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1. Introduction

This paper is concerned with the study of the cohomology of the space of homotopy
string links (or long homotopy links) Hnm using configuration space integrals, also
known asBott–Taubes integrals. This is the space of smooth maps ofm copies ofR
in R

n where the images of the various copies ofR are disjoint and where the map
is “xed outside some compact set (see De“nition2.3). Our main results are:

(i) For m ≥ 1 and n ≥ 4, there exists a certain di�erential algebra of diagrams
HDdk, bigraded by two natural numbers called the defect d (or degree in the
terminology of [7]) and order k. There exists a di�erential algebra map

IH : HDdk → � k(n−3)+d(Hnm), (1)

where � ∗ stands for the deRham complex of di�erential forms (Theorem4.33).
De“ning the main degree inHDdk to be k(n− 3) + d makesHD into a (singly
graded) di�erential graded algebra and the above map into a map of di�erential
graded algebras. When the defectd = 0, the induced map in cohomology is
injective.

(ii) For m ≥ 1 and n = 3, we get a similar map for defectd = 0 (which coincides
with main degree zero whenn = 3):

IH : HD0
k → � 0(Hnm), (2)

which takes closed forms to closed forms and is injective in cohomology. This
map produces all “nite type invariants of homotopy string links (Theorem 5.8).

(iii) As a consequence of the previous result, we can express Milnor invariants of
homotopy string links in R

3 (Theorem 5.13) completely in terms of con“gu-
ration space integrals. Using the weight systems for these invariants, we can
explicitly write down these formulae up to lower-order “nite type invariants
(which themselves can be expressed as con“guration space integrals).

The “rst two results parallel those for string (i.e. long) knots Kn, i.e. embeddings
of R in R

n [5, 7, 8, 29]. More generally, they parallel results for string links Lnm,
i.e. embeddings ofm copies ofR in R

n, where all maps are always prescribed outside
some compact set. In the process of obtaining our results, we provide an erratum
to [31], which considered the case of string links. At the same time, these results are
also very di�erent from the case of string knots/links. To explain, we “rst brie”y
review the standard construction of the map

IL : LD → � ∗(Lnm) (3)

corresponding to that in (1) and is familiar from the literature [ 7, 31]. In particular,
LD is a familiar diagram complex associated to the space of string links.

To produce forms onLnm, one “rst creates “ber bundles of con“guration spaces
over this space. Each bundle depends on a diagram inLD. A diagram has vertices
that abstractly represent con“gurations of points on and o� a link, and its edges
prescribe a way to pull back copies of the volume (n−1)-form from the sphereSn−1
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to the total space of the bundle. We then integrate this pullback form along the “ber,
thereby producing a form onLnm. One of the main reasons this construction works
is that ordinary embedded links behave well with respect to restriction, i.e. the
restriction map for links is a “bration by the Isotopy Extension Theorem.

The situation is di�erent for Hnm because homotopy links are not embeddings
and the restriction map is far from a “bration (see Sec.4.2.2). Thus, the obvious
generalization of the above fails to extend toHnm. The main contribution of this
paper is a re“nement of the construction of the “ber bundles which makes it pos-
sible to integrate overHnm. The short explanation of this re“nement is that, in the
construction of IL, only vertices of the diagram determine the bundle, while in our
construction, both vertices and edges are relevant. This leads to breaking up the
diagram according to its •graftsŽ (see De“nitions 4.10 and 4.13) and the construc-
tion of what is essentially a product bundle over the set of graft components. In
this fashion we construct a new map

IL : LD → � ∗(Lnm), (4)

identify a subcomplexHD ⊂ LD, exhibit the map from Eq. ( 1), and show that the
diagram

HD � � ��

IH ��

LD
IL��

� ∗(Hnm) �� � ∗(Lnm)

commutes. After we de“ne IL and show how it restricts to the map IH, we show in
Proposition 4.24that the old integration map IL and our map IL produce the same
form. Thus, our construction is indeed a re“nement of the one considered by others.

One interesting attribute of our construction of IH is that this map can be
de“ned even whenn = 3, which is not the case with IL. The reason is that the
issue of the vanishing of the integration along a certain part of the boundary of
the bundle, the so-calledanomalous faces, is not present for homotopy links (see
Remark 5.1). This is potentially an exciting feature since it means that the map IH
might contain interesting information about the topology of the space of classical
homotopy string links.

The anomalous face also makes an appearance in the study of “nite type invari-
ants of knots and links via con“guration space integrals [29…31]. As stated in (ii)
above, we extend this study to the case of homotopy string links. The di�erence is
that, for (string) knots and links, these integrals represent a universal “nite type
invariant only up to an indeterminacy due to the non-vanishing of anomalous faces
(see Sec.5.1). However, this is not a problem for homotopy string links and in
Theorem 5.8 we give the correspondence between weight systems (functionals on
diagrams with defect zero satisfying some relations) and “nite type invariants of
homotopy string links without any indeterminacy.

Theorem 5.8 connects to other work that has been done on “nite type invariants
of homotopy string links. To show that IH represents the universal “nite type
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invariant of homotopy string links, we “rst show that the zeroth cohomology of the
complexHD gives a certain vector space of diagrams that has already been studied
[4, 18, 20, 31]. Our construction, however, is dictated by geometry „ we have
arrived at HD by looking for spaces we could integrate over to get forms onHnm.
Further, we are concerned with alln ≥ 3, and for n = 3 and degree zero (which is
also defect zero) we happen to have obtained the •correctŽ diagrams and relations.
This means that our approach is indeed a generalization, with a new perspective,
of existing work.

Since Milnor invariants of homotopy string links are known to be “nite type,
Theorem 5.8 immediately gives a novel construction for Milnor invariants entirely
in terms of con“guration space integrals (as mentioned in (iii)). Further, some con-
nections between tree diagrams and Milnor invariants arise naturally from our con-
struction, and this will be pursued in future work. More details about the planned
work on Milnor invariants are given in Sec. 5.4.

The philosophy in this paper is thus to reconstruct all the ingredients of the
map (4), but in an improved and re“ned fashion, and then show at every important
instance of the construction how everything works when one restricts to the case
of homotopy string links. Consequently, we have had to be precise and detailed
about the de“nition and structures in the diagram complex LD, the “ber bundles
mentioned earlier, the defect zero case, etc. This has required us to “ll in some of
the details that have been missing from the literature. Some instances of this are:

• the graph complexLD is now de“ned purely combinatorially (it had largely been
done through pictures before, and mainly for the case of knots);
• the correspondence between the shu�e product onLD and the wedge product

on � ∗(Lnm) is elucidated;
• the STU and IHX relations in defect zero are derived from the graph complex;
• essentially all the details of the proof that con“guration space integrals represent

a universal “nite type invariant of embedded string links and homotopy string
links are given (the most complete proof for knots is in [30]; in particular, our
work provides an erratum to [31], which treated the string links case);

In addition, the work here uni“es and extends many seemingly disparate results in
the subject of con“guration space integrals (the casen > 3 is in literature usually
treated separately from the casen = 3). All of this makes for a self-contained and
thorough treatment of how con“guration space integrals are used in knot and link
theory. We hope that in addition to establishing some new and useful results, this
paper will serve as a practical and a bene“cial introduction to the subject.

Finally, it is worth noting where the results from this paper “t into the larger
program of studying homotopy string links (and embedded string links) in the
context of manifold calculus of functors. To that end, the second and the third
author have developed its multivariable version [24], as well a cosimplicial model
for the functor calculus Taylor tower for homotopy string links [ 25]. Using this
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model, the plan is to show that the map IL factors through the Taylor tower and
that this tower classi“es “nite type invariants. This can hopefully be used to reprove
the Habegger…Lin classi“cation of homotopy links [11] as well as to extend some
of their results to ordinary links. Along the way, the authors plan to study Milnor
invariants in the context of manifold calculus, which continues the exploration of
the connection between con“guration space integrals and Milnor invariants, as well
as [23], which connects manifold calculus of certain generalizations of homotopy
links to generalizations of Milnor invariants.

1.1. Organization of the paper

• In Sec. 2, we de“ne the spaces of string links and homotopy string links, make
some observations about them, and set some notation and conventions.
• In Sec.3, we de“ne the diagram complexLD and its subcomplexHD. Section3.1

contains the detailed de“nition of LD and Sec.3.2 discusses the di�erential and
the shu�e product on this graded vector space. The subcomplexHD is identi“ed
in Sec. 3.3. In Sec. 3.4, we show that LD0 and HD0 consist of trivalent dia-
grams moduloSTU and IHX relations, plus an extra relation for HD0 (Proposi-
tion 3.33). In that section we also describe thecorrespondence between trivalent
and chord diagrams (Theorem3.38). Many examples are given throughout.
• In Sec. 4, we construct the map IL in several steps. After reminding the reader

about compacti“cations of con“guration spaces in Sec.4.1, we “rst recall in
Sec.4.2.1 the standard way of building a bundle of compacti“ed con“guration
spaces over the space of string links from a diagram �∈ LD. In Sec. 4.2.2, we
show why this procedure fails to give bundles over the space of homotopy string
links. Guided by how this procedure fails, we then go back to the complexLD,
de“ne the graft components of a diagram in Sec.4.2.3, and rework the de“nition
of the bundle of con“guration spaces based on these components in Sec.4.2.4.
The upshot is that these new bundles can now be de“ned over the space of links
for any � ∈ LD or over the space of homotopy links for any � ∈ HD ⊂ LD.
In Sec. 4.3, we return to the main goal „ producing forms on the space of
(homotopy) links „ and show how the edges of a diagram give a prescription
for pulling back the product of volume forms to our bundles. Finally, in Sec.4.4,
we describe how this pullback form can be pushed forward along the “ber of the
bundle to Lnm or Hnm and give some examples. Proposition4.24 states that the
forms obtained using the standard de“nition of the bundles overLnm and using
our re“ned one are the same. This allows us to unify the old con“guration space
integral approach for string links with a new one for homotopy string links. Our
Theorem 4.33 in Sec. 4.5 shows that this integration is compatible with all the
structure on LD.
• In Sec.5, we study the case of classical homotopy string links (n = 3) and prove

that con“guration space integrals represent a universal “nite type invariant for
this space (Theorem 5.8). We begin by discussing in Sec.5.1 the anomalous
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face mentioned above and then review“nite type theory and its connection to
the combinatorics of chord diagrams in Sec.5.2. Section 5.3 is “nally devoted
to the proof of Theorem 5.8. In Sec. 5.4, we deduce some quick consequences of
Theorem 5.8 in regard to Milnor invariants. That section is meant to set the stage
for the further study of Milnor invariants using con“guration space integrals.

2. Spaces of String Links and Homotopy String Links

In this section, we de“ne the spaces of string links and homotopy string links and
set some conventions.

2.1. Definitions and basic facts

DeÞnition 2.1. Let m ≥ 1, n ≥ 2 be integers. Let�mR denote the disjoint union
of m copies of the real line. Let Mapc(�mR,Rn) denote the space of smooth maps
�mR→ R

n which outside some compact subset of�mR agree with the map which
on the ith copy of R is given by

t �→
(
t, |t|

(
m + 1

2
− i
)
, 0, 0, . . . , 0

)
.

This space is endowed with theC∞ topology.

The following is clear.

Proposition 2.2. Mapc(�mR,Rn) is contractible.

DeÞnition 2.3.

• Let Lnm ⊂ Mapc(�mR,Rn) denote the space ofstring (or long) links in R
n with m

strands. It consists of those mapsL ∈ Mapc(�mR,Rn) which are smooth embed-
dings (one-to-one maps whose derivatives are of maximal rank everywhere). A
path in this space is called anisotopy.
• Let Hnm ⊂ Mapc(�mR,Rn) denote the space ofstring (or long) homotopy links

in R
n with m strands. It consists of those mapsH ∈ Mapc(�mR,Rn) such that

if x and y are points in distinct copies of R, then H(x) �= H(y). A path in this
space is called alink-homotopy.

Note that Hnm is an example of a space oflink maps, studied by the second
author in [10, 22, 23] from the perspective of the manifold calculus of functors; one
motivation for the current work was to continue this thread of inquiry.

Throughout the paper, we will often drop the adjectives •stringŽ and •longŽ,
and refer to these objects as •linksŽ and •homotopy linksŽ. Each link and homotopy
link is oriented in the sense that all copies ofR are given the usual orientation. The
images of the copies ofR will be called strands.

In the literature, a more common picture for string links is to take the ith
copy of R to t �→ (t, i, 0, 0, . . . , 0) outside the “xed compact set. There is a clear

1350061-7



2nd Reading

November 9, 2013 13:0 WSPC/S0218-2165 134-JKTR 1350061

R. Koytche�, B. A. Munson & I. Voli´ c

Fig. 1. The string unlink with three strands.

correspondence between these string links and string links under our de“nition; in
particular, we think of the unlink as in Fig. 1. We have chosen our de“nition for
technical reasons related to de“ning con“guration space integrals for string links.
This technicality is also related to an error in [31] which we will correct.

The following corollary is immediate from Proposition 2.2.

Corollary 2.4. Hn1 is contractible.

In Sec.5, we will be interested in H0(H3
m), i.e. the space of real-valued invariants

ofm-strand homotopy links in R
3, so we discuss deRham forms on link spaces below.

First, we make an observation which will be useful in Sec.5.

Remark 2.5. By general position, every homotopy link is link-homotopic to an
embedded link. Moreover, by the remark following [11, De“nition 1.5], we can
approximate a link-homotopy between embedded links by one which consists of
isotopies and •crossing changesŽ of a strand with itself. A crossing change is a
homotopy which takes place in the interior of a ball containing only two segments
of a single strand, and the two segments cross during the homotopy. To check that
something is an invariant of H3

m, it thus su�ces to check that it is an invariant
of L3

m and that it remains unchanged under such crossing changes. This observa-
tion will be used in the proof of Proposition 5.10 and will also allow us to connect
the main results of Sec.5 to Milnor invariants since these are in fact invariants of
embedded links that are also invariant under such crossing changes.

2.2. Smooth structure and differential forms

In this subsection, we give a brief sketchof the smooth structure and di�erential
forms on spaces of links. The space Mapc(�mR,Rn) can be given the structure of a
smooth paracompact in“nite-dimensional manifold (see [6, Sec. 3.1] as well as [27];
strictly speaking, these references treat the case of maps ofS1, but the local picture
is the same in our case). BothLnm and Hnm are open subsets of Mapc(�mR,Rn), as
the latter space has theC∞ topology. Using similar ideas to the ones in the references
mentioned, one can (with some e�ort) give each of these spaces the structure of a
paracompact smooth in“nite-dimensional manifold.
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Another useful perspective on the smooth structure is via adiffeology on a space
X , which consists of a collection of maps toX from open subsetsU ⊂ R

k, k ≥ 0,
called plots, which must satisfy certain conditions. WhenX is a smooth manifold,
one can take the plots to be precisely all the smooth maps intoX [13]. We are
interested in the case whereX is the in“nite-dimensional manifold of smooth maps
from a compact manifoldK to a manifold M . In this case, this di�eology coincides
with the di�eology where a plot U → X is precisely a smooth mapU × K → M

(see [32, Lemma A.1.7]). In particular, for X = Lnm, a plot U → Lnm is a smooth
map U × (�mR) → R

n such that each slice{u} × (�mR) → R
n is a string link. A

di�eology on Hnm can be de“ned similarly.
For any manifold M , we let � ∗(M ) denote the deRham cochain complex of dif-

ferential forms onM . It is a di�erential graded algebra where the algebra structure
is given by the wedge product of forms. The ground ring for all cohomology groups
will be R. This complex can be de“ned even whenM is an in“nite-dimensional
manifold. For example, one can considerforms on open subsets of the topological
vector space on whichM is locally modeled and then impose the sheaf condition to
construct forms on all ofM . Under certain conditions onM (such as paracompact-
ness), which are satis“ed by loop spaces and hence byLnm andHnm, the cohomology
of this complex computes the cohomology ofM . See [6, Sec. 1.4] for details.

