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Plan of the talk

Part I: Configuration space integrals

1. Spaces of embeddings and long knots in particular

2. Configuration space integrals for knots in R3

3. Configuration space integrals for knots in Rn, n > 3

4. Configuration space integrals for links

Part II: Manifold calculus of functors

1. General theory

2. Taylor tower for the space of long knots

3. Cosimplicial model for the Taylor tower

4. Applications to knot homology and finite type knot invariants

5. Multi-cosimplicial model for links, homotopy links, and braids

6. Applications to link homology and finite type link invariants



I.1. Spaces of embeddings

Definition

Let M and N be smooth manifolds. An embedding of M in N is
an injective map f : M →֒ N whose derivative is injective and
which is a homeomorphism onto its image.

When M is compact, an embedding is an injective map with
injective derivative.

The set of all embeddings of M in N can be topologized so we get
the space of embeddings Emb(M,N). 1

For many M and N, this is a topologically interesting space, so we
want to know

π∗(Emb(M,N)), H∗(Emb(M,N)), H∗(Emb(M,N)).

In particular, we have space of long knots:

1In practice, we actually take the homotopy fiber of the inclusion
{embeddings} →֒ {immersions}.



I.1. Space of long knots in Rn, n ≥ 3

Kn = {embeddings K : R →֒ Rn, fixed outside a compact set}

= space of long knots

K ∈ Kn

Classical knot theory is concerned with computing

H0(K
3), which is generated (over R, say) by knot types,

i.e. by isotopy classes of knots (isotopy is homotopy in the
space of embeddings); and

H0(K3), the set of knot invariants, i.e. locally constant
(R-valued) functions on K3, i.e. functions that take the same
value on isotopic knots.

However, higher (co)homology and homotopy are also interesting,
even when n > 3 (even though H0 and H0 are trivial in this case).



I.2. Configuration space integrals: linking number

Related to the space of classical knots K3 is

L32 = {embeddings R ⊔ R →֒ R3, fixed outside a compact set}

= space of long (string) links of two components

Define

Conf(p,Rn) = {(x1, x2, ..., xp) ∈ (Rn)p : xi 6= xj for i 6= j}

= configuration space of p points in Rn

Consider the maps Φ and π:

Φ: R× R× L32
evaluation // Conf(2,R3)

direction // S2

(x1, x2, L = (K1,K2))
✤ // (K1(x1),K2(x2))

✤ // K2(x2)−K1(x1)
|K2(x2)−K1(x1)|

K1(x1)K2

K2(x2)

Φ
K1

π : R× R× L32
projection // L32 (trivial bundle)



I.2. Configuration space integrals: linking number

So have a diagram
R× R× L32

Φ //

π

��

S2

L32

which, on the complex of deRham cochains (differential forms),
gives a diagram

Ω∗(R× R×L32)

π∗

��

Ω∗(S2)
Φ∗

oo

Ω∗−2(L32)

Here Φ∗ is the usual pullback and π∗ is integration along the fiber,
or pushforward – a way to create forms on the base space of a
bundle from forms on the total space, shifted by the dimension of
the fiber.



I.2. Configuration space integrals: linking number

Let symS2 ∈ Ω2(S2) be the unit volume form on S2, i.e.

symS2 =
x dydz − y dxdz + z dxdy

4π(x2 + y2 + z2)3/2

Let α = Φ∗(symS2). Then the linking number is

Link(K1,K2) = π∗(α) =

∫

R×R
α ∈ Ω0(L32)

This is indeed a closed form, i.e. an element of H0(L32), and hence
an invariant of two-component links (this goes back to Gauss).

Now try to do the same, but for a single knot rather than a link.



I.2. Configuration space integrals: try to mimic lk(K1,K2)

The picture is
K (x1)

K

Φ

K (x2)

And the corresponding diagram is

Conf(2,R)×K3 Φ //

π
��

S2

K3

The first issue is that an integral over Conf(2,R) may not
converge since this space is open. So we compactify:



I.2. Configuration space integrals: Fulton-MacPherson
compactification

Definition

Let Conf[k ,Rn] be the Fulton-MacPherson compactification of
Conf(k ,Rn).

