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Plan of the talk

Main point: Manifold calculus of functors can be used effectively
to study algebraic topology of various knot and link spaces.

Outline:

Part I: Knots

1. Manifold calculus of functors

2. Taylor tower for the space of long knots

3. Cosimplicial model for the Taylor tower

4. Application to homology of the space of long knots

5. Application to finite type knot invariants

Part II: Links

6. Multivariable manifold calculus of functors

7. Multi-cosimplicial model for links, homotopy links, and braids

8. Applications to link cohomology and finite type link invariants



1. Manifold calculus of functors

Definition

Let M and N be smooth manifolds. An embedding of M in N is
an injective map f : M →֒ N whose derivative is injective and
which is a homeomorphism onto its image.

When M is compact, an embedding is an injective map with
injective derivative.

The set of all embeddings of M in N can be topologized so we get
the space of embeddings Emb(M,N) (a special case of a mapping
space). 1

For many M and N, this is a topologically interesting space, so we
want to know

π∗(Emb(M,N)), H∗(Emb(M,N)), H∗(Emb(M,N)).

1In practice, we actually take the homotopy fiber of the inclusion
{embeddings} →֒ {immersions}.



1. Manifold calculus of functors

Let Top be the category of topological spaces and let

O(M) = category of open subsets of M with inclusions as morphisms.

Manifold calculus studies functors

F : O(M)op −→ Top

One such functor is the space of embeddings Emb(−,N), where N
is a smooth manifold, since, given an inclusion

O1 →֒ O2

of open subsets of M, there is a restriction

Emb(O2,N)→ Emb(O1,N).



1. Manifold calculus of functors

For any functor F : O(M)op → Top, the theory produces a “Taylor
tower” of approximating functors/fibrations

T∞F (−) = inverse limit of the tower
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1. Manifold calculus of functors

Theorem (Goodwillie-Klein-Weiss)

For F = Emb(−,N) and for 4dim(M) ≤ dim(N), the Taylor tower
converges on (co)homology, i.e.

H∗(Emb(−,N)) ∼= H∗(T∞ Emb(−,N)).

In particular, evaluating at M gives

H∗(Emb(M,N)) ∼= H∗(T∞ Emb(M,N)).

For dim(M) + 3 ≤ dim(N), same is true for π∗.

Note that when M is 1-dimensional, N has to be at least
4-dimensional in both conditions.

Let’s see how this theory applies in the case of long knots:



2. Taylor tower for the space of long knots in Rn, n ≥ 3

Kn = {embeddings K : R →֒ Rn
, fixed outside a compact set}

= space of long knots

K ∈ Kn

Classical knot theory is concerned with computing

H0(K
3), which is generated (over R, say) by knot types,

i.e. by isotopy classes of knots (isotopy is homotopy in the
space of embeddings); and

H0(K3), the set of knot invariants, i.e. locally constant
(R-valued) functions on K3, i.e. functions that take the same
value on isotopic knots.

However, higher (co)homology and homotopy are also interesting,
even when n > 3 (even though H0 and H0 are trivial in this case).



2. Taylor tower for the space of long knots in Rn, n ≥ 3

To construct TkK
n, let I1, ..., Ik+1 be disjoint subintervals of R and

∅ 6= S ⊆ {1, ..., k + 1}.

Then let

Kn
S = Emb(R \

⋃

i∈S

Ii , Rn) = space of “punctured knots”

Example

an element of Kn
{1,2,3,4}

These spaces are not very interesting on their own, and are in fact
connected even for n = 3. But...



2. Taylor tower for the space of long knots in Rn, n ≥ 3

Have restriction maps Kn
S → K

n
S∪{i} given by punching another

hole. These spaces and maps then form a diagram of knots with
holes (such a diagram is sometimes called a punctured cube).

Example

When k = 2, we get

Kn
{1}
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Kn
{2}

//
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Kn
{1,2}
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Kn
{3}

//
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Kn
{1,3}
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Kn
{2,3}

// Kn
{1,2,3}



2. Taylor tower for the space of long knots in Rn, n ≥ 3

Definition

The kth stage of the Taylor tower for Kn, n ≥ 3, is the homotopy
limit of the punctured cube from the previous slide. In other words,

TkK
n = holim

∅6=S⊆{1,..,k+1}
Kn

S .