Using the perspective of di�eology, we could equivalently de“ne forms onM
using the open setsU ⊂ R

k mapping into M . Speci“cally, a form ω is an assignment
of a form ωψ on U to eachψ : U → M such that the assignment to a plot arising
from a smooth map h : V → U is h∗ωψ. A form ω in the sense of [6] mentioned
above gives rise to a form in di�eology by taking ωψ = ψ∗ω. Conversely, one can
reconstruct a form on an in“nite-dimensional manifold from its behavior on every
“nite-dimensional open set mapped into it. At some point it will be convenient to
think of forms on Lnm andHnm in this way, namely as determined by their behaviors
on “nite-dimensional manifolds mapped into them.

3. Diagram Complexes for the Spaces of String Links
and Homotopy String Links

In this section, we construct a diagram complexLD and a subcomplexHD that will
serve as combinatorial prescriptions for producing cohomology classes on spaces of
links and homotopy links. The complexLD has been considered before [7, 31], but
the de“nition of HD appears to be new. As mentioned in Sec. 1, in this section we
also “ll in some details in the de“nition and properties of LD.

3.1. Diagram complex for the space of string links

While reading this section, the reader is encouraged to refer to Fig.2.
For a set S, we let SP2(S) be the 2-fold symmetric product,

SP2(S) = ( S × S)/� 2,

1350061-9
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Fig. 2. A diagram with four segments. Its edges may be labeled or oriented. Each vertex is at
least trivalent (the valence of, say, vertex z2, is five).

where � 2 acts on the product S × S by permuting the coordinates. We think of
SP2(S) as the set of nonempty subsets ofS of cardinality at most two. We denote
points in SP2(S) as sets{s1, s2} where s1, s2 ∈ S, with the understanding that the
cardinality of this set is one whens1 = s2.

DeÞnition 3.1. A diagram � is a triple

� = ( V (�) , E(�) , bΓ),

where

• V (�) is a “nite ordered set called the vertices of �;
• E(�) is a “nite set called the edges of �; and
• bΓ : E(�) → SP2(V (�)) is a map.

For an edgee ∈ E(�) with b(e) = {v, w}, we say that e joins v with w. When
it is clear which diagram � we are speaking of we will write (V,E, b) in place of
(V (�) , E(�) , bΓ).

The particular diagrams we study have a signi“cant amount of extra structure.
As we do not wish to impose cumbersome notation on the reader, we will continue
to denote a diagram � with extra structure as a triple ( V,E, b), despite the possible
ambiguity. Before describing the extra structures, we need some de“nitions and
terminology.

DeÞnition 3.2. For a diagram � = ( V,E, b) and an edgee ∈ E, an orientation of
e is a choice of injective mapb(e) → {−1, 1}.

Note that for an edge e such that b(e) consists of a single vertex, there are still
two possible orientations, just as there are in the case whereb(e) consists of two
distinct vertices.
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DeÞnition 3.3. Let v, w be vertices in a diagram � = ( V,E, b). A path between
v and w is a sequence{ei}ki=1 of edgesei such that v ∈ b(e1), w ∈ b(ek) and
b(ei) ∩ b(ei+1) �= ∅ for all i. The length of a path {ei}ki=1 is equal to k, the number
of elements in the sequence of edges.

Thus, the orientations of edges, if they are present, are ignored for the purposes
of de“ning a path.

One other de“nition we will have to use for later is that of a connected compo-
nent.

DeÞnition 3.4. Let v be a vertex in a diagram � = ( V,E, b). The connected
component of � containing v is the subdiagram (V ′, E′, b′), where V ′ is the set of
all vertices w that can be connected by a path tov, E′ is the set of all edges that
can appear in such paths, andb′ is the restriction of b. A diagram is calledconnected
if it has a single connected component.

Fix integers m ≥ 1, n ≥ 3, and let I1, . . . , Im be copies of the unit interval, each
of which we will call a segment for short. The space�iIi is an ordered set according
to the natural ordering of {1, . . . ,m} and the natural ordering of I. Thus, for
x, y ∈ �iIi, x ≤ y wheneverx ∈ Ii and y ∈ Ij and i < j, and when i = j, x ≤ y if
this inequality holds under the usual ordering of I = [0 , 1].

DeÞnition 3.5. Given integersm ≥ 1, n ≥ 3 as above, alink diagram is a diagram
� = ( V,E, b) together with the following extra structure. For the set V of vertices,
we have:

• A decomposition

V = Vseg � Vfree

into ordered (possibly empty) sets, the elements of which are calledsegment and
free vertices, respectively. In addition, we require that the induced ordering of
(Vseg, Vfree) as an ordered pair of ordered sets agrees with the ordering ofV .

• A decomposition of

Vseg = Vseg,1 � · · · � Vseg,m

into disjoint sets determined by the equivalence class of an injective function
seg :Vseg → �i(Ii − ∂Ii) where Vseg,k = seg−1(Ik − ∂Ik), and which gives rise to
the ordering of Vseg according to the ordering of�iIi described above. Two such
injections s, s′ are equivalent if they give rise to the same decomposition ofVseg

and the same ordering on each of the sets in this decomposition according to the
natural ordering of �iIi.

For the set E of edges, we have a decomposition

E = Echord � Emixed � Efree � Eloop
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into

• chords, joining distinct segment vertices;
• mixed edges, joining a free vertex with a segment vertex;
• free edges, joining distinct free vertices; and
• loops, joining a segment vertex with itself,

respectively. Moreover, each free vertex must have a path to a segment vertex.
The valence of a vertex v is de“ned as follows. If v is a free vertex, its valence

is the number of edges joiningv to another vertex. If v is a segment vertex, it is
the number of edges joiningv to a vertex other than itself, plus twice the number
of loops joining v to itself, plus two. The valence of each vertex in a link diagram
is required to be at least three. In addition:

• If n is even, the setE of edges is ordered.
• If n is odd, each edgee ∈ E is oriented.

Remark 3.6. Another terminology for segment and free vertices is •externalŽ
and •internalŽ, respectively. This is because, in the case of knots, one has diagrams
consisting of only one segment and if one is working with closed knots rather than
long ones, the segment is drawn as a circle and free vertices are drawn inside it „
hence •internalŽ. The vertices on the circle are then •externalŽ. We decided that this
terminology is misleading for our situation and prefer to call the vertices •segmentŽ
(those represented as lying on them segments) and •freeŽ (those not lying on the
segments; these abstractly correspond to con“guration points that are free to move
in R

n).

We will also distinguish •arcsŽ of a link diagram, which will be important when
we de“ne the di�erential, and should explain our seemingly strange de“nition of
the valence of a segment vertex, as arcs contribute to the valence without counting
as edges themselves.

DeÞnition 3.7. For a link diagram �, an arc of � is a pair ( v1, v2) of distinct
segment vertices with v1 < v2 whose images under the injection seg :Vseg →
�i(Ii − ∂Ii) lie in the same segment, and such that the image of no other segment
vertex lies between them.

We assume all possible arcs are present in any link diagram. Although arcs are
not edges, it is useful to treat them as such at times, and so for an arca = ( v1, v2)
we de“ne b(a) = {v1, v2}.

We pictorially represent a diagram in the plane with the intervals drawn as
horizontal line segments, appearing in order from left to right and oriented from
left to right, and each vertex as a point and each edge as an arc between vertices.

1350061-12



2nd Reading

November 9, 2013 13:0 WSPC/S0218-2165 134-JKTR 1350061

Integrals and Cohomology of Homotopy Links

Segment vertices are drawn on the intervals, and we think of arcs as segments in
the intervals which lie between adjacent segment vertices. See Fig.2.

DeÞnition 3.8. Link diagrams � = ( V (�) , E(�) , bΓ) and � = ( V (� ′), E(� ′), bΓ′ )
are isomorphic if there are order-preserving bijectionsφV : V (�) → V (� ′) and
φE : E(�) → E(� ′) respecting the decomposition of the vertex set such that if
φ∗V : SP2(V (�)) → SP2(V (� ′)) denotes the induced map, then the diagram

E(�)
bΓ ��

φE

��

SP2(V (�))

φ∗
V

��
E(� ′)

bΓ′ �� SP2(V (� ′))

commutes. In addition, if n is odd (so that each edge is oriented), for each edge
e ∈ �, the injections oΓ,e : bΓ(e) → {−1, 1} and oΓ′,φE(e) : bΓ′ (φ(e)) → {−1, 1}
must satisfy oΓ′,φE(e) ◦ φ∗V = oΓ,e. In this case, we say the pair (φV , φE) is an
isomorphism.

If a pair (φV , φE) is simply bijections (i.e. not necessarily order-preserving)
satisfying all of the subsequent properties in addition toφV being order-preserving
on the segment vertices, then we say that the pair (φV , φE) is an isomorphism of
unlabeled diagrams.

Note that •order-preservingŽ for edges is only relevant when the edge set is
ordered.

DeÞnition 3.9. De“ne defect of a link diagram � = ( V,E, b) to be

def(�) = 2 |E| − 3|Vfree| − |Vseg|. (5)

This is the “rst of the two gradings we will have in our bigraded complex.

Notice that, because we require the valence of each vertex in a link diagram to
be at least three, the defect is nonnegative(there are no free vertices whose valence
is less than three and there are no segment vertices whose valence is zero; if it were
otherwise, the defect could be made arbitrarily negative). Thus, we can think of
the defect as a measure of the failure of � to be trivalent. Indeed, when def(�) = 0,
the segment and free vertices are preciselytrivalent (in particular, � cannot contain
loops). We will revisit such diagrams in Sec.3.4.

Remark 3.10. The reader acquainted with the work in [7] knows that Cattaneo,
Cotta-Ramusino, and Longoni call this number the degree of a diagram. We use the
term •defectŽ instead, to avoid confusion with the degree of the di�erential form
on the space of links which a diagram gives rise to via the integration map. Then,
as suggested by the referee, we can take this latter degree to be the main degree
(De“nition 3.15) in our bigraded complex, which will make the integration map a
map of di�erential graded algebras.
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DeÞnition 3.11. When n is even (respectively, odd), de“neLDdeven (respectively,
LDdodd) to be real vector spaces generated by isomorphism classes of link diagrams
� of defect d modulo subspaces generated by the relations:

(i) If � contains more than one edge joining two vertices, then � = 0;
(ii) If n is odd and � and � ′ are link diagrams such that a permutation of the

vertices of � ′ results in a link diagram isomorphic to �, then

� = ( −1)σ� ′,

where

σ = (order of the permutation vertices)

+ (number of edges with di�erent orientation);

(iii) If n is even and � and � ′ are link diagrams such that a permutation of the
vertex and edge sets of �′ results in a link diagram isomorphic to �, then

� = ( −1)σ� ′,

where

σ = (order of the permutation of segment vertices)

+ (order of the permutation of the edges).

Finally, de“ne the graded vector spaces

LDeven =
⊕
d

LDdeven and LDodd =
⊕
d

LDdodd.

When there is no danger of confusion, i.e. whenn is understood, we will refer to
both LDdeven and LDdodd asLDd and to both LDeven and LDodd asLD.

Remark 3.12. The reader might argue that we should simply disallow multiple
edges between a given pair of vertices rather than mod out by the subspace of such
diagrams, but the di�erential, de“ned below, can introduce such edges.

Remark 3.13. Even in a “xed degree and after all the relations are imposed,LDd
is still an in“nite-dimensional vector space: Consider, for example, the diagram
consisting of three segments with one segment vertex on each segment, and a single
free vertex with three edges which join it to the segment vertices. This is a diagram
of degree zero. Overlaying copies of this diagram (that is, introducing new segment
and free vertices and edges in a similar fashion) gives an in“nite list of degree zero
diagrams which are clearly independent in the vector space structure.

DeÞnition 3.14. De“ne the order of a diagram � to be

ord(�) = |E(�) | − |V (�) free|.
This will be the second grading in our bigraded complex.
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Thus, for eachd = def(�) and each k = ord(�), we have subspacesLDdk ⊂ LDd
and HDdk ⊂ HDd.

Note that in the case of defect zero, we also necessarily have

ord(�) =
1
2

(|V (�) seg| + |V (�) free|).

In general, a diagram � of defect d and order k satis“es |V (�) seg| + |V (�) free| =
2k− d and |E(�) | = |V (�) free|+ k. Hence the number of vertices of such a diagram
is “xed, and the number of edges is bounded. This means thatLDdk and HDdk are
“nite-dimensional for any d, k.

The following de“nition of degree of a diagram was suggested by the referee and
motivated by the fact it coincides with the degree of the di�erential form on the
link space resulting from applying the integration map to the diagram.

DeÞnition 3.15. De“ne the (main) degree of a diagram � to be

|� | = ( n− 1)|E(�) | − n|V (�) free| − |V (�) seg|.
Equivalently, for a diagram � of defect d and order k,

|� | = k(n− 3) + d.

We will use this de“nition to make (singly) graded complexes out of the bigraded
complexesLD∗

∗ and HD∗
∗.

Note that for n = 3 the degree coincides exactly with the defect.

3.2. Algebraic structures on the diagram complex

We now discuss the di�erential and the product on the space of diagrams which
will make it into a di�erential graded algebra.

3.2.1. The differential

The di�erential of a diagram will be a signed sum of diagrams obtained from the
original by •contractingŽ certain edges or arcs. We begin with some terminology
and conventions.

DeÞnition 3.16. Let S be a nonempty set, and lets, t ∈ S. De“ne

Rt→s : SP2(S) → SP2(S)

by

Rt→s(T ) =

{
T if t /∈ T ;

(T − {t}) ∪ {s} if t ∈ T.
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Thus, the map Rt→s replacest with s. Let � = ( V,E, b) be a link diagram and e be
a mixed or free edge of �, or one of its arcs, and supposeb(e) = {v, w}, wherev < w

in the ordering of the vertices. In casee is an arc, we suppose it is represented by
the pair (v, w). Note that e necessarily joins distinct vertices.

DeÞnition 3.17. With � and e as above, de“ne �/e = ( V ′, E′, b′) to be the link
diagram such that:

• V ′ = V − {w} with the induced ordering of vertices,
• E′ = E −{e} with the induced ordering/orientation of edges (if applicable), and
• b′ = Rw→v ◦ b, restricted to E′.

We often refer to � /e as the diagram � with the edge/arc e contracted. The function
Rw→v above simply replaces an edge joiningw with a vertex u with the edge which
joins v to u instead. This can create a loop in the case of a chord between adjacent
segment vertices when the arc between themis contracted. Note that the degree is
increased by contraction of a mixed/free edge or arc: if � has degreed, then � /e
has degreed + 1. The di�erential is a signed sum of diagrams made from � by
contracting all possible edges and arcs. We will use the •positionŽ function to help
keep track of these signs.

DeÞnition 3.18. SupposeS is a “nite ordered set. De“ne the position function to
be the unique order-preserving bijection

pos :S → {1, 2, . . . , |S|}.

When x ∈ S, we write pos(x) for the value of this function at x ∈ S, or pos(x : S)
when we wish to emphasize the underlying ordered setS.