Some properties:

Conf[k ,Rn] is homotopy equivalent to Conf(k ,Rn);

Conf[k ,Rn] is a manifold with corners;

Boundary of Conf[k ,Rn] is characterized by points colliding
with directions and relative rates of collisions kept track of;

Stratification of the boundary given by stages of collisions of
points; this stratification is encoded by trees;

Works for configurations in any manifold, not just Rn.



I.2. Configuration space integrals: simplest case for knots

But, even after compactifying, we still do not get an invariant.
The next case is that of four points and two directions:

Φ13

K

Φ24

K (x2)

K (x4)K (x1)

K (x3)

The maps are

Conf[4,R]×K3 Φ=Φ13×Φ24 //

π
��

S2 × S2

K3

Let α = Φ∗(sym2
S2). Since α and Conf[4,R], the fiber of π, are

both 4-dimensional, we get a 0-form

I ( ,K ) = π∗(α) =

∫

Conf[4,R]
α



I.2. Configuration space integrals: simplest case for knots

So I ( ,K ) is a 0-form, i.e. an element of Ω0(K3). But is it
a closed form, that is, is it an element of H0(K3) – an invariant?

Want dI ( ,K ) = 0. Stokes’ Theorem says that

dI ( ,K ) = π∗(dα) + (∂π)∗(α)

= (∂π)∗(α) (π∗(dα) = 0 since symS2 is closed)

Here (∂π)∗(α) is the pushforward along codimension one faces of
Conf[4,R].

These faces can be represented by diagrams as follows.



I.2. Configuration space integrals: boundary diagrams

If there are four points moving on the knot, and two directions are kept
track of as above, the diagram encoding this information is

31 2 4

Codimension one faces (collisions of points) are then encoded by
diagrams obtained from the above one by contracting segments between
points (this mimics collisions)

1=2=3=4

1 2 3=4

1 2=3=4

1=2 43 41 2=3

41=2=3

(Loop corresponds to the derivative map.)
It turns out that the integrals corresponding to the bottom three
diagrams vanish, but not necessarily for the top three.

One way to resolve this: Look for another space to integrate over which

has the same three faces and subtract the integrals.



I.2. Configuration space integrals: the fix

The diagram that fits what we need is

4

1 2 3

since, when we contract edges to get 4=1, 4=2, and 4=3, we get
the same three relevant pictures as before (up to relabeling).

This suggests that we want a space of four configuration points in
R3, three of which lie on a knot. In other words, we want the
following picture:

K(x3)
K

x4K(x2)

Φ24 Φ34

K(x1)
Φ14



I.2. Configuration space integrals: the fix

To make this precise, it turns out we can define a bundle
(Bott-Taubes)

π : Conf[3, 1;K3,R3]→ K3

whose fiber over K ∈ K3 is the configuration space of four points,
three of which are constrained to lie on K .

Let

Φ = Φ14 × Φ24 × Φ34 : Conf[3, 1;K3,R3] −→ (S2)3

be the map giving the three directions as in the previous picture.

So the relevant maps are

Conf[3, 1;K,R3]
Φ //

π
��

(S2)3

K



I.2. Configuration space integrals: the fix

Let α′ = Φ∗(sym3
S2). This form can be integrated along the fiber

Conf[3, 1;K ,R3] over K . Thus for each K ∈ K3, we get an integral

I ( ,K ) = π∗(α
′) =

∫

Conf[3,1;K ,R3]
α′

It turns out that the boundary contributions for this integral are
zero except for the three boundary pieces we care about. So we get

Theorem (Altschuler-Friedel, Bar-Natan)

The map
K −→ R

K 7−→
(

I ( ,K )− I ( ,K )
)

is a knot invariant, i.e. an element of H0(K3). Further, it is a finite
type two invariant.