Homotopy limit of a diagram should be thought of as the limit,
namely the subspace of the product of the spaces in the diagram
consisting of points that are compatible with the maps in the
diagram, but “fattened up” so that it is made homotopy invariant.



2. Taylor tower for the space of long knots in Rn, n ≥ 3

Not hard to see what this homotopy limit is: The punctured
cubical diagram from before can be redrawn as

Kn
{1}

yysss
ss

%%❑❑
❑❑

❑

Kn
{1,3}

// Kn
{1,2,3} Kn

{1,2}
oo

Kn
{3}

::✈✈✈✈
// Kn

{2,3}

OO

Kn
{2}

oo

dd❍❍❍❍

Then a point in T2K
n is

A point in each Kn
{i} (once-punctured knot);

A path in each Kn
{i ,j} (isotopy of a twice-punctured knot) ;

A two-parameter path in Kn
{1,2,3} (two-parameter isotopy of a

thrice-punctured knot); and

Everything is compatible with the restriction maps.



2. Taylor tower for the space of long knots in Rn, n ≥ 3

There is a map
Kn −→ TkK

n

given by punching holes in the knot (the isotopies in the homotopy limit
are thus constant).

Easy to see: For k ≥ 3, Kn is the actual pullback (limit) of the
subcubical diagram.

So the strategy is to replace the limit, which is what we really care about,
by the homotopy limit, which is hopefully easier to understand.

There is also a map, for all k ≥ 1,

TkK
n −→ Tk−1K

n
,

since the diagram defining Tk−1Kn is a subdiagram of the one defining
TkKn and hence the homotopy limit of the bigger diagram maps to the
homotopy limit of the smaller one.

Putting these maps and spaces together, we get the Taylor tower for Kn,

n ≥ 3:



2. Taylor tower for the space of long knots in Rn, n ≥ 3

T∞Kn
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By Goodwillie-Klein-Weiss, this tower converges on homotopy and

(co)homology for n ≥ 4.



3. Cosimplicial model for the Taylor tower

Conf(p,Rn) = {(x1, x2, ..., xp) ∈ (Rn)p : xi 6= xj for i 6= j}

= configuration space of p points in Rn

By retracting the arcs of a punctured knot, we get

Kn
S ≃ Conf(|S | − 1,Rn).

The restriction maps “add a point”:

↓

x2x1

x3

x1

x3

x2
x ′2

To make this precise, need cosimplicial spaces.



3. Cosimplicial model for the Taylor tower

Definition

A cosimplicial space X • is a sequence of spaces {X n}∞n=0 with
coface maps

d i : X n −→ X n+1
, 0 ≤ i ≤ n + 1

and codegeneracy maps

s i : X n+1 −→ X n
, 0 ≤ i ≤ n

which satisfy the relations

d jd i = d id j−1
, i < j ;

s jd i =











d is j−1, i < j ;

Id , i < j , i = j + 1;

d i−1s j , i > j + 1;

(1)

s js i = s i−1s j , i > j .



3. Cosimplicial model for the Taylor tower

Can picture X • as

X • =
(

X 0

d0
//

d1
//
X 1s0oo d1

//

d0
//

d2
//

X 2 · · ·
)

.
s1oo

s0oo

Example

The cosimplicial simplex ∆• has the standard simplex ∆k as its kth
space, and the cofaces and codegeneracies are given by inclusions of faces
and projections onto faces.

Let
TotX • = Map(∆•

,X •)

Totk X • = Map
(

(kth truncation of ∆•), (kth truncation of X •)
)

Alternatively, can think of TotX • (Totk X •) as the homotopy limit of the
diagram X • (truncation of X •). Also have tower of partial totalizations

TotX • −→ · · · −→ Totk X • −→ · · · −→ Tot0 X •

where TotX • is the inverse limit.



3. Cosimplicial model for the Taylor tower

Cosimplicial spaces are very important in homotopy theory:

Any diagram of spaces X can be turned into a cosimplicial
space X • in such a way that

holimX ≃ TotX •;

Can associate to any X • the Bousfield-Kan (co)homology and
homotopy spectral sequences which try to compute

H∗(TotX •), H∗(TotX
•), and π∗(TotX

•).