DeÞnition 3.19. The di�erential

δ : LDdk → LDd+1
k (6)

is the unique linear extension toLDdk of the map de“ned on a diagram � by

δ(�) =
∑

free edges, mixed edges, and arcs e of Γ

ε(e)� /e. (7)

The number ε(e) is equal to ±1 depending on the parity ofn and on the orderings
of vertices and edges in the following way: Suppose the free/mixed edge or arce
connects verticesv and w.

• If n is odd and e is an edge or an arc oriented so the edge joinsv to w, then

ε(e) =

{
(−1)pos(w:V ), v < w,

−(−1)pos(v:V ), w < v.
(8)

1350061-16



2nd Reading

November 9, 2013 13:0 WSPC/S0218-2165 134-JKTR 1350061

Integrals and Cohomology of Homotopy Links

• If n is even ande is a free edge or a mixed edge, then

ε(e) = ( −1)pos(e:E)+|Vfree|+1, (9)

and if e is an arc, then

ε(e) = ( −1)pos(max{v,w}). (10)

An example of the di�erential is given in Fig. 3.

It is easy to see that δ does indeed raise the defect by 1 and leaves the order
unchanged. This implies that the main degree ofδ� is |δ� | = |� | + 1. Thus, we can
turn LD∗

∗ into a singly-graded complex (or di�erential graded algebra) where the
term in grading g is given by ⊕

d,k:k(n−3)+d=g

LDdk

(and similarly for HD∗
∗). Since eachLDdk is “nite-dimensional, each term as above

is “nite-dimensional.

3.2.2. The shuffle product

The shu�e product on the space of diagrams associated to knots was “rst considered
in [8]. Here, we extend it to link diagrams as well as provide more details about its
construction.

Consider two link diagrams � 1 = ( V (� 1), E(� 1), bΓ1 ) and � 2 = ( V (� 2),
E(� 2), bΓ2). Let

segi : V (� i)seg → �i(Ii − ∂Ii)
be representatives of the equivalence class of the partition function for the segment
vertices. Moreover, choose isomorphism class representatives for each diagram so

Fig. 3. An example of the differential. The signs depend on the parity of n .
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that their vertex and edge sets are disjoint. Call an injective map

j : V (� 1)seg � V (� 2)seg → �i(Ii − ∂Ii)
admissible if its restriction to V (� i)seg is in the same equivalence class as segi for
i = 1 , 2.

DeÞnition 3.20. With � 1 and � 2 and an admissible mapj as above, de“ne

� 1 ·j � 2 = ( V (� 1 ·j � 2), E(� 1 ·j � 2), bΓ1·jΓ2)

to be the diagram such that:

• The set V (� 1 ·j � 2) = V (� 1) � V (� 2);
• The set E(� 1 ·j � 2) = E(� 1) � E(� 2), and the orientations (if applicable) for

edges are those induced by the orientations of elements ofE(� 1) and E(� 2);
• The map bΓ1·jΓ2 = bΓ1 � bΓ2 ;
• The set V (� 1 ·j � 2) is decomposed as

V (� 1 ·j � 2)seg � V (� 1 ·j � 2)free,

where

◦ V (� 1 ·j � 2)seg = V (� 1)seg �V (� 2)seg, with ordering induced by the injection j,
◦ V (� 1 ·j � 2)free = V (� 1)free � V (� 2)free, with ordering induced by the ordered

pair (V (� 1)free, V (� 2)free), and hence
◦ V (� 1 ·j � 2) is ordered by the ordered pair of ordered sets (V (� 1 ·j � 2)seg, V (� 1 ·j

� 2)free);

• The ordering of E(� 1 ·j � 2) is that induced by the ordered pair (E(� 1), E(� 2))
of ordered sets.

DeÞnition 3.21. For link diagrams � 1 and � 2, de“ne their shuffle product � 1 • � 2

by

� 1 • � 2 =
∑

[admissible j]

ε(� 1, � 2)� 1 ·j � 2, (11)

where the sum is over equivalence classes of admissible maps, and where

ε(� 1, � 2) =

{
(−1)|E(Γ1)||V (Γ2)seg|, n even;

1, n odd.

From the de“nition of the main degree |� |, it is easy to see that|� 1•� 2| = |� 1|+ |� 2|.
Moreover, from straightforward unravelings of the de“nitions, one can prove the
following propositions.

Proposition 3.22. The shuffle product is graded-commutative; that is,

� 1 • � 2 = ( −1)|Γ1||Γ2|� 2 • � 1.
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Proposition 3.23. The differential δ is a derivation with respect to the shuffle
product. That is,

δ(� 1 • � 2) = δ(� 1) • � 2 + ( −1)|Γ1|� 1 • δ(� 2).

Hence we have the following proposition.

Proposition 3.24. The diagram complex (LD, δ, •) is a commutative differential
graded algebra (CDGA) with unit and its cohomology H∗(LD) is thus a commutative
graded algebra.

Remark 3.25. The authors of [8] use a di�erent grading to make the shu�e
product graded-commutative. It is easy to check that |� | (which is the degree of
the form � produces) agreeswith their grading mod 2.

Remark 3.26. There is also a coproduct onLD, analogous to the one given in
[8]. Since we will not use this structure (shu�e product, on the other hand, will be
needed in future work), we will only remark that this should give LD the structure
of a Hopf algebra, and the map appearing in Theorem4.33 induces a map of Hopf
algebras in (co)homology.

3.3. A subcomplex for the space of homotopy string links

A homotopy string link need not be an embedding. As such, integration overHnm
will not be possible in as generala way as prescribed on the complexLD (see
Sec.4.2 for more details) due to possible self-intersections of the components of the
link. In this section, we will identify a subcomplex HD of LD for which it will be
possible to carry out the integration and construct elements of �∗(Hnm).

DeÞnition 3.27. De“ne the space ofhomotopy link diagrams, denotedHD, to be
the subspace ofLD generated by diagrams � which:

(i) contain no loops; and
(ii) satisfy the condition that if there exi sts a path between distinct vertices on a

given segment, then it must pass through a vertex on another segment.

Some examples of homotopy link diagrams are given in Fig.4.

Proposition 3.28. HD is a differential subalgebra of LD.

Proof. To show HD is a subcomplex ofLD, we must show that δ(HD) ⊂ HD.
Write � = ( V,E, b) and � /e = ( V ′, E′, b′), where e = {v, w} with v < w. Suppose
� ∈ HD. We want to show each term �/e appearing in δ(�) is in HD. Suppose
to the contrary that � /e is not an element ofHD. There are two cases. The “rst
case is that � /e has a loop. Then either (a) � itself has a loop or (b) � has a chord
joining adjacent vertices on a segment or(c) � has multiple edges between a pair
of vertices. Situations (a) and (b) are impossible since �∈ HLD. In situation (c),
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Fig. 4. Some examples of homotopy link diagrams (without decorations). The bottom one is a
tree of the sort that will give rise to finite type invariants in Sec. 5.

� is set to zero, so δ(�) is also set to zero (so no terms � /e appear in δ(�)). This
covers the “rst case.

The second case is thatv1, v2 are distinct segment vertices lying on the same
segment of �/e, and there is a pathα = {ei}ki=1 of edges fromv1 to v2 which does
not pass through a vertex on a di�erent segment than the one on whichv1 and v2
lie. In this case, it is enough to show that there is a path between vertices on the
same segment in � which also does not pass through a vertex lying on a di�erent
segment.

Let α = {ei}ki=1 be a path in � /e as above, of minimal length. We havev1 ∈
b′(e1), v2 ∈ b′(ek) and b′(ei) ∩ b′(ei+1) �= ∅ for all i. We may assume thatv1, v2 are
segment vertices in �, for otherwise e joins v1 or v2 to a segment vertex, and then
{e, e1, . . . , ek} or {e1, . . . , ek, e} is a path in � joining vertices on the same segment
without passing through another segment. Now ifα has the property that b(ei) ∩
b(ei+1) �= ∅ for all i, then α itself is a path betweenv1 and v2 in �, contradicting
the fact that � ∈ HD. So let j be the smallest integer such thatb(ej)∩ b(ej+1) = ∅.
We have b′(ej) ∩ b′(ej+1) �= ∅, and b′ = Rw→v ◦ b for some v, w, so necessarily
w ∈ b(ej) or w ∈ b(ej+1). Without loss of generality assumew ∈ b(ej). Then it
must be that v ∈ b(ej+1), and in this case the edgee satis“es b(ej) ∩ b(e) �= ∅ and
b(ej+1) ∩ b(e) �= ∅. Sinceα has minimal length, {e1, . . . , ej , e, ej+1, . . . , ek} forms a
path α′ in � between v1 and v2 in �. We will be done if we can argue that w cannot
be a segment vertex lying on a segment di�erent fromv1 and v2. But this is clear:
if w is such a vertex, thenv is such a vertex in � /e, and the original path α passes
through this segment, a contradiction.

That HD is closed under the shu�e product is clear since this product does not
create new paths of edges.

A few words of clari“cation and justi“cation for De“nition 3.27are in order. Our
de“nition of HD excludes diagrams which contain achord connecting two vertices
on a single segment. It also excludes all possible diagrams which, via contractions
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of edges, might produce such a chord. What we are trying to capture geometrically
are linking phenomena which •ignoreŽ the knotting of each strand. The reason for
this is simple: there is no knotting of individual strands in Hnm, as they may pass
through themselves. Once integration over diagrams is de“ned in Sec.4.4, it will
be clear that a chord between segment vertices captures something about linking
between those segments. So when the segment vertices lie on the same segment, this
means a chord between them captures something about self-linking, or knotting,
of that segment. Similarly, integrals that correspond to loops will also only contain
information about single strands.

3.4. Diagram complexes in defect zero

In Sec. 5, we will focus on the casen = 3 of classical links to see which link
invariants (elements of H0(L3

m) and H0(H3
m)) can be obtained via con“guration

space integrals from our diagram complexes. As we will see in Sec.4.4, whenn = 3,
defect zero diagrams will correspond to degree zero forms (although in general the
degree of forms corresponds to the main degree, not the defect), so we want

0 = 2 |E(�) | − 3|V (�) free| − |V (�) seg|. (12)

It was already noted in the discussion following Eq. (5) in Sec. 3.1 that these are
precisely the trivalent diagrams.

Let

H0(LD∗
k) := Z0(LD∗

k) := ker( δ : LD0
k → LD1

k)

denote the subspace of degree zero cocycles (i.e. degree zero cohomology classes)
in the complex LD∗

k. Similarly, let H 0(HD∗
k) denote the subspace of degree zero

cocycles (i.e. degree zero cohomology classes) in the complexHD∗
k. (Note that in

either case, forn > 3 this is not the same as the degree zero cocycles of the singly-
graded complex graded by|� |.)

To understand the kernel of the di�erential δ : LD0
k → LD1

k, we will examine
the cokernel of its adjoint (i.e. dual) δ∗ : (LD1

k)∗ → (LD0
k)∗. Let

H0(LD∗
k) := coker( δ∗ : (LD1

k)∗ → (LD0
k)∗)

and similarly, let H 0(HD∗
k) denote the corresponding cokernel in the complexHD∗

k.
Let |Aut(�) | denote the size of the group of automorphisms of � as an unlabeled

diagram. As de“ned at the end of De“nition 3.8, these are automorphisms of graphs
without any labels or edge orientations, but they must “x the segment vertices
pointwise. Consider the inner product LDdk ⊗ LDdk → R which on diagrams is
given by

〈� 1, � 2〉 = δΓ1,Γ2 |Aut(� 1)|(= δΓ1,Γ2 |Aut(� 2)|),

where δ here is the Kroneckerδ. This gives an isomorphism LDdk
∼= �� (LDdk)∗

via � �→ 〈� ,−〉.
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Thus, we can represent elements of (LDdk)∗ by linear combinations of diagrams.
We will write � ∗ for the element of (LDdk)∗ which is the image of the diagram �
under this isomorphism. For the rest of Sec.3, a drawing of a diagram � will often
mean the element �∗.

To understand δ∗ : (LD1
k)∗ → (LD0

k)∗, note that any diagram in LD1
k has

precisely one 4-valent vertex, as shown in the top of Figs.5…7. In Figs. 5 and 7, i
is a segment vertex, and in Fig.6 it is a free vertex. It is not hard to see that the
adjoint δ∗ •blows upŽ 4-valent vertices in all possible ways, as shown in these three
“gures. In the “rst two “gures, there are

(
4
2

)
/2 = 3 possibilities, corresponding to

Fig. 5. Blowups giving rise to the STU relation.

Fig. 6. Blowups giving rise to the IHX relation.
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Fig. 7. Blowup giving rise to the 1T relation.

the possible ways of pairing four vertices. The image ofδ∗ is generated by three
types of (linear combinations of) diagrams. Each type of generator is a sum of the
diagrams shown in one of the “gures with certain coe�cients to be determined.
The signs arise from the labeling conventions associated to edge contractions (in
particular, recall that free vertices always have higher labels than segment ones,
so i < j in the left picture on the bottom of Fig. 5). In the “rst two of these
“gures, each diagram resulting from the blowup of a vertex is the same outside of
the pictured portions as the other two diagrams in the triple.

Now we determine the coe�cients in each sum that gives a generator of the
image ofδ∗. Call the three diagrams in Fig. 5 (with the indicated signs) S, T , and
U . Call the three diagrams in Fig. 6 (with all signs +1) I, H , and X . Call the
diagram in Fig. 7 1T .

Proposition 3.29. The image of δ∗ is generated by elements of the form:

• S∗ + T ∗ + U∗,
• I∗ + H∗ + X∗, and
• (1T )∗.

The statement of this proposition is certainly not new. For example, it appears
in [17, Sec. 3]. It is a consequence of the following folklore result: Given a graph
complex whose di�erential δ is a signed sum of edge contractions, the image ofδ∗ in
the dual complex is the signed sum of edge expansions (i.e. with all coe�cients±1),
provided the duality is given by 〈� , � ′〉 = δΓ,Γ′ |Aut(�) |. (For the 1T term, note that,
by De“nition 3.8, the diagram with the loop has the same number of automorphisms
as the diagram with the isolated chord, i.e. for the parts pictured, there are no
nontrivial automorphisms.) We could not “nd a proof of either this more general
statement or the statement of Proposition3.29(the•unitrivalent caseŽ), so we prove
the proposition here.
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Proof of Proposition 3.29. The proof amounts to checking that the linear com-
bination we get from blowing up the 4-valent vertices in Figs. 5 (the STU case),
6 (the IHX case), and7 (the 1T case) is in fact the one with all coe�cients equal
to 1.

The 1T case: Let L denote the 4-valent diagram in the top of Fig. 7. Here, the
diagram 1T with the isolated chord is the only diagram whose image underδ
contains L. (The only other potential such diagram is not in the complex, since by
De“nition 3.5, loops can only occur at segment vertices.) Thus,

〈δ∗L∗, � 〉 = 〈L, δ� 〉 =

{|Aut( L)| if � = 1 T,

0 for all other � ,
(13)

recalling that we take the pairing given by 〈� i, � j〉 = δij |Aut(� i)|. Since Aut(L) ∼=
Aut(1 T ), this implies that δ∗L∗ = (1 T )∗.

The STU case: Let V denote the 4-valent diagram in the top of Fig. 5. Note that
δ of any of the three diagramsS, T, U contains precisely one diagramV , and that
these are the only diagrams whose image underδ can have such a term. Thus,

〈δ∗V ∗, � 〉 = 〈V, δ� 〉 =

{|Aut( V )| for all � ∈ {S, T, U},
0 for all other � ,

(14)

There are two cases:

(i) All three diagrams S, T, U are in distinct isomorphism classes;
(ii) T is isomorphic to U .