Digression on finite type invariants

Definition

A knot invariant is finite type k if it vanishes on the signed sums of
resolutions of knots with k self-intersections.

Finite type invariants have received much attention in the last 15
years:

Motivated by physics (Chern-Simons Theory);

Connected to Lie algebras, three-manifold topology, etc.

Conjecture

The set of finite type invariants is a complete set of invariants.

Getting back to configuration space integrals, there is no reason to
stop at four configuration points:



I.2. Configuration space integrals: general case

T Dk ={R-vect. sp. gen’d by trivalent diagrams with 2k vertices,

modulo STU and IHX relations}.

(STU and IHX are some relations on the vector space of diagrams.)

Example

T D2 = { , , , }

T D3 = { , , , , etc.}



I.2. Configuration space integrals: general case

Given D ∈ T Dk with p vertices on the segment and q off the
segment, again have a bundle

Conf[p, q;K3,R3] −→ K3

Also have map

Φ: Conf[p, q;K3,R3] −→ (S2)e

where

Φ is the product of the direction maps between pairs of
configuration points corresponding to the edges of D, and

e is the number of edges of D.

Let α = Φ∗(syme
S2).

Then for each K ∈ K3, have integral

I (D,K ) = π∗(α) =

∫

Conf[p,q;K ,R3]
α



I.2. Configuration space integrals: general case

Let Wk = T D∗k (space of weight systems).

Theorem (Bott-Taubes, D.Thurston)

For each W ∈ Wk , the map

K3 −→ R

K 7−→
∑

D∈T Dk

W (D)I (D,K )

is a knot invariant (up to the anomalous correction). Further, it is
a finite type k invariant. In fact, we have an isomorphism

Wk ∼=

configuration space integrals // {finite type k invariants} ⊂ H0(K3).

This theorem is also called the Fundamental Theorem of Finite
Type (or Vassiliev) Invariants and was first proved by Kontsevich
using the famous Kontsevich Integral



I.3. Generalization to knot spaces in dimension > 3

Recall that for Kn, n ≥ 4, we are interested in understanding its
topology, namely we would like to know

H∗(K
n) and H∗(Kn).

H0(Kn) and H0(K
n) are now trivial, but higher (co)homology is

very interesting.

Idea: produce cohomology classes of Kn in various degrees (and
not just in degree 0) using configuration space integrals.



I.3. Generalization to knot spaces in dimension > 3

Take more general diagrams (at least trivalent), such as

For each n ≥ 3, let

Dn = {R-vect. sp. gen’d by diagrams with valence ≥ 3},

where diagrams are connected, vertices are labeled, no loops on
off-segment vertices, edges are labeled or oriented (depending on
parity of n). Mod out by diagrams with double edges and impose
some sign relations.

Degree of D ∈ D is

deg(D) = 2(#edges)− 3(#off-segment vert.)− (#segment vert.)



I.3. Generalization to knot spaces in dimension > 3

Coboundary δ is given by contracting non-chord and non-loop
edges and segments, for example

δ
(

(last two are zero)

)

= ±

± ±

±

Easy to see that δ raises degree by 1 and that δ2 = 0. Thus

(Dn, δ) is a cochain complex.



I.3. Generalization to knot spaces in dimension > 3

For each D ∈ Dn and K ∈ Kn, we can still set up the integral
I (D,K ) as before. The only difference is that we will not
necessarily get a form in degree zero but in some degree of Ω∗(Kn).

Theorem (Cattaneo, Cotta-Ramusino, Longoni)

For n > 3, configuration space integrals give a cochain map

IK : (D
n, δ) −→ (Ω∗(Kn), d).

Corollary

The knot space Kn, n > 3, has nontrivial cohomology beyond
arbitrarily high dimension.

Conjecture

This map is a quasi-isomorphism.



