of knots,
Sakai has in [Sak10] also combined the configuration space integrals with Budney’s action of the little
discs operad on Kn [Bud07].

Lastly, another recent interesting development is the work of Koytcheff [Koy09] who develops a homotopy-
theoretic replacement of configuration space integrals. He uses the Pontryagin-Thom construction to
“push forward” forms from Conf[p, q;Kn,Rn] to Kn. The advantage of this approach is that it works
over any coefficients, unlike ordinary configuration space integration, which takes values in R. A better
understanding of how Koytcheff’s construction relates to the original configuration space integrals is
still needed.

Bott’s work on configuration space integrals has produced a wealth of exciting mathematics. The subject
is increasing in popularity and the techniques are being applied to more and more situations. There are
still various open questions about these integrals – Why do they appear in a seemingly unrelated subject
of the rational formality of the little n-discs operad [Kon99, LV14]? Can they be used for showing that
finite type invariants separate knots and links?, etc. – and their popularity is bound to grow in the years
to come.
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