Now note that in either case, Aut(T ) ∼= Aut( U ), since any automorphism must “x
the free vertices attached to i and i + 1, and the diagrams agree outside of the
pictured part. Similarl y, in either case, Aut(S) ∼= Aut( V ) since an automorphism
of S must “x the edge from i to j, and sinceS and V agree outside of that edge. We
next analyze Aut(S). Under automorphisms of S, the vertices attached to j must
either have singleton orbits or be in the same two-point orbit. Note that the case
of singleton orbits corresponds precisely to case (i) above, while a two-point orbit
corresponds to case (ii). In case (i), Aut(S) ∼= Aut( T )(∼= Aut( U )), for the same
reason that Aut(T ) ∼= Aut( U ). Hence |Aut( V )| = |Aut(�) | for all � ∈ {S, T, U}.
Thus, Eq. (14) implies that in this case δ∗V ∗ = S∗ + T ∗ + U∗.

In case (ii), the index [Aut( S) : Aut( S)k] = 2, where k is one of the vertices
attached to j and where Aut(S)k denotes the subgroup of Aut(S) “xing k. But
Aut( S)k ∼= Aut( T ) . So in this case|Aut( V )| = |Aut( S)| = 2 |Aut( T )| = 2 |Aut( U )|.
So in this case, we concludeδ∗V ∗ = S∗ + 2T ∗ = S∗ + 2U∗ = S∗ + T ∗ + U∗.

The IHX case: Let F be the 4-valent diagram in the top of Fig. 6. Let e be the
edge pictured in any of the three diagramsI,H,X (by abuse of notation). In this
IHX case, it is possible thatδ of any of the diagrams � = I,H,X has more than
one term isomorphic toF . In fact, the number of such terms in δ� is given by the
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size of the orbit of e (considered as an unordered pair) under the automorphism
group of �. This number is [Aut(�) : Aut(�) e], where Aut(�) e is the subgroup of
automorphisms taking e to itself (the subgroup of Aut(�) which “xes � setwise).
Thus, we have

〈δ∗F ∗, � 〉 = 〈F, δ� 〉 =

{
[Aut(�) : Aut(�) e]|Aut( F )| for all � ∈ {I,H,X},
0 for all other � .

(15)

This equation tells us that if we write δ∗F ∗ =
∑

Γ cΓ� ∗, then we have

cΓ|Aut(�) | = [Aut(�) : Aut(�) e]|Aut( F )|.
We now analyze the index above using another subgroup of|Aut(�) |. Let � be
the subgraph of � = I,H , or X (again abusing notation) consisting of e, the
edge joining i and j, and the edges incident to the endpoints ofe. Let Aut(�) ∆

denote the subgroup of Aut(�) which “xes every vertex of �. Clearly Aut(�) ∆ <

Aut(�) e since Aut(�) ∆ “xes e (even as an ordered pair). So we can consider the
index [Aut(�) e : Aut(�) ∆]. This index is the order of the group Aut(�) e|∆ of
automorphisms in Aut(�) e restricted to automorphisms of �; in other words, it is
the group of restrictions to � of automorphisms of � that “x � setwise. Abbreviate
this group GΓ. SinceGΓ is a subgroup of

Aut(�) ∼= � 2 � Z/2 = Z/2 � (Z/2× Z/2) ∼= D4

(the group of symmetries of a square), the index in question is either 1, 2, 4, or 8.
We divide our argument into two cases:

(1) all of I,H,X are distinct isomorphism classes;
(2) at least two of I,H,X are isomorphic.

Claim. For � ∈ {I,H,X}, the indices [Aut(�) e : Aut(�) ∆] = |GΓ| are all equal in
case (i); in case (ii), two of the diagrams are isomorphic, and this index is twice as
large for the third diagram as for either of the two isomorphic ones.

Proof of Claim. Let σ, τ ∈ D4 denote the two elements that only swap two vertices
(which as vertices ofI,H , or X must be adjacent to the same endpoint ofe). Let
ρ ∈ D4 be a rotationa by π/2. Identify D4 with Aut(�) via an embedding of � as
shown in I.

First notice that H ∼= X if and only if at least one ofσ, τ, ρ (or ρ−1) is in GI . One
can also check that for any other elementα ∈ D4 (meaning for α ∈ {ρ2, ρσ, σρ}),
we always have

α ∈ GI ⇔ α ∈ GH ⇔ α ∈ GX . (16)

Thus, in case (i), none ofσ, τ, ρ, ρ−1 is in GI , and whatever remaining elements
are in GI are also inGH and GX . Interchaging the roles of I,H,X , we get that
GI ∼= GH ∼= GX , which is what we wanted to show.

aNote that this does not correspond to a rotation of any of the pictures of ∆ in Fig. 6.
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To “nish case (ii), supposeH ∼= X . Note “rst that none of σ, τ, ρ, ρ−1 can be
an element ofGH or GX ; thus in this case, |GI | ≥ 2|GH | (= 2 |GX |). However, if
both σ and τ are elements ofGI , then their product στ (= τσ = ρ2) is in both GH
and GX . This together with ( 16) implies |GI | ≤ 2|GH | (= 2 |GX |). So in this case
|GI | = 2 |GH | = 2 |GX |. Interchanging the roles ofI,H,X “nishes the proof of the
Claim in case (ii).

The right-hand side of Eq. (15) can be rewritten:

[Aut(�) : Aut(�) e]|Aut( F )| = |Aut(�) ||Aut( F )|/|Aut(�) e|
= |Aut(�) ||Aut( F )||Aut(�) ∆|/|GΓ|.

So the coe�cient cΓ of � ∗ in δ∗F ∗ is equal to (|Aut( F )||Aut(�) ∆|)/|GΓ|. Note that
the groups Aut(�) ∆ are isomorphic for all � ∈ {I,H,X} since the diagrams agree
outside of the pictures. Thus, the quantity in parentheses is independent of �.

By the Claim, we see that in case (i), the coe�cients cΓ are the same for all
� ∈ {I,H,X}. Since we are working overR, we can divide F by this number to
get an equivalent generator with all cΓ equal to one. In case (ii), we may suppose
again without loss of generality that H ∼= X . In this case, we showed that|GI | =
2|GH | = 2 |GX |. Thus, 2cI = cH = cX . So an appropriate multiple of δ∗F ∗ is equal
to I∗ + 2H∗ = I∗ + 2X∗ = I∗ + H∗ + X∗.

Proposition 3.29implies that H 0(LD∗
k) is the quotient of LD0

k by all diagrams of
the three types listed in its statement. Equivalently, H 0(LD∗

k) = ker δ is for eachk
generated by trivalent diagrams such that the pairing with any of these three types
of diagrams gives zero. The three types of relations by which we quotient to get
H0(LD∗

k) are called the STU relation, the IHX relation, and the 1T relation. We
will sometimes also use this terminology to describe the conditions that diagrams
in H0(LD∗

k) must satisfy (see also Remark3.34).

Remark 3.30. Bar-Natan [3] has shown that the IHX relation follows from the
STU relation.

We now consider the case of H0(HD∗
k), where there are some additional obser-

vations to be made. First, the 1T relation is now vacuous sinceHD contains no
diagrams with chords connecting vertices on the same segment. Second, suppose
that the two loose edges in the top diagram of Fig.5 belong to a loop of edges with
all vertices except i free. This is depicted in Fig. 8.

Then blowing up vertex i can only result in one diagram, namely the (leftmost)
diagram S∗ from the STU relation. The other two would correspond to diagrams
with paths between two segment verticeson the same segment that only go through
free vertices, and such diagrams are not elements ofHD. We thus reduce theSTU
relation in H 0(HD∗

k) to the condition that the diagram in Fig. 9 pairs to zero with
any diagram in H0(HD∗

k).
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Fig. 8.

Fig. 9.

This relation extends to all diagrams with loops of free edges and not just those
that are separated from a segment by a single mixed edge. Namely, theSTU relation
can be applied repeatedly to any path between the loop of free edges and a segment
(there are always such paths since every free vertex must have a path to a segment
vertex) and the situation can be reduced to that of Fig. 9. An example is given in
Fig. 10, where •= 0Ž again means that this diagram pairs to zero with any diagram.

Remark 3.31. At “rst glance, it might seem that the diagram from Fig. 8 should
not be permitted in HD since repeated contractions of its edges would eventually
produce a loop at vertexi, and loops have been excluded fromHD. However, such
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Fig. 10. An example of how a diagram with a loop of free edges pairs to 0 with any diagram.

contractions would “rst produce a double edge between vertexi and another free
vertex, and a diagram with a double edge would already be zero by de“nition
of LD.

Remark 3.32. There is another interesting consequence of theSTU relation in
HD0

k which we will have to use for in future work when we study Milnor Invariants
in more detail. Namely, suppose that the same two loose edges in the top diagram of
Fig. 5 end on the same segment. In other words, suppose the picture is as in Fig.11,
where the dots indicate that there might be other segment vertices between those
pictured.

Then the STU relation obtained from blowing up this diagram is just T ∗+ U∗ =
0, since the S diagram contains a path betweentwo segment vertices that goes
through only a free vertex. We thus get a special case of theSTU relation in HD0

k,
given in Fig. 12, i.e. the two sides of the equation are equal on all diagrams inHD0

k.

Fig. 11.

Fig. 12. A consequence of the STU relation in H0(HD).
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We now collect the observations made so far. Recall that we use the pairing on
diagrams given by〈� i, � j〉 = δij |Aut(� i)|.
Proposition 3.33. For each k ≥ 0,

• H0(LD∗
k) consists of all linear combinations α =

∑
ai� i of trivalent diagrams � i

which satisfy the

◦ STU relation, i.e. (S∗ + T ∗ + U∗)(α) ≡ 〈S + T + U,α〉 = 0 ,
◦ IHX relation, i.e. (I∗ + H∗ + X∗)(α) ≡ 〈I + H + X,α〉 = 0 , and
◦ 1T relation, i.e. ((1T )∗)(α) ≡ 〈1T, α〉 = 0 .

• H0(HD∗
k) consists of all linear combinations α =

∑
ai� i of trivalent diagrams

� i which satisfy the

◦ STU relation and
◦ IHX relation, and
◦ •H1T relationŽ, which is that � ∗(α) = 〈� , α〉 = 0 for any � containing a closed

path of edges.

Remarks 3.34. (i) Regarding descriptions of H0(LD∗
k) and H0(HD∗

k) in previous
literature, one di�erence is that Mellor [ 18] and Mellor…Thurston [20] work with
the variant of HD0

k consisting of unitrivalent diagrams without segments and
without the STU relation (but they keep the other relations). In fact, the only
reason we listed the last relation for H0(HD∗

k) (we could have left it out since it
follows from the STU relation) is so that our description would exactly match
those in [18, 20].

(ii) De“ne a tree to be a connected diagram such that there is a unique path of
minimal length between any pair of distinct vertices, and de“ne a leaf to be a
mixed edge or chord of a tree (so a leaf has at least one associated segment
vertex). De“ne a forest to be a diagram whose connected components are all
trees. Since elements ofHD0

k are (sums of) trivalent diagrams without loops,
every element is a sum of forests, each of whose trees has at mostm leaves,
wherem is the number of distinct segments, and such that the segment vertices
associated with the leaves all lie in distinct segments (that is, there is at most
one segment vertex on each segment for a given tree in the forest). This was
alluded to in the description of Fig. 4, where the bottom diagram is such a tree.

DeÞnition 3.35. De“ne the space ofdegree k link weight systems LWk as the
vector space

((LD0
k)∗/(STU, IHX, 1T ))∗,

where (−)∗ denotes the dual vector space, and whereSTU is the relation that
S∗ + T ∗ + U∗ = 0, etc. Similarly, de“ne the space of degree k homotopy link weight
systems HWk as the vector space

((HD0
k)∗/(STU, IHX,H1T ))∗.
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Since a vector space is canonically isomorphic to its double dual, we have the
following.

Proposition 3.36. There are canonical isomorphisms

LWk
∼= H0(LD∗

k) and HWk
∼= H0(HD∗

k).

Since (LD0
k)∗ and (HD0

k)∗ are spaces of diagrams, we can think of a weight system
W as a functional on diagrams such thatW (S∗ + T ∗ + U∗) = 0, etc. This is how
weight systems are typically de“ned, and this is how we will think of them in Sec.5,
where we will denote elements (diagrams) of (LD0

k)∗ and (HD0
k)∗ by letters without

the superscript ∗.

Remarks 3.37. (i) The real reason we introduced the grading by order is that
weight systems of orderk are precisely “nite type k invariants; see Theorems5.6
and 5.8.

(ii) The above identi“cation of weight systems with cocycles of diagrams can be
used to reconcile integration from the graph complex with the integration of
weight systems commonly found in the literature on “nite type invariants. That
is, the map H0(LD∗

k) → H0(L3
m) can be thought of as a mapLWk → H0(L3

m).
We will discuss this in Sec.5.

We make one last observation, which we will use in Sec.5. We de“ned LWk as the
dual to a quotient of (LD0

k)∗ by certain relations. Instead of considering trivalent
diagrams modulo these relations, one can reduce to the case of diagrams containing
only chords, i.e.chord diagrams. That is, note that in ( LD0

k)∗/(STU , IHX , 1T ), any
trivalent diagram � can be rewritten as a sum of chord diagrams using the STU
relation repeatedly. The resulting complex inherits a di�erent relation as follows:
Because the trivalent diagram in the STU relation can have both of its •looseŽ
edges also ending in segments (necessarily di�erent segments in the case ofHD),
applying the STU relation twice gives what is known as the 4T relation, depicted
in Fig. 13.

Denote by

LC0
k and HC0k

the R-vector spaces generated by chord diagrams onm segments with k chords
ending on 2k distinct vertices (since defect zero implies trivalence, two chords cannot
end in a common segment vertex). For thelatter space, there can be no chords with
both endpoints on the same segment. We will call these thelink chord diagrams and
homotopy link chord diagrams. As in the case of trivalent diagrams, the duals (LC0

k)∗

and (HC0k)∗ can be identi“ed as spaces of chord diagrams. Using the relationship
between theSTU relation and the 4T relation, we have the following straightforward
generalization of [3, Theorem 6].
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Fig. 13. Applying the STU relation to the middle and the right mixed edge produces the equality
of the two pairs of chord diagrams. Any time four chord diagrams differ in two places as pictured,
one obtains such an equality, called the 4T relation. The three arcs belong to distinct segments
in the case of HD and some or all of them could belong to same segment in the case of LD. An
arbitrary permutation of the order of the three arcs in all the pictures is allowed.

Theorem 3.38. There are isomorphisms

(LD0
k)∗/(STU , IHX , 1T ) ∼= (LC0

k)∗/(4T, 1T ) and

(HD0
k)∗/(STU , IHX , H1T ) ∼= (HC0k)∗/4T.

Each isomorphism sends a diagram with no free vertices to itself and a diagram with
free vertices to the sum of chord diagrams obtained from it via the STU relation.

Now denote by

LCWk and HCWk

the vector spaces of functionals on (LC0
k)∗/(4T, 1T ) and (HC0

k)∗/4T , respectively.
Dualizing Theorem 3.38, we thus have isomorphisms

LWk
∼= LCWk and HWk

∼= HCWk. (17)

Theorem 3.38 will be used in the proof of Theorem5.8.