I.3. Generalization to knot spaces in dimension > 3

This is compatible with what we already did in the case of classical
knots K3:

For n = 3, one does not get a cochain map in all degrees, but in
degree zero the map can be modified so that it does commute with
the differential. So we can see what happens on H0. It turns out
that

H0(D3) = T D (trivalent diagrams)

So kernel of δ in degree zero is defined by imposing the the STU
and IHX relations. Thus we get a map (after identifying T D with
its dual, the weight systems W),

(H0(D3))∗ =W −→ H0(K).

But we already know that the image of this map is precisely the
finite type knot invariants.



I.4. Configuration space integrals for spaces of links

Let n ≥ 3 and m ≥ 1. Related to Kn are

Lnm = {embeddings ⊔m R →֒ Rn}

= space of long (string) links

Hn
m = {link maps ⊔m R →֒ Rn}

= space of homotopy long (string) links

Bnm = {embeddings with positive derivative ⊔m R →֒ Rn}

= space of pure braids

All maps are standard outside a compact set;

A link map is a smooth map with images of the copies of R
disjoint.

(As with knots, we in practice work with the homotopy fiber of the

inclusion embeddings →֒ immersions for Lnm and Bn
m.)



I.4. Configuration space integrals for spaces of links

Bnm ⊂ L
n
m ⊂ H

n
m;

In π0(H
n
m), can pass a strand through itself so this can be

thought of as space of “links without knotting”.

Example

← K ∈ Kn

H ∈ Hn
3

L ∈ Bn3 ⊂ L
n
3 ⊂ H

n
3



I.4. Configuration space integrals for spaces of links

Recall the cochain map

IK : D
n −→ Ω∗(Kn)

Generalize the diagram complex Dn to a complex LDn
m and a

subcomplex HDn
m.

LDn
m is defined the same way as Dn except there are now m

segments, e.g.

∈ LDn
4

HDn
m is defined by imposing: If there exists a path between

distinct vertices on a given segment, then it must pass through a
vertex on another segment.



I.4. Configuration space integrals for spaces of links

Theorem (Koytcheff, Munson, V.)

There are integration maps IL and IH and a commutative diagram

HDn
m

IH //
� _

��

Ω∗(Hn
m)

��
LDn

m

IL // Ω∗(Lnm)

IL is a cochain map for n > 3 and IH is a cochain map for n ≥ 3.
Further, for n = 3, we have isomorphisms

(H0(LD3
m))
∗ ∼=
−→ {fin. type inv’s of L3m} ∈ H0(L3m)

(H0(HD3
m))
∗ ∼=
−→ {fin. type inv’s of H3

m} ∈ H0(H3
m)

Conjecture

IL and IH are quasi-isomorphisms for n > 3 and n ≥ 3, respectively.



I.4. Configuration space integrals for spaces of links

It is known that Milnor invariants of long homotopy links are finite
type invariants. Thus get

Corollary

The map IH provides configuration space integral expressions for
Milnor invariants of H3

m.

Remarks:

1 It is somewhat surprising that configuration space integrals
can be defined for homotopy links.

2 Can do all this for braids as well. One should be able to
connect to work of T. Kohno on braids and Chen integrals.



Generalization to spaces of embeddings of Rk in Rn

K. Sakai has recently done a lot of work on configuration space
integrals:

Produces a cohomology class of K3 in degree one that is
related to the Casson invariant using integrals;

(with Watanabe) There is a diagram complex Dk,n and a
linear map

Dk,n −→ Emb(Rk ,Rn)

which is a cochain map for some subcomplexes of Dk,n and
certain parity conditions on k and n. Also have some
non-triviality results;

New interpretation of the Haefliger invariant for Emb(Rk ,Rn)
for some k and n.

(The story for knots and links connects to functor calculus, as we
will see next, and it would be nice to do the same for this work).



II.1. General manifold calculus of functors

Let Top be the category of topological spaces and let

O(M) = category of open subsets of M with inclusions as morphisms.

Manifold calculus studies functors

F : O(M)op −→ Top

One such functor is the space of embeddings Emb(−,N), where N
is a smooth manifold, since, given an inclusion

O1 →֒ O2

of open subsets of M, there is a restriction

Emb(O2,N)→ Emb(O1,N).