Let’s get back to the Taylor tower for Kn:



3. Cosimplicial model for the Taylor tower

Definition

Let Conf〈k ,Rn〉 be (a slight variation of) the Fulton-MacPherson
compactification of Conf(k ,Rn).

Some properties:

Conf〈k ,Rn〉 is homotopy equivalent to Conf(k ,Rn);

Conf〈k ,Rn〉 is (almost) a manifold with corners;

Boundary of Conf〈k ,Rn〉 is characterized by points colliding
with directions and relative rates of collisions kept track of;

Stratification of the boundary given by stages of collisions of
points; this stratification is encoded by trees;

Works for configurations in any manifold, not just Rn.



3. Cosimplicial model for the Taylor tower

Definition

Let (Kn)• be the cosimplicial space

(Kn)• =
(

Conf〈0,Rn〉
//
// Conf〈1,Rn〉oo //

//
// Conf〈2,R

n〉 · · ·
)

,oo
oo

where the cofaces
d i

→ are doubling (diagonal) maps and the

codegeneracies
s i
← are forgetting maps.

Theorem (Sinha)

For n ≥ 2 and k ≥ 0, Totk(Kn)• ≃ TkK
n (and hence

Tot(Kn)• ≃ T∞K
n).

Combining this with the Godwillie-Klein-Weiss result about the
convergence of the Taylor tower, we get

Corollary

For n ≥ 4, Tot(Kn)• ≃ Kn.



3. Cosimplicial model for the Taylor tower and operads

It turns out that compactified configuration spaces form an operad
and that (Kn)•, n ≥ 4, arises from this operad (in the sense of
Gerstenhaber and Voronov). Using a general theory developed by
McClure and Smith, it follows that Tot(Kn)• admits an action of
the little discs operad for any n ≥ 3. A consequence is

Theorem (Sinha)

For n ≥ 4 and for some space Y ,

Kn ≃ Ω2Y .

Remarks:
1. Dwyer and Hess have described Y in terms of operad maps.
2. Budney has an action of the little discs operad on Kn, n ≥ 3,
that is geometric. It would be interesting to relate that action to
the one described here for n ≥ 4. (It is not clear, however, whether
our action extends to K3 since we do not have convergence of the
Taylor tower in that case.)



4. Application to homology of Kn, n ≥ 4

Recall that we have the Bousfield-Kan homology spectral sequence
for (Kn)•, n ≥ 3. It starts with

E 1
−p,q = Hq(Conf(p,R

n)).

For n ≥ 4, this spectral sequence converges to H∗(Tot(K
n)•), and

hence to H∗(K
n) by Goodwillie-Klein-Weiss.

Theorem (Lambrechts-Turchin-V. for n ≥ 4, Kontsevich/V. for
n = 3 on the diagonal, Moriya/Songhafouo-Tsopméné for n = 3
everywhere)

This homology spectral sequence collapses rationally at the E 2

page for n ≥ 3.

Main ingredient in the proof: Kontsevich’s rational formality of the
little n-discs operad (plus model category techniques for n = 3).

(Collapse also true for the homotopy spectral sequence for n ≥ 4; this is due to

Arone-Lambrechts-Turchin-V.)



4. Application to homology of Kn, n ≥ 4

So for n ≥ 4, the homology of the E 2 page is the homology of Kn.
Fancier way to say this, using the fact that (K •)n comes from the little
cubes operad, is

Theorem

For n ≥ 4, H∗(Kn;Q) ∼= HH∗(POISSn−1), where POISSn−1 is the
operad obtained by taking the homology of the little n-cubes operad.

The main point:

H∗(Kn;Q) is built out of H∗(Conf(p,R
n);Q), which is understood.

In fact, it can be represented combinatorially with graph complexes.
So we have a nice combinatorial description of H∗(Kn;Q), n ≥ 4.

The cohomological version is

Corollary

The differential graded algebra model for H∗(Kn;Q), n ≥ 4, is
(

⊕∞
p=0 s

−p H∗(Conf(p,Rn);Q),
∑

±H∗(d i )
)

.