4. ConÞguration Space Integrals and Cohomology
of Homotopy String Links

4.1. Compactification of configuration spaces

In this section, we review the standard construction of a compacti“cation of con“g-
uration spaces over which we will integrate to produce invariants. This is necessary
since integrals over the ordinary open con“guration space may not converge. The
original compacti“cation is due to Fulton and MacPherson [9] and Axelrod and
Singer [2].
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DeÞnition 4.1. For a manifold M , let

C(p,M ) = {(x1, x2, . . . , xp) ∈Mp : xi �= xj for i �= j}
be the con“guration space ofp points in M . When M = R, the con“guration space
has p! components, and in this caseC(p,R) will mean the component consisting of
those (x1, . . . , xp) such that x1 < · · · < xp. Similarly, when M = S1, C(p, S1) will
mean one component where the pointsx1, . . . , xp are in a “xed cyclic order.

For a submanifold Y of a manifold X , the blowup Bl(X,Y ) is the result of
removingY and replacing it by the sphere bundle of its normal bundle. Equivalently,
this is the result of removing an open tubular neighborhood ofY .

DeÞnition 4.2. For a compact manifoldM , the (Fulton…MacPherson) compacti-
“cation C[p,M ] is de“ned as the closure of the image of

C(p,M ) � � �� Mp ×
∏

S⊂{1,...,p}|S|≥2

Bl(MS , � S),

where � S = {(x, x, . . . , x) ∈MS} is the thin diagonal in MS . For M = R
n, C[p,Rn]

is considered as the subspace ofC[p + 1 , Sn] where the last point is “xed at ∞.

First, here are some general properties ofC[p,Rn] that are relevant for our purposes.
Proofs can be found in [28]:

(1) The spaceC[p,Rn] is a manifold with corners homotopy equivalent toC(p,Rn);
(2) The boundary of C[p,Rn] is given by points colliding or escaping to in“nity;
(3) The directions and relative rates of collision are recorded, so that ak-stage

collision (points coming together or going to in“nity in k di�erent stages rather
than all of them doing this at the same instance) gives a point in a codimension
k stratum of C[p,Rn]. Thesek stages are thescreens explained below.

The last property in particular says that codimension-one faces ofC[p,Rn] consist
of con“gurations where some subset of the points has come together or escaped to
in“nity at the same time. These faces are of particular interest since they play a
role in checking whether some di�erential form obtained on the space of links is
closed (i.e. they are relevant for an application of Stokes• Theorem).

Some elaboration is necessary in order to de“ne con“guration space integrals for
string links. A stratum of C[p,M ] is labeled by a collection{S1, . . . , Sk} of distinct
subsetsSi ⊂ {1, . . . , p} with |Si| ≥ 2 and satisfying the condition

Si ∩ Sj �= ∅ ⇒ either Si ⊂ Sj or Sj ⊂ Si.
In other words, the Si are pairwise nested or disjoint. For each setSi in the collec-
tion, we can think of the points in Si as having collided. If there is anSj ⊂ Si in
the collection, we can think of the points in Sj as having “rst collided with each
other and then with the remaining points in Si. Two strata indexed by {S1, . . . , Sk}
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and {S′
1, . . . , S

′
j} intersect precisely when the set{S1, . . . , Sk, S

′
1, . . . , S

′
j} satis“es

the above condition. In that case, that is the set which indices the intersection.
Roughly speaking, eachSi corresponds to an •in“nitesimal con“gurationŽ or

screen, and all the screens together encode directions and relative rates of colli-
sion, as follows. Let si = |Si|. In the case where allSi are disjoint, the screen
corresponding to Si is a point �uSi ∈ (C(si, TxM ))/(Rn � R+), where R

n
� R+

is the group of translations and (oriented) scalings ofRn ∼= TxM . In the case
where all the Si are nested, say asS1 ⊂ · · · ⊂ Sk, the screen�uSi is a point in
(C(si − si−1 + 1 , TxM ))/(Rn � R+) (where we sets0 = 0). In general, �uSi is a con-
“guration of points in TxM , modulo the action of (Rn�R+). Each of the p points in a
limiting con“guration (i.e. a con“guration in the boundary of C[p,Rn]) corresponds
to a point in possibly multiple screens; if the point is indexed by j ∈ {1, . . . , p}, it
corresponds precisely to one point in eachSi that contains j. The number of points
in �uSi is obtained by taking the points in Si and, for each maximal properSj con-
tained in Si, replacing the points in Sj by a single point; i.e. all the points in �USi

become one point in�USj when Si ⊂ Sj . From this description, one can verify that
the stratum labeled {S1, . . . , Sk} has codimensionk. Again, more precise details
can be found in [2, 9].

Remark 4.3. An alternative but equivalent de“nition of this compacti“cation was
given by Sinha in [28], which is as follows. SupposeM is a compact submanifold of
R
N . Then for all 1 ≤ i < j < k ≤ p we have maps

vij =
xj − xi
|xj − xi| ∈ S

N−1, aijk =
|xi − xj |
|xi − xk| ∈ [0,∞], (18)

whose domain isC(p,M ) and where [0,∞] denotes the one-point compacti“cation
of [0,∞). These maps measure the direction and relative rates of collision of con-
“guration points, respectively. Adding this information to the con“guration space
is achieved by considering the map

γ : C(p,M ) →Mp × (SN−1)(
p
2) × [0,∞](

p
3) ,

(x1, . . . , xp) �→ (x1, . . . , xp, v12, . . . , vij , . . . , v(p−1)p,

a123, . . . , aijk, . . . , a(p−2)(p−1)p).

(19)

The closure of the image ofγ turns out to be di�eomorphic (as a manifold with
corners) to C[p,M ]. That is,

C[p,M ] = γ(C(p,M )) ⊂Mp × (SN−1)(
p
2) × [0,∞](

p
3) .

SinceC[p,Rn] is de“ned via C[p + 1 , Sn], we would have to takeN above to be
n + 1 if we were to use this de“nition. Then the unit vector di�erence maps vij
would land in Sn, rather than the more geometrically obvious candidate,Sn−1.
(If one tries to use Sn−1, the maps vij cannot extend from R

n to Sn; this is why
De“nition 4.2 is better suited for our purposes.)
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4.2. Bundles of compactified configuration spaces

Given � ∈ LD, we will construct in this section a certain bundle of con“guration
spaces overLnm. There is already a standard recipe for doing this which was initiated
in the case of closed knots (m = 1) in [ 5] and fully developed in [7]. Generalizing this
recipe to long knots or closed links is straightforward. In generalizing to homotopy
string links, two issues arise. First, some care needs to be taken to extend this
construction to ordinary string (i.e. long) links. The second and perhaps more
serious issue is that even after extending to string links, this construction fails to
even produce a bundle overHnm by restriction to the subcomplex HD as we will
see in Sec.4.2.4.

Resolving the “rst issue essentially just relies on our de“nition of string links,
in which di�erent components approach in“nity in di�erent directions (see De“-
nition 2.1), as well as properties of the Fulton…MacPherson compacti“cation. We
take the standard bundle construction, as in [7, 31], as our starting point, and we
describe how to make the construction work for string links in Sec.4.2.1.

To “x the second issue, we devise a more re“ned way of constructing bundles
which works over both Lnm and Hnm. In Sec. 4.2.4, we re“ne this construction to
produce bundles over spaces of homotopy string links. The di�erence between the
two approaches can be summarized very succinctly: in the standard approach, only
vertices of a diagram are taken into account in the construction of bundles, whereas
in the new approach, we will take into account both vertices and edges. We will
show the compatibility of the approaches in Sec.4.4.

4.2.1. Bundles of compactified configuration spaces from
vertices of a diagram

A diagram � ∈ LD will de“ne a con“guration space where the segment vertices of
� correspond to points moving along a link in R

n and free vertices correspond to
points that are free to move anywhere inR

n.
Suppose � ∈ LD has ij segment vertices on thejth segment, 1≤ j ≤ m, and s

free vertices. For any link L ∈ Lnm, the evaluation map

evΓ(L) :
m∏
j=1

C(ij ,R) → C

 m∑
j=1

ij,R
n

 (20)

is given by evaluating the jth strand of L on ij con“guration points. In other words,
it is given by

(L, (x1
1, . . . , x

1
i1 ), . . . , (xm1 , . . . , x

m
im ))

�→ (L(x1
1), . . . , L(x1

i1 ), . . . , L(xm1 ), . . . , L(xmim )) .

Let C[�i;
∐m
j=1 R] denote the closure of the image of evΓ(L), where we think of�i as

(i1, . . . , im). Suppressing the dependence onL will be justi“ed by the next lemma.
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So far it is clear that for any L ∈ Lnm, C[�i;
∐m
j=1 R] is compact and that its interior

is di�eomorphic to
∏m
j=1 C(ij ,R).

Lemma 4.4. For any L ∈ Lnm, the space C[�i;
∐m
j=1 R] has the structure of a man-

ifold with corners, independent of L.

Proof. We will show that the manifold with corners structure comes from that
on C[i1 + · · · + im + 1 , Sn]. First, note that all the added limit points are in the
boundary ofC[i1+ · · ·+ im,Rn]. Around such a point, a neighborhood inC[i1+ · · ·+
im,R

n] has various strata, points of which are described by collections of screens, as
was explained after De“nition 4.2. To describe the corresponding neighborhood in
C[�i;

∐m
j=1 R], we replace these spaces of screens by similar spaces which have lower

dimension, but will have the same codimension in the latter space.
At a collision of s ≥ 2 points at a point x away from ∞, the space

C(s, TxRn)/(Rn � R+) is replaced byC(s, TxL)/(R � R+), whereby abuse of nota-
tion L also denotes the image ofL and whereR � R+ < R

n
� R+ is the subgroup

of translations and scalings ofTxRn which take TxL to itself.
Consider a collision of ≥1 points with ∞, “rst as just a con“guration in

C[I,Rn] ⊂ C[I + 1 , Sn], where I := i1 + · · · + im. Consider a stratum incident to
that con“guration, labeled by {S1, . . . , Sk}. Let Si be a set containing the (I +1)th
point ∞, and let si = |Si|. We can describe the •screen-spaceŽ corresponding toSi
as C(si, T∞Sn)/(Rn � R+) ∼= C(si − 1, T∞Sn\{0})/R+, where this identi“cation
comes from “xing the (I + 1)th point ∞ at the origin in T∞Sn.

Now suppose that the points in the con“guration are on the link, so that this
con“guration is also in C[�i;

∐m
j=1 R]. We can describe a neighborhood in that space

by replacing the screen above by a con“guration of points inT∞Sn\{0} which are
constrained to lie in certain open rays emanating from the origin, modulo scaling.
These rays correspond to the directions of the “xed linear embedding. In other
words, we replaceC(si−1, T∞Sn\{0})/R+ by C(si−1, T∞L\{0})/R+. (Of course,
the one-point compacti“cation of L is not a manifold at ∞ ∈ Sn, but T∞L seems
like appropriate notation for the subset of lines through the origin in T∞Sn corre-
sponding to the components ofL.) This treatment of collisions at in“nity is where
we use our string link components to have di�erent directions toward in“nity, as
required in De“nition 2.1.

Note that not all the strata in C[I,Rn] occur as strata inC[�i;
∐m
j=1 R] because

points in di�erent components of the link cannot collide away from ∞ (and further-
more, if a point on a link component has its two neighbors approaching∞, then it
must approach∞ too). But for a given S = {S1, . . . , Sk} which does index a stra-
tum S of C[�i;

∐m
j=1 R], any subset ofS clearly indices a stratum in C[�i;

∐m
j=1 R].

These subsets correspond precisely to the higher-dimensional strata which intersect
a neighborhood of any point in S. This is the sense in which the corner structure
on C[�i;

∐m
j=1 R] is inherited from the one onC[I,Rn]. Hence the spaceC[�i;

∐m
j=1 R]

can be seen to be a manifold with corners for the same reason thatC[I,Rn] is.
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In more detail, we parametrize a neighborhood of a codimensionk point in
C[�i;

∐m
j=1 R], just as is done forC[i,R] in [30, Sec. 4.1] or forC[i,M ] in [2, Sec. 5.4]:

Let S be a stratum of codimensionk, indexed by a collection S of subsets
S1, . . . , Sk of {1, 2, . . . , 1 +

∑
j ij} (with the last point here corresponding to ∞).

A point c in such a stratum is described by (not necessarily distinct) pointsx1 =
x1(c), . . . , xp = xp(c) ∈ Sn = R

n ∪ {∞}, together with k screens�uS (one for each
S ∈ S) at some of thesex•s, with possibly multiple screens at any givenx. A screen
�uS away from ∞ consists ofuS,1 < uS,2 < · · · ∈ R ∼= TxL such that

∑
h uS,h = 0

and
∑

h |uS,h|2 = 1. A screen �uS at ∞ describes the escape to∞ of aj + bj points
on the jth strand, aj of them in the •negative directionŽ and bj of them in the
•positive directionŽ. Such a screen is given by

(u1
S,1 < · · · < u1

S,a1
, . . . , umS,1 < · · · < umS,am

;

v1
S,1 < · · · < v1

S,bj
, . . . , vmS,1 < · · · < vmS,bm

),

where ujS,h ∈ (−∞, 0) and vjS,h ∈ (0,∞) are points in the two rays in T∞L\{0}
coming from the jth component of the link, and where these parameters satisfy

∑
j

 aj∑
h=1

|ujS,h|2 +
bj∑
h=1

|vjS,h|2
 = 1 .

Note that either type of screen �uS is given by as many parameters as there are
elements inS. Using the set of thex•s in R

n = Sn\{∞} (without multiplicity) and
the parameters in the �US , we can parametrize an open neighborhoodV ⊂ S of an
interior point c0 ∈ int( S), showing that S is a manifold (of dimensionnp − k).

Thus, to understand the corner structure of C[�i;
∐m
j=1 R], it su�ces to provide

a map from an open neighborhoodU × [0, ε)k of (c0, 0) in int( S) × [0,∞)k to
C[�i;

∐m
j=1 R]. We “rst de“ne a map U × (0, ε)k → (Sn)i1+···+im by

(c, r1, . . . , rk) �→
expx1(c)

 ∑
�∈{1,...,k}:S�	1

r̃�uS�,1

, . . . ,
expxp(c)

 ∑
�∈{1,...,k}:S�	p

r̃�uS�,p

,
where expx is the exponential mapTxL→ Sn and where

r̃� =
∏

�′:S�′⊃S�

r�′ .

Even though T∞L is strictly not a tangent space to a manifold, it has an expo-
nential map coming from the restriction of the exponential map from T∞Sn. For
a su�ciently small neighborhood U = U (c0) and su�ciently small ε = ε(c0), one
can show that this map is injective. The map above is essentially [2, Eq. 5.71], and
the proof of injectivity is essentially the same as the proof given in that reference.
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Finally, this map extends continuously to a map U × [0, ε)k → C[�i;
∐m
j=1 R] by

mapping a point (c, 0) into S and, more generally, by mapping a boundary point
(c, �r) into the stratum indexed by {S� : r� = 0}.

It is now clear that for any L this gives a compacti“cation of
∏m
j=1 C(ij ,R)

whose manifold-with-corners structure is independent ofL. So we can write

evΓ :Lnm × C
�i; m∐

j=1

R

→ C

 m∑
j=1

ij ,R
n

. (21)

Returning to the ordinary compacti“ed con“guration spaces, we have the pro-
jection

pr : C

 m∑
j=1

ij + s,Rn

→ C

 m∑
j=1

ij ,R
n

 (22)

given by forgetting the last s points of a con“guration, as well as all the vij and
aijk which involve any of the last s points.

DeÞnition 4.5. Given � ∈ LD with ij segment vertices on thejth segment ands
free vertices, let�ı = ( i1, . . . , im), and let

C[�ı + s; Lnm, �]
be the pullback of pr along evΓ:

C[�ı + s;Lnm, �] ��

��

C[
∑m

j=1 ij + s,Rn]

pr

��
Lnm × C[�i;

∐m
j=1 R]

evΓ �� C[
∑m

j=1 ij ,R
n]

(23)

We then have the following special case of [5, Proposition A.3].