II.1. General manifold calculus of functors

For any functor F : O(M)op → Top, the theory produces a “Taylor
tower” of approximating functors/fibrations

T∞F (−) = inverse limit of the tower

��
.
.
.

��
F (−)

>>⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥⑥
//

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

❄❄
❄❄

TkF (−)

��
Tk−1F (−)

��
.
.
.

��
T0F (−)



II.1. General manifold calculus of functors

Theorem (Goodwillie-Klein-Weiss)

For F = Emb(−,N) and for 4dim(M) ≤ dim(N), the Taylor tower
converges on (co)homology, i.e.

H∗(Emb(−,N)) ∼= H∗(T∞ Emb(−,N)).

In particular, evaluating at M gives

H∗(Emb(M,N)) ∼= H∗(T∞ Emb(M,N)).

For dim(M) + 3 ≤ dim(N), same is true for π∗.

Note that when M is 1-dimensional, N has to be at least
4-dimensional in both conditions.

Let’s see how this theory applies in the case of long knots:



II.2. Taylor tower for the space of long knots in Rn, n ≥ 3

Remember that Kn is the space of long embeddings of R in Rn.
To construct TkK

n, let I1, ..., Ik+1 be disjoint subintervals of R and

∅ 6= S ⊆ {1, ..., k + 1}.

Then let

Kn
S = Emb(R \

⋃

i∈S

Ii , Rn) = space of “punctured knots”

Example

an element of Kn
{1,2,3,4}

These spaces are not very interesting on their own, and are in fact
connected even for n = 3. But...



II.2. Taylor tower for the space of long knots in Rn, n ≥ 3

Have restriction maps Kn
S → K

n
S∪{i} given by punching another

hole. These spaces and maps then form a diagram of knots with
holes (such a diagram is sometimes called a punctured cube).

Example

When k = 2, we get

Kn
{1}

��

%%❑❑
❑❑

❑

Kn
{2}

//

��

Kn
{1,2}

��

Kn
{3}

//

$$❍
❍❍

❍
Kn
{1,3}

%%❑❑
❑❑

❑

Kn
{2,3}

// Kn
{1,2,3}



II.2. Taylor tower for the space of long knots in Rn, n ≥ 3

Definition

The kth stage of the Taylor tower for Kn, n ≥ 3, is the homotopy
limit of the punctured cube from the previous slide. In other words,

TkK
n = holim

∅6=S⊆{1,..,k+1}
Kn

S .

Homotopy limit of a diagram should be thought of as the limit,
namely the subspace of the product of the spaces in the diagram
consisting of points that are compatible with the maps in the
diagram, but “fattened up” so that it is made homotopy invariant.



II.2. Taylor tower for the space of long knots in Rn, n ≥ 3

Not hard to see what this homotopy limit is: The punctured
cubical diagram from before can be redrawn as

Kn
{1}

yysss
ss

%%❑❑
❑❑

❑

Kn
{1,3}

// Kn
{1,2,3} Kn

{1,2}
oo

Kn
{3}

::✈✈✈✈
// Kn

{2,3}

OO

Kn
{2}

oo

dd❍❍❍❍

Then a point in T2K
n is

A point in each Kn
{i} (once-punctured knot);

A path in each Kn
{i ,j} (isotopy of a twice-punctured knot) ;

A two-parameter path in Kn
{1,2,3} (two-parameter isotopy of a

thrice-punctured knot); and

Everything is compatible with the restriction maps.



II.2. Taylor tower for the space of long knots in Rn, n ≥ 3

There is a map
Kn −→ TkK

n

given by punching holes in the knot (the isotopies in the homotopy limit
are thus constant).

Easy to see: For k ≥ 3, Kn is the actual pullback (limit) of the
subcubical diagram.

So the strategy is to replace the limit, which is what we really care about,
by the homotopy limit, which is hopefully easier to understand.