5. Application to finite type invariants of K3

Want to see what this machinery can say about knot invariants,
namely elements of H0(K3). The cohomology spectral sequence
for (K 3)• is trying to compute these in degree zero – we do not
even know that it converges to H0(Tot(K 3)•), let alone to H0(K3).
More precisely, we just have maps

⊕

p

E−p,p2 −→ H0(Tot(K 3)•) −→ H0(K3),

where E−p,p2 is on the diagonal of the spectral sequence, i.e. in
total degree 0. We do not know if these maps are isomorphisms.

It is not hard to see that E−p,p2 can be represented by chord
diagrams modulo four-term relation from the theory of finite type
knot invariants.

Finite type knot invariants have received much attention in recent
years since they are conjectured to separate knots, i.e. form a
complete set of knot invariants.



5. Application to finite type invariants of K3

Theorem (V.)

The Taylor tower for K3 classifies finite type knot invariants. More
precisely, for each k ≥ 0, there is an isomorphism (over R)

H0(T2kK
3) ∼= {finite type k invariants} ⊂ H0(K3).

(And H0(T2kK
3) ∼= H0(T2k+1K

3).)

Main ingredient in the proof: Configuration space integrals.

This theorem puts finite type theory into a homotopy-theoretic
setting.



6. Two-variable manifold calculus

If M = P
∐

Q, can apply two-variable calculus (Munson-V.) for
contravariant functors F on O(P)×O(Q) (rather than on
O(P

∐

Q)). Get bitower
T0,∞F (−,−)

��

· · ·oo · · ·oo T∞,∞F (−,−)oo
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.
.
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.

.

.
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T0,1F (−,−)

��

T1,1F (−,−)oo
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· · ·oo

��

T
∞,1F (−,−)oo

��
T0,0F (−,−) T1,0F (−,−)oo · · ·oo T

∞,0F (−,−)oo

Connection to single-variable calculus: TkF = holim
k1+k2≤k

Tk1,k2F ;

Have same convergence result as in ordinary manifold
calculus: For F = Emb(P

∐

Q,N) and same dimensional
assumptions, the bitower converges.



7. Multi-cosimplicial model for links

Let n ≥ 3 and m ≥ 1. Define

Lnm = {embeddings ⊔m R →֒ Rn}

= space of long (string) links

Hn
m = {link maps ⊔m R →֒ Rn}

= space of homotopy long (string) links

Bnm = {embeddings with positive derivative ⊔m R →֒ Rn}

= space of pure braids

All maps are standard outside a compact set;

A link map is a smooth map with images of the copies of R
disjoint.



7. Multi-cosimplicial model for links

Bnm ⊂ L
n
m ⊂ H

n
m;

In π0(H
n
m), can pass a strand through itself so this can be

thought of as space of “links without knotting”.

Example

← K ∈ Kn

H ∈ Hn
3

L ∈ Bn3 ⊂ L
n
3 ⊂ H

n
3



7. Multi-cosimplicial model for links

Let I1, ..., Ik1+1 be disjoint intervals in R. Same for J1, ..., Jk2+1.
Then

Definition

Tk1,k2L
n
2 = holim

∅6=S1⊆{1,...,k1}
∅6=S2⊆{1,...,k2}

Emb
(

(

R \
⋃

i∈S1

Ii
)

∐

(

R \
⋃

j∈Sj

Jj
)

, Rn
)

.

Now get a bicosimplicial space (Ln)•,• whose (k1, k2) entry is
Conf〈k1 + k2,R

n〉 (can “double” and “forget” points in two
directions).

Let Totk1,k2(Ln)•,• be the (k1, k2)th partial totalization of (Ln)•,•.

Proposition (Munson-V.)

For n ≥ 2 and k1, k2 > 0, Totk1,k2(Ln)•,• ≃ Tk1,k2L
n
2.



7. Multi-cosimplicial model for links

Want to associate a spectral sequence to this bicosimplicial space.
To do this, first take the diagonal cosimplicial space

(Ln)•,•diag =
{

Conf〈2k ,Rn〉
}∞

k=0
.

It is not hard to see that

Tot(Ln)•,• = Tot(Ln)•,•diag .