Proposition 4.6. With � as above, the projection

πL,Γ :C[�ı + s; Lnm, �] → Lnm
is a smooth fiber bundle whose fiber is a finite-dimensional smooth manifold with
corners.

Returning to the perspective of di�eology (as explained in Sec.2.2), it is conve-
nient to think of this as a compatible collection of bundles, one for eachψ :M → Lnm,
just as the one above but with Lnm replaced byM . Here, ψ is a smooth map and
M is a “nite-dimensional manifold (without corners). In that case, it is not hard to
generalize the proof of [5, Proposition A.3] from one “ber to the whole bundle. It
is also not hard to see that the projection mapπ is smooth. (Note that the corner
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structure plays no role in the smoothness ofπ, sincedπ sends all the tangent vectors
orthogonal to boundary faces to zero.)

We will denote the “ber of πL,Γ over a link L by

π−1
L,Γ(L) = C[�i + s;L, �] .

We think of this space as a con“guration space whose “rsti1 points must lie on the
“rst strand of L, secondi2 must lie on the second strand, and so on, while the last
s is free to move anywhere inR

n (including on the image ofL).

4.2.2. Bundles from diagram vertices and a difficulty
with homotopy links

If � is a diagram in HD, then the above construction will not in general produce a
“ber bundle over Hnm. The “rst problem is that a generic elementH ∈ Hnm need not
be an embedding or even an immersion, so that the target of the evaluation map is
not the usual compacti“ed con“guration space, but rather a •partialŽ con“guration
space where some points are allowed to collide (without regard for how), while
others are not. The second problem, not as easily overcome, is that the map from
one partial con“guration space to another which restricts to some subset of the
original set of points is usually not a “bration, making it di�cult to produce a “ber
bundle by pullback. As an illustration, consider the following example.

Example 4.7. De“ne

C(2, 1;Rn) = {(x1, x2, y) ∈ (Rn)3 :x1, x2 �= y}
and let C[2, 1;Rn] denote its compacti“cation (we only compactify along the diago-
nals which have been removed). Next, takem = 1 (so there is one strand) and any
value of n, and consider the evaluation map

ev :Hn1 × C[2,R]→ R
n × R

n.

The projection

pr : C[2, 1;Rn]→ R
n × R

n

to the “rst two coordinates is not even a “bration, as the “ber over a point ( x1, x2)
with x1 = x2 is homotopy equivalent to Sn−1, while the “ber over such a pair with
x1 �= x2 is homotopy equivalent to Sn−1 ∨ Sn−1. The problem persists with links
of more components.

However, if we only allow one point on each strand for the evaluation map, then
we can proceed as follows. We have an evaluation map (where�1 := (1 , 1, . . . ,1))

ev :Hnm × C
�1;

m∐
j=1

R

→ C[m,Rn]
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obtained by evaluating each strand of a homotopy link on exactly one point in that
strand. The image necessarily lies in the interior of the compacti“ed con“guration
spaceC[m,Rn] since the images of them strands are disjoint.

We again have a projection map

pr : C[m + s,Rn]→ C[m,Rn] (24)

which is a “bration (of manifolds with corners) so that one can form the pullback

C[�1 + s;Hnm] ��

��

C[m + s,Rn]

pr

��
Hnm × C[�1;

∐m
j=1 R] ev �� C[m,Rn]

.

There is now a bundle

C[�1 + s;Hnm]→ Hnm (25)

for the same reason we have one in Proposition4.6. (It should be noted that A.3
of [5] may appear to the reader not to apply, but it depends on A.5, which does
apply in this situation and gives the result we claim.) We now use this observation
to build bundles overHnm for any diagram � ∈ HD, and this will naturally extend
to diagrams in LD. In order to do so, we need to break our diagrams up into pieces,
called •graftsŽ.

4.2.3. The graft components of a diagram

DeÞnition 4.8. For a vertex v in a diagram �, let N (v) be the set of all pairs
(w, e) such that b(e) = {v, w}.

Thus, N (v) consists of all the •neighborsŽ ofv counted with multiplicity accord-
ing to edges.

DeÞnition 4.9. Let � = ( V,E, b) ∈ LD be a diagram. De“ne the hybrid of � to
be the diagram �̃ = ( Ṽ , Ẽ, b̃) de“ned as follows: The set Ṽ is obtained from V

by replacing each segment vertexv ∈ V of � with the set v × N (v), the elements
of which will represent new vertices, and otherwise the vertex set is unchanged.
The edge setẼ is equal to E. The map b̃ is induced from b according to the
following rule: Supposeb(e) = {v, w}. If v, w ∈ Ṽ , then b̃(e) = b(e). If one of v
or w, say v, is a segment vertex, then b̃(e) = {(v, (w, e)) , w}. If both are, then
b̃(e) = {(v, (w, e)) , (w, (v, e))}.

The hybrid is not a link diagram, but it does induce certain link diagrams which
are subdiagrams of the original link diagram �.

DeÞnition 4.10. For a diagram � ∈ LD with hybrid �̃, de“ne the graft components
of �̃ to be the set of path components (i.e. connected components) of̃�.
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Fig. 14.

Fig. 15. The five graft components of the diagram in Fig. 14. We have simplified the labels on
the vertices of the graft components because the original diagram does not possess multiple edges
between a given pair of vertices.

Example 4.11. Consider the diagram � in Fig. 14. The “ve graft components of
its hybrid �̃ are given in Fig. 15.

The following is clear by construction.

Proposition 4.12. Each chord of � gives rise to a graft component consisting of
two vertices and a single edge, and each loop at a segment vertex gives rise to a
graft component with a single vertex and a single edge.

Although the hybrid �̃ is not a link diagram, each graft component c(�̃) of �̃
canonically de“nes an element ofLD, with its structure induced by �.

DeÞnition 4.13. Suppose the diagramc(�̃) = ( V (c(�̃)) , E(c(�̃)) , bc(eΓ)) is a graft

component of �̃, so that V (c(�̃)) ⊂ Ṽ and E(c(�̃)) ⊂ Ẽ = E. The forgetful map
Ṽ → V identi“es c(�̃) with a subdiagram c(�) of �, called a graft of � which inherits
all the necessary structure for it to de“ne an element of LD.

If � ∈ HD, then it is clear that all the grafts of � are also elements of HD. The
set of all graft components, and hence the set of all grafts, can be ordered according
to the ordering of the vertices of �; no two grafts will have the same underlying
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vertex sets because diagrams with multiple edges between a pair of vertices are set
to zero.

If � ∈ HD, the grafts of � have an additional useful property which will allow
us to build bundles overH.

Proposition 4.14. For � ∈ HD, each graft of � has at most one segment vertex
on each segment.

Proof. First, we claim that for any pair of distinct free vertices v, v′ in the same
graft component c(�̃) , there exists a path of free edges between them. This is clear
since each vertex of̃� which arises from a segment vertex of � is joined to precisely
one other vertex in that component, so any path betweenv and v′ in c(�̃) can be
shortened to avoid such vertices. This clearly descends to a path incΓ between v
and v′ consisting only of free edges.

Now suppose, on the contrary, that there is some graft componentc(�̃) of �̃
such that the associated graftc(�) of � has two distinct segment vertices x and x′

on a given segment.
Let α = {ei}ki=1 be any path of edges fromx to x′ in c(�). Let 1 ≤ j ≤ k be

such that b(ej) contains a segment vertexy on a segment di�erent than the segment
on which x, x′ lie. Such a j must exist by de“nition of HD. If b(ej) = {y, v} and
b(ej+1) = {y, v′}, then v = v′ implies y could be avoided by removingej, ej+1 from
our path. Hence v �= v′, and both are free vertices by Proposition4.12. But our
observation at the beginning of the proof shows there must exist a path between
v and v′ which avoids y. We can similarly eliminate any other segment vertex
encountered along the way, producing a path betweenx and x′ which does not pass
through any other segment vertices.

4.2.4. Bundles of compactified configuration spaces from
vertices and edges of a diagram

We now describe the construction of bundles overLnm and Hnm using the grafts of
a diagram.

Proposition 4.15. Let � ∈ LD be a diagram with ij segment vertices on the jth
segment, and let c(�) be a graft of � with dj segment vertices on the jth segment
for all j = 1 to m. Let �i = ( i1, . . . , im). Then c(�) gives rise to an evaluation map

evc(Γ) :Lnm × C
�i; m∐

j=1

R

→ C

∑
j

dj ,R
n

.
If c1(�) , . . . , ck(�) are the grafts of � ordered as described above, and cl(�) has dl,j
segment vertices on the jth segment for l = 1 to k, then we have an evaluation map

evgr(Γ) :Lnm × C
�i; m∐

j=1

R

→ k∏
l=1

C

∑
j

dl,j ,R
n

, (26)
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where evgr(Γ) = (ev c1(Γ), . . . ,evck(Γ)). Moreover, if � ∈ HD, then we have an eval-
uation map

evgr(Γ) :Hnm × C
�i; m∐

j=1

R

→ k∏
l=1

C

∑
j

dl,j ,R
n


whose restriction to Lnm × C[�i;

∐m
j=1 R] is equal to the map in Eq. (26), and whose

image in each factor lies in the open configuration space C(
∑

j dl,j ,R
n).

Proof. This follows immediately from Proposition 4.14, since there is at most
one segment vertex on each segment of a graftc(�), and since homotopy links send
points in distinct segments to distinct points, so that the codomain of the evaluation
map is correctly identi“ed.

If � ∈ LD, we now have a di�erent evaluation maps associated with a link
diagram, and this gives rise to a new way to build a bundle associated with a
diagram.

DeÞnition 4.16. Let � ∈ LD be a link diagram with grafts c1(�) , . . . , ck(�) such
that cl(�) has dl,j segment vertices on thejth segment andsl free vertices forl = 1
to k. Let �dl = ( dl,1, . . . , dl,m). De“ne

⊕lC[�dl + sl; Lnm, cl(�)]
as the pullback of pr along evgr(Γ):

⊕lC[�dl + sl; Lnm, cl(�)] ��

��

∏k
l=1 C[

∑
j dl,j + sl,R

n]

pr

��
Lnm × C[�i;

∐m
j=1 R]

evgr(Γ) �� ∏k
l=1 C[

∑
j dl,j ,R

n].

(27)

Similarly, we de“ne ⊕lC[�dl + sl; Hnm, cl(�)] when � ∈ HD and Hnm replacesLnm.

Remark 4.17. The notation here is meant to observe that given a collection of
spaces and mapsX → Yi ← Zi such that Pi is the pullback of this diagram for
each indexi, then the pullback of the evident diagram X → ∏i Yi ←

∏
i Zi is the

pullback of
∏
i Pi along the diagonal map � : X →∏iX .

Proposition 4.18. Let � ∈ LD be a link diagram with grafts c1(�) , . . . , ck(�) such
that cl(�) has dl,j segment vertices on the jth segment for l = 1 to k, j = 1 to m.
Then the projection

πL,Γ :⊕lC[�dl + sl; Lnm, cl(�)] → Lnm
is a smooth fiber bundle whose fibers are smooth finite-dimensional manifolds with
corners. Moreover, if � ∈ HD, then the projection

πH,Γ :⊕lC[�dl + sl; Hnm, cl(�)] → Hnm
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is also a smooth fiber bundle whose fibers are smooth finite-dimensional manifolds
with corners, and

⊕lC[�dl + sl; Lnm, cl(�)] ��

πL,Γ

��

⊕lC[�dl + sl; Hnm, cl(�)]
πH,Γ

��
Lnm �� Hnm

(28)

is a pullback square.

Proof. The projection πL,Γ is a smooth bundle for the same reasons thatπL,Γ in
Proposition 4.6 is. For πH,Γ, this is just an extension of the observation made in
(25). (As mentioned for the bundle πL,Γ, it will sometimes be convenient to think
of the bundle πL,Γ (respectively, πH,Γ) as a compatible collection of bundles, one
for each “nite-dimensional manifold mapped into Lnm (respectively, Hnm).) Lastly,
the fact that the square (28) is a pullback follows directly from the de“nitions.

We will denote the “bers of πL,Γ and πH,Γ over a link L ∈ Lnm or a homotopy
link H ∈ Hnm, respectively, by

π−1
L,Γ(L) = ⊕lC[�dl + sl; L, cl(�)]

and

π−1
H,Γ(H) = ⊕lC[�dl + sl; H, cl(�)] .

Example 4.19. Consider the two di�erent evaluation maps, one from Eq. (21)
and the other from Eq. (26), for the diagram � from Fig. 16. For conciseness, we
have omitted the compacti“cation coordinates.

On the one hand, using Eq. (21), we have

evΓ :Ln3 × C[1, 2, 1;R � R � R]→ C[4,Rn]

whose restriction to the interior is given by

(L, x, y1, y2, z) �→ (L(x), L(y1), L(y2), L(z)) .

The image of this restriction lies in the subspace of all (w1, w2, w3, w4) wherew1 �=
w2, w3, w4, and w2, w3 �= w4 of (Rn)4. We also have the projection map

pr : C[5,Rn]→ C[4,Rn]

Fig. 16.
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which on the interior sends (w1, w2, w3, w4, w5) to (w1, w2, w3, w4), so that the “bers
of the bundle πL,Γ :C[(1, 2, 1) + 1; Ln3 ] → Ln3 are a subspace ofC[5,Rn]. The “ve
con“guration points correspond with the vertices of �, and we blow up all diagonals
of (Rn)5. Note that the bundle obtained is exactly the same for any diagram with
the same vertices as �.

On the other hand, � has two graft components, one of which is the diagram
with a single chord from x to y1, and the other of which is the •tripodŽ with
free vertex a and edges between it andx, y2, and z. Then Eq. (26) gives another
evaluation map

evgr(Γ) :Ln3 × C[1, 2, 1;R � R � R]→ C[2,Rn]× C[3,Rn]

given on the interior by

(L, x, y1, y2, z) �→ (L(x), L(y1), L(x), L(y2), L(z))

whose image in each factor lies in the open con“guration space. To build the bundle,
we use the product of two projection maps

C[2,Rn]× C[4,Rn]→ C[2,Rn]× C[3,Rn]

given by

(u1, u2, w1, w2, w3, w4) �→ (u1, u2, w1, w2, w3)

to form a bundle

πL,Γ :C[(1, 1, 0);Ln3 ]⊕ C[(1, 1, 1) + 1; Ln3 ]→ Ln3 .
The “bers of this bundle are isomorphic to a subspace of (Rn)5, namely the subspace
of all tuples (w1, w2, w3, w4, w5) = ( L(x), L(y1), L(y2), L(z), a), but w3 = w5 is now
allowed and we do not blow up this diagonal. This is because there is no mixed
edge between the free vertexa and the segment vertexy1. We also do not blow
up the locusw2 = w3. Thus, the “bers are a subspace of a (compacti“ed) partial
con“guration space, because not all diagonals have been removed from (R

n)5.

In general, the di�erence between the pullback bundle based on vertices only and
the one based on vertices and edges is precisely what we saw in the last example.
In the latter, the con“guration space is not compacti“ed along all the diagonals
but only along those that belong to the same graft component. Thus, if there
is no edge between two vertices and they belong to di�erent graft components,
the corresponding con“guration points can pass through each other without the
direction of collision being recorded.