There is also a map, for all k ≥ 1,

TkK
n −→ Tk−1K

n,

since the diagram defining Tk−1Kn is a subdiagram of the one defining
TkKn and hence the homotopy limit of the bigger diagram maps to the
homotopy limit of the smaller one.

Putting these maps and spaces together, we get the Taylor tower for Kn,

n ≥ 3:



II.2. Taylor tower for the space of long knots in Rn, n ≥ 3

T∞Kn

��
...

��
Kn

??��������������������
//

''PP
PP

PP
PP

PP
PP

P

��✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹
✹ TkK

n

��
Tk−1K

n

��
...

��
T0K

n

By Goodwillie-Klein-Weiss, this tower converges on homotopy and

(co)homology for n ≥ 4.



II.3. Cosimplicial model for the Taylor tower

By retracting the arcs of a punctured knot, we get

Kn
S ≃ Conf(|S | − 1,Rn).

The restriction maps “add a point”:

↓

x2x1

x3

x1

x3

x2
x ′2

This is made precise with a cosimplicial space:



II.3. Cosimplicial model for the Taylor tower

Definition

Let (K n)• be the cosimplicial space

(K n)• =
(

Conf〈0,Rn〉
//
// Conf〈1,Rn〉oo //

//
// Conf〈2,R

n〉 · · ·
)

,oo
oo

where Conf〈p,Rn〉 is a variant of the Fulton-MacPherson

compactification, cofaces
d i

→ are doubling (diagonal) maps and

codegeneracies
s i

← are forgetting maps.

Let Totk(K n)• be the kth partial totalization of (K n)•, i.e. the homotopy
limit of the truncation of (K n)• at kth stage and let Tot(K n)• the
inverse limit of these partial totalizations.

Theorem (Sinha)

For n ≥ 2 and k ≥ 0, Totk(K n)• ≃ TkKn (and so Tot(K n)• ≃ T∞Kn).

Combining this with Godwillie-Klein-Weiss, we get

Corollary

For n ≥ 4, Tot(K n)• ≃ Kn.



II.4. Application to homology of Kn, n ≥ 4

The reason we care about the cosimplicial model is that we have the
Bousfield-Kan homology spectral sequence for (K n)•, n ≥ 3. It starts
with

E 1
−p,q = Hq(Conf(p,R

n)).

For n ≥ 4, this spectral sequence converges to H∗(Tot(K
n)•), and hence

to H∗(Kn) by Goodwillie-Klein-Weiss.

Theorem (Lambrechts-Turchin-V. for n ≥ 4, Kontsevich/V. for n = 3 on
the diagonal, Moriya/Songhafouo-Tsopméné for n = 3 everywhere)

This homology spectral sequence collapses rationally at the E 2 page for
n ≥ 3.

Main ingredient in the proof: Kontsevich’s rational formality of the little
n-cubes operad (plus model category techniques for n = 3). Key step in
formality – configuration space integrals!

(Collapse also true for the homotopy spectral sequence for n ≥ 4; this is due to

Arone-Lambrechts-Turchin-V.)



II.4. Application to homology of Kn, n ≥ 4

So for n ≥ 4, the homology of the E 2 page is the homology of Kn.
Fancier way to say this, using the fact that (K •)n also comes from the
little cubes operad, is

Theorem

For n ≥ 4, H∗(Kn;Q) ∼= HH∗(POISSn−1), where POISSn−1 is the
operad obtained by taking the homology of the little n-cubes operad.

The main point:

H∗(Kn;Q) is built out of H∗(Conf(p,R
n);Q), which is understood.

In fact, it can be represented combinatorially with graph complexes.
So we have a nice combinatorial description of H∗(Kn;Q), n ≥ 4.

The cohomological version is

Corollary

The differential graded algebra model for H∗(Kn;Q), n ≥ 4, is
(

⊕∞
p=0 s

−p H∗(Conf(p,Rn);Q),
∑

±H∗(d i )
)

.