As before, have the Bousfield-Kan homology spectral sequence for
(Ln)•,•diag , n ≥ 3, with

E 1
−p,q = Hq(Conf(2p,R

n))

which, for n ≥ 4, converges to

H∗(Tot(L
n)•,•diag ) = H∗(L

n
2).

(Similar for the homotopy spectral sequence.)



7. Modifications for homotopy string links and braids

Recall the spaces Hn
2 and Bn2 of homotopy string links and braids.

Again have bicosimplicial models for the bitowers of punctured
homotopy links and braids, as well as their diagonal cosimplicial
spaces, except:

For Hn
2, the kth space in the diagonal cosimplicial space is

Conf〈k , k ; Rn〉 = compactification of

{(x1, ..., xk , y1, ..., yk) ∈ (Rn)2k : xi 6= yj}

This is a kind of a compactified “partial configuration space”
or a complement of a hyperspace arrangement.

For Bn2 , the kth space in the diagonal cosimplicial space is

(Conf〈2,Rn−1〉)k

and this turns out to give the standard cosimplicial model for
ΩConf(2,Rn−1) (which is exactly what braids are).



7. Generalization to more than two strands

Generalization to m-component links is straightforward:
Get, for n ≥ 3,

m-dimensional Taylor towers for Lnm, H
n
m, and B

n
m;

m-cosimplicial models for these towers;

diagonal cosimplicial spaces

(Ln)•,•,...,•diag consisting of Conf〈kp,Rn〉, k ≥ 0;

(Hn)•,•,...,•diag consisting of Conf〈k , k , ..., k ;Rn〉, k ≥ 0; and

(Bn)•,•,...,•diag consisting of (Conf〈m,Rn−1〉)k , k ≥ 0

modeling the towers (so their totalizations are equivalent to inverse
limits of the towers);

Bousfield-Kan homology (and homotopy) spectral sequences for
these cosimplicial spaces.

for n ≥ 4,

H∗(Tot(L
n)•,•,...,•diag ) ∼= H∗(L

n
m) and H∗(Tot(B

n)•,•,...,•diag ) ∼= H∗(B
n
m)

(same for π∗)

So how many of the results we had for knots carry over?



8. Application to link cohomology

Theorem (Munson-V.)

For n ≥ 4, the homology spectral sequences for all three cosimplicial
spaces converge to their totalization. The spectral sequences for
(Ln)•,•,...,•diag and (Bn)•,•,...,•diag hence converge to Lnm and Bn

m.

Do the rational homology (and homotopy) spectral sequences for
(Ln)•,•,...,•diag and (Bn)•,•,...,•diag collapse at E 2 for n ≥ 3 (in the spirit of
Lambrechts-Turchin-V./Moriya/Songhafouo-Tsopméné)?

Consequence: A combinatorial description, via graph complexes, of rational

homology of Ln
m and Bn

m (latter is already understood).

Does the rational homology (and homotopy) spectral sequence for
(Hn)•,•,...,•diag collapse at E2 for n ≥ 3?

This seems to be a harder problem, and solving it would not necessarily give a

description of rational cohomology of Hn
m since we do not know if the Taylor

tower for Hn
m converges.



8. Application to finite type link invariants

But if we in particular had collapse on the diagonal for n = 3 for
the three cosimplicial spaces, we would also have

Consequence: Taylor multi-towers classify finite type invariants of
L3m, H

3
m, and B

3
m.

(The connection between finite type invariants and Taylor multi-towers

for these three spaces is given by configuration space integrals as in the

case of knots.)

Further consequence: Since Milnor invariants of H3
m are finite

type, this would place these classical invariants in the context of
manifold calculus of functors.



Further work

So the main message is

Taylor towers contain information about topology of knots and links.

Further questions:

Show that the Taylor tower for Hn
m, n ≥ 4, converges;

Figure out what the Taylor tower for all the spaces mentioned
in this talk (including knots) converge to for n = 3 (group
completion?);

Reprove, in the setting of Taylor towers, that finite type
invariants separate braids (Kohno, Bar-Natan) and homotopy
string links (Habegger-Lin);

See if this helps in proving the same result for knots and links;

Generalize Milnor invariants to homotopy links of spheres (or
planes) in any dimension and connect with work of Koschorke.
Show, using manifold calculus, that these generalizations
suffice for separation of link maps of spheres.



Thank you!