4.3. Pullback of differential forms to new bundles

of configuration spaces

For the sake of concreteness, it is necessary to choose coordinates on our con“gura-
tion spaces so that we may explicitly de“ne the pullback of forms. As the interior
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of con“guration space is a subspace of a product of Euclidean spaces, it will su�ce
instead to consider coordinate systems on such spaces.

Given a “nite ordered set S, we have a unique order-preserving isomorphism

pos :S → {1, . . . , |S|}.
For a coordinate system (x1, . . . , x|S|) on (Rn)|S|, this gives a natural way to asso-
ciate s ∈ S with the coordinate xpos(s).

Suppose we have a categoryC whose objects are subsets of a “xed “nite ordered
set S and whose morphisms are inclusions. The associationT �→ (Rn)|T | is a con-
travariant functor from C to spaces, since an inclusionT → T ′ gives rise to the
projection pi : (Rn)|T

′| → (Rn)|T | which forgets the coordinates associated with
T ′ − T .

Now suppose we have a family of subsetsT1, . . . , Tk of S whose union is equal
to S. We will let C be the category as above whose objects areS and all possible
intersections of theTi.

Consider the category of subsets of{1, . . . , k} with inclusions as morphisms. For
eachR ⊂ {1, . . . , k} we have the setTR :=

⋂
i∈R Ti (where we de“neT∅ := S), and

for each inclusionR→ R′ an inclusionTR′ → TR. HenceR �→ TR is a contravariant
functor to C, which can be thought of as ak-dimensional cube. Following this by
the functor from C to spaces de“ned above gives a covariant functorR �→ (Rn)|TR|.
Since S is the union of all the Ti, we have that limR�=∅(Rn)|TR| ∼= (Rn)|S|. The
particular isomorphism we have in mind is the one which makes the following
diagram commute:

limR�=∅ (Rn)|TR| ��

��������������
(Rn)|S|

(p1,...,pk)

��∏k
i=1(Rn)|Ti|

The diagonal arrow is the natural inclusion of the limit into the product, and the
top arrow is the isomorphism we spoke of above, and we use it to give coordinates
on the limit. Given a diagram � ∈ LD, the situation described above arises with
S = V (�) and Ti as the set of vertices of theith graft (recall that the set of grafts
is naturally ordered).

DeÞnition 4.20. Let � ∈ LD be a diagram with ij segment vertices on thejth
segment ands free vertices. Lete ∈ E(�), and suppose b(e) = {v, w}.
• If v �= w, then if e is oriented from v to w (or if it is not oriented, then if v < w

in the ordering of the vertex set), de“ne

φ′e :
k∏
l=1

C

∑
j

dl,j + sl,R
n

→ Sn−1
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as the map given on the interior by

�x �→ xpos(w) − xpos(v)

|xpos(w) − xpos(v)| ,

and de“ne

φe :⊕lC[�dl + sl; Lnm, cl(�)] → Sn−1

to be the pullback of φ′e along the map ⊕lC[�dl + sl; Lnm, cl(�)] →∏k
l=1 C[

∑
j dl,j + sl,R

n].
• If v = w, then necessarilye joins a segment vertex with itself, and if it is oriented

by the injection which sendsb(e) = {v} to 1 (or is not oriented at all),

φe(�x, L) = DzL(u)/|DzL(u)|,
where z is the point in one of the strands such thatL(z) = xpos(v) and u is the
positive unit tangent vector to the strand at z. If e is oriented by the injection
sendingb(e) = {v} to −1, then

φe(�x, L) = −DzL(u)/|DzL(u)|.
with z, u as above.

Note that DzL(u) �= 0 since L is an embedding; in the case of homotopy string
links, which may not be embeddings, we do not have to worry about whether this
is well-de“ned because loops cannot be present in diagrams inHD.

DeÞnition 4.21. Given � ∈ LD as above, de“ne

φΓ :⊕lC[�dl + sl; Lnm, cl(�)] → S(n−1)|E(Γ)|

by

φΓ = ( φe1 , . . . , φe|E(Γ)| ),

where pos(ei) = i if the edge set is ordered, and otherwise order them according
to the dictionary ordering on {b(ei)} (which can be imposed since diagrams with
more than one edge joining a pair of vertices are set to zero).

Let symSn−1 be a smooth, unit volume top form on Sn−1 which is symmetric
(meaning its values on antipodal points are equal, though in Sec.5.1, when we
discuss the case of links in dimension 3, we will also require this form to be the
unique rotation-invariant unit volume form) and let

ω =
∧

|E(Γ)|
symSn−1 .

Finally de“ne the pullback form

αΓ = ( φΓ)∗ω ∈ � (n−1)(|E(Γ)|)(⊕lC[�dl + sl; Lnm, cl(�)]) .
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Notice that nothing changes in the case of homotopy links. For a diagram �∈ HD,
we again use edges (but there are no longer any loops) to pull back a product of
forms ω from S(n−1)|E(Γ)| to the space⊕lC[�dl + sl; Hnm, cl(�)], although we will
write αH

Γ for the pullback form when � ∈ HD.
Observe also that the same de“nitions are valid for the bundleC[�i + s;Lnm, �]

considered in earlier literature on the subject. Namely, we have a map

φΓ :C[�ı + s;Lnm, �] → S(n−1)|E(Γ)|

dictated by the edges of �, and this can be used for pulling back a product of volume
forms to give a form αΓ = ( φΓ)∗ω. This case was considered in [31, Sec. 3.2].

4.4. Configuration space integrals of string links

and homotopy string links

We are “nally ready to produce forms on spaces of links and homotopy links.
Namely, the form αΓ can be pushed forward, or integrated along the “ber of the
bundle

πL,Γ :⊕lC[�dl + sl; Lnm, cl(�)] → Lnm
to produce a form (πL,Γ)∗αΓ, or, as we will usually denote it, a form

(IL)Γ ∈ � |Γ|(Lnm).

The value of this form on a link L ∈ Lnm is thus

(IL)Γ(L) =
∫
π−1
L,Γ(L)=⊕lC[�dl+sl;L,cl(Γ)]

αΓ.

The degree|� | := ( n−1)|E(�) |−n|V (�) free|− |V (�) seg| of (IL)Γ is the di�erence of
the degree ofαΓ and the dimension of the “ber π−1

L,Γ(L). Recall that this quantity
is also equal to

k(n− 3) + d,

where d = deg(�) and k = ord(�), so that we have constructed a map

IL :LDdk → � k(n−3)+d(Lnm). (29)

For a diagram � ∈ HD, we integrate the associated formαH
Γ along the bundle

πH,Γ :⊕lC[�dl + sl; Hnm, cl(�)] → Hnm.
This gives a form

(IH)Γ ∈ � |Γ|(Hnm)

whose value on a homotopy linkH ∈ Hnm is

(IH)Γ(H) =
∫
π−1
H,Γ(H)=⊕lC[�dl+sl;H,cl(Γ)]

αH
Γ .
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Again rewriting the degree of the form, we thus have a map

IH :HDdk → � k(n−3)+d(Hnm). (30)

Remark 4.22. Thinking of the bundle as a collection of compatible bundles (as
mentioned around Proposition 4.6) makes clear that this construction produces
di�erential forms on Lnm and Hnm in the sense described at the end of Sec.2.2. In
fact, if we replaced the link space byany “nite-dimensional manifold M (or just
an open subset of Euclidean space) parametrizing a family of links, then “berwise
integration certainly produces a di�erential form on M . It is also clear that for
another manifold M ′ mapped into Lnm through the map ψ :M ′ →M , the form on
M ′ is the pullback via ψ of the form on M .

Remark 4.23. It is immediate from the de“nition that maps IL and IH are also
compatible with the inclusion

Lnm ↪→ Hnm,
that is, we have a commutative diagram

HD � � ��

IH
��

LD
IL

��
� ∗(Hnm) �� � ∗(Lnm)

This is precisely what we were after when we re“ned the de“nition of the bundles
we integrate over.

Now note that again nothing changes for the case of the pullback bundle de“ned
without consideration of the grafts. Namely, the construction of (πL,Γ)∗αΓ goes
through exactly the same way to give a form (πL,Γ)∗αΓ by pushing forward the
form αΓ along the map

πL,Γ :C[�ı + s;Lnm, �] → Lnm
from Proposition 4.6. We now want to show that the forms we obtain by integrating
along this bundle are the same as the forms we obtain by integrating along

πL,Γ :⊕lC[�dl + sl; Lnm, cl(�)] → Lnm
are the same as in the case of integration along the bundle

πL,Γ :C[�i + s;Lnm, �] → Lnm.
This will “nally show that our way of setting up con“guration space integrals for
links is indeed a re“nement of the way that has been considered in literature thus far.

Proposition 4.24. For any � ∈ LD, (πL,Γ)∗αΓ = ( πL,Γ)∗αΓ.
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Proof. The map between “bers is the inclusion of an open dense set. The two “bers
are the same on the biggest stratum, namely the open con“guration space. They
di�er in that π−1

L,Γ(L) has more diagonals ofRn|V (Γ)| removed and compacti“ed.
Thus, the di�erence between the two is at least of codimension-one and so the
integrals are equal.

We next give a few examples of these con“guration space integrals.

Example 4.25 (Diagrams with no free vertices). One special case is that of
diagrams with no free vertices, i.e. those that only contain chords and loops. In
that case, the construction simpli“es since there are no pullback constructions as in
De“nition 4.16, and the bundles constructed are trivial. For example, if � ∈ LD is
the diagram from Fig. 17 (where we have omitted the edge orientations and labels
for simplicity), then the map φΓ is a composition

φΓ :Ln3 × C[3, 1, 2;R � R � R]
evΓ−−→ C[2,Rn]4 × C[1,Rn]→ (S(n−1))5.

After pulling back the product of “ve (antipodally) symmetric top forms from
(S(n−1))5, the integration takes place along the trivial bundle

πL,Γ :Ln3 × C[3, 1, 2;R � R � R]→ Ln3 .

Example 4.26 (Linking number). Another special case, and in fact the case
that motivated Bott and Taubes to de“ne con“guration space integrals for knots
in [5], is that of the linking number of a two-component link in R

3. Namely, suppose
� is the diagram with a single chord between segmentsi and j and no free vertices
or segment vertices on other segments, as in Fig.18.

Then the integration described above recovers the classical Gauss integral com-
puting the linking number of strands i and j of a link or a homotopy link L, which

Fig. 17.

Fig. 18.
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we will denote by lk(Li, Lj). In short,

lk(Li, Lj) = ( IH)Γ(L) = ( IL)Γ(L) =
∫
C[1,1;R�R]

(
L(x) − L(y)
|L(x) − L(y)|

)∗
symS2 ,

where the compacti“cation C[1, 1;R�R] is an octagonal disk (see [15, Sec. 1.2] for
details).

To see how shu�e products of integrals give products of linking numbers, see
Example 4.30.

Example 4.27 (Homotopy links with one strand). Consider the case of
Hn1 , n ≥ 3. Now the only diagram in HD is the empty diagram, and so the integra-
tion does not produce any forms in this case. This is of course consistent with the
fact that Hn1 is a contractible space (Corollary2.4).

4.5. Integration is a map of differential graded algebras

The goal of this section is to prove Theorem4.33, which says the map that associates
“berwise integrals to diagrams is a map of di�erential graded algebras. This theorem
will follow from Propositions 4.28…4.31. Most of the statements follow easily from
the case of knots considered in [7, 8], but for completeness and the convenience of
the reader, we give fairly complete outlines of their proofs. We elaborate on the fact
that IL is a map of algebras; this result is stated in [8] but without justi“cation. In
addition, we also observe that the same proofs apply for the case of the mapIH,
and that in fact some of the results now even work forn = 3.

We begin with the following proposition.

Proposition 4.28. For n ≥ 3 and m ≥ 1, IL and IH are well-defined homomor-
phisms.

Proof. We check that integration is compatible with the relations from De“ni-
tion 3.11. For the “rst condition, if � has a double edge, then φΓ factors through a
product with one fewer sphere, since one direction is repeated:

⊕lC[�dl + sl; Lnm, cl(�)]

�����������������

φΓ �� S(n−1)|E(Γ)|

S(n−1)(|E(Γ)|−1)

���������������

Then the pullback of ω via φΓ is the same as the pullback through the factoriza-
tion. However, the dimension ofω is greater than (n − 1)(|E(�) | − 1) and so the
pullback is zero. The same argument holds when⊕lC[�dl + sl; Lnm, cl(�)] is replaced
by ⊕lC[�dl + sl; Hnm, cl(�)].

The other two conditions in De“nition 3.11are in fact designed for compatibility
with the integration. Namely, if n is even or odd, then switching two con“guration
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points on the link (i.e. switching two copies of R) gives ⊕lC[�dl + sl; Lnm, cl(�)]
and ⊕lC[�dl + sl; Hnm, cl(�)] di�erent orientations and produces an integral with a
di�erent sign. A similar situation occurs if two free con“guration points are switched
and n is odd, and if two maps are switched in the productφΓ and n is odd (this
corresponds to switching the order of edges). The latter case introduces a sign
because the e�ect is that of transposition of two even-dimensional forms. Again, a
minus sign is introduced in the integral. Thus, IL and IH are well-de“ned and they
are homomorphisms since pullback of forms and integration are linear.

Proposition 4.29. For n ≥ 3 and m ≥ 1, IL and IH are maps of graded algebras.

Proof. Recall that we can considerLD∗
∗ and HD∗

∗ as di�erential graded algebras
with a single grading given by |� |. SinceIL(�) (or IH(�)) is a form of degree |� |, IL
and IH preserve this grading.

Thus, it remains to check that the shu�e product of diagrams from De“ni-
tion 3.21 corresponds precisely to the wedge product of forms which gives the
deRham complex the structure of an algebra. That is, we must check that

(IL)Γ1•Γ2 = ( IL)Γ1 ∧ (IL)Γ2 and (IH)Γ1•Γ2 = ( IH)Γ1 ∧ (IH)Γ2 . (31)

This statement is a direct generalization of the same statement for long knots
[8, Proposition 5.3]. Since that result is provided without much explanation, we
elaborate on (31) a bit here.

Recall that one way to think about the wedge product is as follows:
Given a k-form α and an l-form β, the wedge product is a multilinear (k+ l)-form

whose value on the variablesx1, . . . , xk+l is

α ∧ β(x1, . . . , xk+l) =
∑

σ∈Shuffle(k,l)

sign(σ)α(xσ(1) ∧ · · · ∧ xσ(k))

× β(xσ(k+1) ∧ · · · ∧ xσ(k+l)),

where Shu�e is the subset of the permutations of {1, . . . , k + l} such that σ(1) <
σ(2) < · · · < σ(k) and σ(k + 1) < σ(k + 2) < · · · < σ(k + l).

Thus, given diagrams � 1 and � 2, each shu�e vσ(1), . . . , vσ(k+l) of the segment
vertices on one segment corresponds to con“gurations on a strand of a link appear-
ing in that order. In other words, the i ntegration takes place over a •pieceŽ of
R
k+l determined by xσ(1) < · · · < xσ(k+l) (plus as many copies ofRn as there are

free vertices in both diagrams, since they are free to move anywhere). Adding the
integrals over all shu�es, we get (IL)Γ1•Γ2 , and in this sum, integration thus takes
place over all pieces ofRk+l.b The integrals agree on the boundary, so that this sum
can be represented by a single integral, taken overRk+l (again plus some copies of
R
n). But this integral is a product of integrals by Fubini•s Theorem, one taken over

R
k and one overRl (plus as many copies ofRn in each as there are free vertices

bThis is much like what happens in the Eilenberg–Zilber map.
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in the two diagrams whose shu�e product was taken). This product of integrals is
precisely (IL)Γ1 ∧ (IL)Γ2 . The same is true whenIL is replaced byIH.