II.4. Application to finite type invariants of K3

Want to see what this machinery can say about knot invariants.
The cohomology spectral sequence for (K 3)• is trying to compute
these in degree zero – we do not even know that it converges to
H0(Tot(K 3)•), let alone to H0(K3). More precisely, we just have
maps

⊕

p

E−p,p2 −→ H0(Tot(K 3)•) −→ H0(K3),

where E−p,p2 is on the diagonal of the spectral sequence, i.e. in
total degree 0. We do not know if these maps are isomorphisms.

It is not hard to see that E−p,p2 can be represented exactly by
trivalent diagrams modulo STU and IHX relations from the theory
of finite type knot invariants.



II.4. Application to finite type invariants of K3

Theorem (V.)

The Taylor tower for K3 classifies finite type knot invariants. More
precisely, for each k ≥ 0, there is an isomorphism (over R)

H0(T2kK
3) ∼= {finite type k invariants} ⊂ H0(K3).

(And H0(T2kK
3) ∼= H0(T2k+1K

3).)

Idea of proof.

Show that configuration space integrals factor through the Taylor
tower and that all the maps are isomorphisms:

Wk
configuration space integrals

∼=
//

∼=

((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘ {fin. type k invariants} ⊂ H0(K3)

H0(T2kK
3) ∼= H0(T2k+1K

3)

∼=
22❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢



II.5. Two-variable manifold calculus

If M = P
∐

Q, can apply two-variable calculus (Munson-V.) for
contravariant functors F on O(P)×O(Q) (rather than on
O(P

∐

Q)). Get bitower
T0,∞F (−,−)

��

· · ·oo · · ·oo T∞,∞F (−,−)oo

��
.
.
.

��

.

.

.

��
T0,1F (−,−)

��

T1,1F (−,−)oo

��

· · ·oo

��

T
∞,1F (−,−)oo

��
T0,0F (−,−) T1,0F (−,−)oo · · ·oo T

∞,0F (−,−)oo

Connection to single-variable calculus: TkF = holim
k1+k2≤k

Tk1,k2F ;

Have same convergence result as in ordinary manifold
calculus: For F = Emb(P

∐

Q,N) and same dimensional
assumptions, the bitower converges.



II.5. Multi-cosimplicial model for links

Let I1, ..., Ik1+1 be disjoint intervals in R. Same for J1, ..., Jk2+1.
Then

Definition

Tk1,k2L
n
2 = holim

∅6=S1⊆{1,...,k1}
∅6=S2⊆{1,...,k2}

Emb
(

(

R \
⋃

i∈S1

Ii
)

∐

(

R \
⋃

j∈Sj

Jj
)

, Rn
)

.

Now get a bicosimplicial space (Ln)•,• whose (k1, k2) entry is
Conf〈k1 + k2,R

n〉 (can “double” and “forget” points in two
directions).

Let Totk1,k2(Ln)•,• be the (k1, k2)th partial totalization of (Ln)•,•.

Proposition (Munson-V.)

For n ≥ 2 and k1, k2 > 0, Totk1,k2(Ln)•,• ≃ Tk1,k2L
n
2.



II.5. Multi-cosimplicial model for links

Want to associate a spectral sequence to this bicosimplicial space.
To do this, first take the diagonal cosimplicial space

(Ln)•,•diag =
{

Conf〈2k ,Rn〉
}∞

k=0
.

It is not hard to see that

Tot(Ln)•,• = Tot(Ln)•,•diag .

As before, have the Bousfield-Kan homology spectral sequence for
(Ln)•,•diag , n ≥ 3, with

E 1
−p,q = Hq(Conf(2p,R

n))

which, for n ≥ 4, converges to

H∗(Tot(L
n)•,•diag ) = H∗(L

n
2).

(Similar for the homotopy spectral sequence.)



II.5. Modifications for homotopy string links and braids

Recall the spaces Hn
2 and Bn2 of homotopy string links and braids.

Again have bicosimplicial models for the bitowers of punctured
homotopy links and braids, as well as their diagonal cosimplicial
spaces, except:

For Hn
2, the kth space in the diagonal cosimplicial space is

Conf〈k , k ; Rn〉 = compactification of

{(x1, ..., xk , y1, ..., yk) ∈ (Rn)2k : xi 6= yj}

This is a kind of a compactified “partial configuration space”
or a complement of a hyperspace arrangement.

For Bn2 , the kth space in the diagonal cosimplicial space is

(Conf〈2,Rn−1〉)k

and this turns out to give the standard cosimplicial model for
ΩConf(2,Rn−1) (which is exactly what braids are).



II.5. Generalization to more than two strands

Generalization to m-component links is straightforward:
Get, for n ≥ 3,

m-dimensional Taylor towers for Lnm, H
n
m, and B

n
m;

m-cosimplicial models for these towers;

diagonal cosimplicial spaces

(Ln)•,•,...,•diag consisting of Conf〈km,Rn〉, k ≥ 0;

(Hn)•,•,...,•diag consisting of Conf〈k , k , ..., k ;Rn〉, k ≥ 0; and

(Bn)•,•,...,•diag consisting of (Conf〈m,Rn−1〉)k , k ≥ 0

modeling the towers (so their totalizations are equivalent to inverse
limits of the towers);

Bousfield-Kan homology (and homotopy) spectral sequences for
these cosimplicial spaces.

for n ≥ 4,

H∗(Tot(L
n)•,•,...,•diag ) ∼= H∗(L

n
m) and H∗(Tot(B

n)•,•,...,•diag ) ∼= H∗(B
n
m)

(same for π∗)

So how many of the results we had for knots carry over?



II.6. Application to link cohomology

Theorem (Munson-V.)

For n ≥ 4, the homology spectral sequences for all three cosimplicial
spaces converge to their totalization. The spectral sequences for
(Ln)•,•,...,•diag and (Bn)•,•,...,•diag hence converge to Lnm and Bn

m.

Do the rational homology (and homotopy) spectral sequences for
(Ln)•,•,...,•diag and (Bn)•,•,...,•diag collapse at E 2 for n ≥ 3 (in the spirit of
Lambrechts-Turchin-V./Moriya/Songhafouo-Tsopméné)?

Consequence: A combinatorial description, via graph complexes, of rational

homology of Ln
m and Bn

m (latter is already understood).

Does the rational homology (and homotopy) spectral sequence for
(Hn)•,•,...,•diag collapse at E2 for n ≥ 3?

This seems to be a harder problem, and solving it would not necessarily give a

description of rational cohomology of Hn
m since we do not know if the Taylor

tower for Hn
m converges.



II.6. Application to finite type link invariants

But if we in particular had collapse on the diagonal for n = 3 for
the three cosimplicial spaces, we would also have

Consequence: Taylor multi-towers classify finite type invariants of
L3m, H

3
m, and B

3
m.

(The connection between finite type invariants and Taylor multi-towers

for these three spaces is given by configuration space integrals as in the

case of knots.)

Further consequence: Since Milnor invariants of H3
m are finite

type, this would place these classical invariants in the context of
manifold calculus of functors.



Further work

So the main message is

Taylor towers contain information about topology of knots
and links and configuration space integrals help us understand it.

Further questions:

Show that the Taylor tower for Hn
m, n ≥ 4, converges;

Figure out what the Taylor tower for all the spaces mentioned in this
talk (including knots) converge to for n = 3 (group completion?);

Reprove, in the setting of Taylor towers, that finite type invariants
separate braids (Kohno, Bar-Natan) and homotopy string links
(Habegger-Lin);

See if this helps in proving the same result for knots and links;

Generalize Milnor invariants to homotopy links of spheres (or
planes) in any dimension and connect with work of Koschorke.
Show, using manifold calculus, that these generalizations suffice for
separation of link maps of spheres.

Connect to work of Sakai and Sakai-Watanabe, as mentioned before.



Thank you!