An example of the argument given above is the following.

Example 4.30. Recalling Example 4.26, we now also see from Proposition4.29
how shu�e products of diagrams, each with one chord between di�erent strands,
correspond to the powers and products of linking numbers. For example, if �1 and
� 2 are as in Fig. 19, then their shu�e product is given in Fig. 20.

The corresponding sum of integrals is the following (with explanations below):

(IL)Γ1•Γ2(L)

= ( IH)Γ1•Γ2 (L)

=
∫
C[2,1,1;R�R�R]:x1≤x2

(
L(x1) − L(y)
|L(x1) − L(y)|

)∗
symS2 ∧

(
L(x2) − L(z)
|L(x2) − L(z)|

)∗
symS2

+
∫
C[2,1,1;R�R�R]:x1≤x2

(
L(x1) − L(z)
|L(x1) − L(z)|

)∗
symS2 ∧

(
L(x2) − L(y)
|L(x2) − L(y)|

)∗
symS2

(i)
=
∫
C[2,1,1;R�R�R]:x1≤x2

(
L(x1) − L(y)
|L(x1) − L(y)|

)∗
symS2 ∧

(
L(x2) − L(z)
|L(x2) − L(z)|

)∗
symS2

+
∫
C[2,1,1;R�R�R]:x2≤x1

(
L(x2) − L(z)
|L(x2) − L(z)|

)∗
symS2 ∧

(
L(x1) − L(y)
|L(x1) − L(y)|

)∗
symS2

Fig. 19.

Fig. 20.
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(ii)
=
∫
C[2,1,1;R�R�R]:x1≤x2

(
L(x1) − L(y)
|L(x1) − L(y)|

)∗
symS2 ∧

(
L(x2) − L(z)
|L(x2) − L(z)|

)∗
symS2

+
∫
C[2,1,1;R�R�R]:x2≤x1

(
L(x1) − L(y)
|L(x1) − L(y)|

)∗
symS2 ∧

(
L(x2) − L(z)
|L(x2) − L(z)|

)∗
symS2

(iii)
=
∫
C[2,1,1;R�R�R]:(x1,x2)∈R2

(
L(x1) − L(y)
|L(x1) − L(y)|

)∗
symS2 ∧

(
L(x2) − L(z)
|L(x2) − L(z)|

)∗
symS2

(iv)
=
∫

(x1,y)∈C[1,1;R�R]

(
L(x1) − L(y)
|L(x1) − L(y)|

)∗
symS2

·
∫

(x2,z)∈C[1,1;R�R]

(
L(x2) − L(z)
|L(x2) − L(z)|

)∗
symS2

= lk( L1, L2) · lk(L1, L3).

The subscript C[2, 1, 1;R � R � R] :x1 ≤ x2 indicates integration over the com-
ponent of C[2, 1, 1;R � R � R] whose interior consists of points (−∞ < x1 < x2 <

∞, y ∈ R, z ∈ R).
Equality (i) comes from just switching the labels x1 and x2. Equality (ii) holds

because switching the order of the maps, and hence pullbacks, does not matter
(n = 3 is odd here).

In equality (iii), the subscript C[2, 1, 1;R � R � R] : (x1, x2) ∈ R
2 denotes the

space obtained by gluing the two components ofC[2, 1, 1;R � R � R] along the
boundary face wherex1 has collided with x2. (This space can also be constructed in
a similar way to C[2, 1, 1;R�R�R], but without blowing up the diagonal x1 = x2.)
Here, we use that the two integrals on the previous line agree on this boundary
face. The diagram representing this boundary in both cases is the one in Fig.21.
This boundary faces indeed has opposite orientations in the two components of
C[2, 1, 1;R � R � R].

In equality (iv), we use that the maps used to pull back symS2 factor through
a con“guration space where all the faces at in“nity except those corresponding to
{x1, y,∞} and {x2, z,∞} are collapsed to points (i.e. a con“guration space obtained
by blowing up only those two diagonals). This space is the product (C[1, 1;R�R])2,

Fig. 21.
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to which we apply Fubini•s theorem. Lastly, note that in the expression following
equality (iv), we get the ordinary product of integrals, rather than a wedge product,
since the forms we obtain are 0-forms, i.e. functions onL3

3 (or H3
3), and the wedge

product in that case is the usual product.

Proposition 4.31. For n ≥ 4 and m ≥ 1, IL is a map of differential complexes.
For n ≥ 3 and m ≥ 1, the same is true for IH.

Remark 4.32 (Erratum to [ 31]). In the case of string links, this proposition
reduces to the statement of [31, Theorem 3.7]. However, with the de“nition of string
links used in that paper, it is unclear how to compactify the con“guration space
as points on the string link approach in“nity. While our present de“nition of string
links “xes that issue, the proof of •vanishing along faces at in“nityŽ in [31] is still
incomplete. Thus, the proof of this proposition provides an erratum to [31]. This
will justify all the statements in that paper which depend on the vanishing of the
integrals along faces at in“nity.

Proof of Proposition 4.31. The proof is very similar to the proof of the corre-
sponding result for closed knots andn ≥ 4, established in the Appendix of [7]. In
short, Stokes• Theorem implies that

d((πL,Γ)∗αΓ) = ( πL,Γ)∗dαΓ + ( ∂πL,Γ)∗αΓ. (32)

Since in our caseαΓ is the pullback of a closed form (namely the product of vol-
ume forms on the sphere),dαΓ = 0. Thus, the right-hand side is just ( ∂πL,Γ)∗αΓ,
where this term denotes the sum of integrals along all codimension-one faces of
⊕lC[�dl + sl; Lnm, cl(�)]. The faces given by two points colliding, called principal,
correspond to contractions of edges inLD. To get a map of complexes, therefore,
it remains to show the vanishing of the restriction of the integral to all other faces.
Recalling the discussion following De“nition 4.2, such faces are characterized by
more than two points coming together at the same time or one or more points
escaping to in“nity. The former are called hidden faces, and the latter are called
faces at infinity.

The vanishing arguments depend on the various cases. In some cases, there is an
involution of the face which either preserves its orientation and negates the form to
be integrated, or reverses its orientation and preserves the form; thus the integral
vanishes (see, for example, [30, Lemmas 4.5 and 4.6]). The remaining cases depend
on dimension-counting. A representative dimension-counting argument is given in
the beginning of the proof of Proposition4.28.

For the case of closed knots andn ≥ 4, the details of these vanishing arguments
can be found in [7, 30]. The authors of [7] argue by partitioning the faces into three
types: Type I corresponds to collisions of free vertices away from∞, Type II corre-
sponds to collisions of free vertices with∞, and Type III corresponds to collisions of
both free and segment vertices away from∞. The generalization of their arguments
to closed links andn ≥ 4 is immediate. To generalize to string links, including long
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knots, one just has to address faces wherer + s points approach in“nity, r ≥ 1 of
which are on the link. We call his a Type IV face.

This Type IV face is similar to a Type II face, where s points, none of which are
constrained to the link, approach in“nity. In a Type II face, the collision of s points
with ∞ is described by a screen, which is a point in the spaceC(s+1 , T∞Sn)/(Rn�

R+). (Here, R
n

� R+ is the group of translations and oriented scalings ofT∞Sn.)
By “xing the last point at ∞, we can write this space asC(s, T∞Sn\{0})/R+. For
the Type IV face, where r + s points go to in“nity with the “rst r of them on
the link L, we replaceC(r + s, T∞Sn\{0})/R+ by the subspace where ther points
lie on appropriate components ofT∞L. The dimension of this •screen-spaceŽ is
r + ns − 1.

Alternatively, we can describe the screen from the viewpoint of the origin rather
than ∞. In this description, the screen is a point inC(r + s + 1 ,Rn)/(Rn � R+).
Here, the last point corresponds to the collection of points that have not escaped to
in“nity. Heuristically, if � ′ is the subgraph of vertices that escape to in“nity, then
the complement of � ′ is collapsed to a point in this description. By translating this
point to the origin, this space is the same asC(r + s,Rn\{0}). Since the “rst r
points are on the link L, the screen lies in the subspace where the “rstr points
are constrained to appropriate rays through the origin, corresponding to the linear
behavior of L toward ∞.

For every such face at in“nity S, consider the map S → (Sn−1)|E(Γ)|. (The
description from the viewpoint of the origin above makes it particularly easy to see
what the map is for the factors of Sn−1 indexed by edges joining vertices in �′ to
vertices outside � ′.) This map can be factored through a product of two maps, one
of which is from the (“nite-dim ensional) screen-space to (Sn−1)|E(Γ′)|, where � ′ ⊂ �
consists of the vertices which have gone to in“nity. As in [7, Lemmas A.7…A.9], we
“rst reduce to the case where every free vertex in �′ has valence≥3, and every
segment vertex in � ′ has valence≥1:

Indeed, if v is any vertex which is 0-valent in � ′ or a free vertex which is 1-
valent in � ′, then v is joined by some edgee to a vertex outside of � ′. Then the
map from S→ (Sn−1)|E(Γ)| is constant in the Sn−1 factor determined by e. Thus,
the image of this map has codimension≥ n − 1. So as in the beginning of the
proof of Proposition 4.28, the form to be integrated is pulled back through a lower-
dimensional space and hence vanishes. Finally, if there is a vertex which is bivalent
in � ′, then the involution of the screen-space (due to Kontsevich) guarantees the
vanishing of the integral along S (see [7, Lemma A.9]).

So we may now suppose �′ is •at least unitrivalentŽ. We claim the dimension of
the screen-spacer + ns − 1 is less than (n− 1)|E(� ′)|. In fact, we have

(n− 1)|E(� ′)| − (r + ns − 1) ≥ (n− 1)
r + 3 s

2
− (r + ns − 1) (33)

=
(n− 3)(r + s)

2
+ 1 (34)
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=
(n− 3)(r + s− 2)

2
+ n− 2 (35)

≥ 1 (36)

sincen ≥ 3 and, by our assumptions on the valences in �′, r + s ≥ 2. So again, the
pulled-back form to be integrated factors through a lower-dimensional space and
hence vanishes. This proves the “rst statement of the proposition.

The same arguments of the Appendix of [7] together with our addendum above
for string links show that IH is a chain map. (Alternatively, for n ≥ 4, we can
use that HD is a subcomplex ofLD, so we get a chain mapIH by restricting
IL to HD.) Moreover, these arguments apply whenn = 3 to every face except
Type III face where the subgraph � ′ corresponding to the collided vertices is •at
least unitrivalentŽ. In defect zero, such a face must be the hidden face where all
the con“guration points come together (away from∞), i.e. the so-calledanomalous
face. This face will be discussed further in Sec.5.1. Note that a collision of all
con“guration points can only happen if all the segment vertices in a diagram � ∈
LD are concentrated on one segment (see Remark5.1). However, it is immediate
from the de“nition of HD that no � ∈ HD can have all its segment vertices on
one segment, unless � is the empty diagram. Therefore, one never encounters an
anomalous face in the case ofIH. Thus, the arguments above show that we also
get a chain map in the case of homotopy links forn = 3 in defect zero (which
is also main degree zero), even thoughIL is not known to be a chain map for
n = 3.

Let I0
L and I0

H denote the restrictions ofIL and IH to LD0
∗ andHD0

∗. For n ≥ 4,
one can show thatI0

L induces an injective map in cohomology. The proof of this
fact proceeds exactly as in the case of closed knots in [7], to which we refer the
reader for details. For I0

H consider the following diagram:

H0(HD∗
k)

� � ��

I0H
��

H0(LD∗
k)� �

I0L
��

Hk(n−3)(Hnm) �� Hk(n−3)(Lnm)

(37)

The top horizontal map is an injection because the degree zero cohomologies are just
subspaces ofHD0

k and LD0
k; hence this arrow is just a restriction of the inclusion

HD0
k ↪→ LD0

k. We just alluded to the proof that the right-hand vertical map is
an inclusion. The bottom horizontal map is induced by the inclusionLnm ↪→ Hnm.
From the de“nitions of IL and IH, we see that this square commutes. Thus, the
left vertical map is an injection. Putting this together with the previous three
propositions, we have the following.
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Theorem 4.33. For n ≥ 4 and m ≥ 1, the integration map

IL :LDdk → � k(n−3)+d(Lnm),

� �→
(
L �→ (IL)Γ(L) =

∫
π−1
L,Γ(L)=⊕lC[�dl+sl;L,cl(Γ)]

αΓ

)
(38)

induces a morphism of differential graded algebras. We recall here that the grading
|� |(= k(n− 3) + d) ( together with the differential δ and the shuffle product ) makes
the left-hand side a differential graded algebra, while the right-hand side is just the
de Rham complex of Lnm.

For n ≥ 3 and m ≥ 1, the same is true of the map

IH :HDdk → � k(n−3)+d(Hnm),

� �→
(
H �→ (IH)Γ(H) =

∫
π−1
H,Γ(H)=⊕lC[�dl+sl;H,cl(Γ)]

αH
Γ

)
.

(39)

For n ≥ 4 and d = 0 , the maps induced in cohomology by both of these maps are
injective.

Remark 4.34. The results proven in Sec. 5 will imply that for n = 3 , I0
H induces

an injection in cohomology.

Remark 4.35. Conjecturally, the map IL is a quasi-isomorphism. This is likely
since it is known that LD and Lnm have isomorphic cohomology.

Theorem 4.36. For n ≥ 5, changing the form symSn−1 to another (antipodally)
symmetric volume form does not affect the map IL in cohomology. For n ≥ 4, such
a change of form does not affect the map IH in cohomology.

Proof. The idea of the proof is the same as in [7, Proposition 4.5, Sec. A.4] (see
also [29, Sec. 4.2]). Ifα1, α2 are two forms on the same total space coming from
two di�erent volume forms, then their di�erence is an exact form dβ. We want to
show that the “berwise integral of dβ is exact. By Eq. (32) (Stokes• Theorem),
this integral is the di�erence of an exact form and the integral along the boundary
of the “ber of β. Thus, it su�ces to show that this integral along the boundary
vanishes. As before, we can do this either by involutions of boundary faces or by
dimension-counting arguments. However, sinceβ is a primitive for α1 − α2, our
dimension-counting arguments must show that the image of a boundary face of the
total space in the product of spheres has codimension at leasttwo (rather than
one).

The proof of [7, Proposition 4.5, Sec. A.4] for knots treats the case of Type I,
II, and III faces for n ≥ 5. So to prove the theorem statement forIL we just need
to treat the Type IV face. For the faces S where the corresponding subgraph �′ is
•less than unitrivalentŽ, we saw that either the image of the faceS in the product
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of spheres has codimensionn − 1 (≥2), or S has an involution that guarantees
the vanishing of the integral. For the case where �′ is •at least unitrivalentŽ, our
calculation in (33) shows that for n ≥ 4, the quantity ( n− 1)|E(� ′)| − (r + ns − 1)
is ≥2, and hence that the codimension of the image of this Type IV face in the
product of spheres is≥2. This proves the theorem forn ≥ 5.

For the statement regarding IH when n = 4, we note that the argument fails
for IL and n = 4 because of the Type III face. In the case of ordinary (long)
knots/links, this face is the pullback via the unit derivative map of a bundle over
Sn−1. However, for homotopy links, because of our grafts, such a codimension-one
face can involve onlyr = 1 point on the link. In this case, the description of this
face is the same as a Type I face (where only free points collide). A Type I face
does not involve tangential data and can be dealt with by a dimension-counting
argument. Thus, we get the desired statement forIH when n = 4. The reader may
consult the Appendix of [7] for further details.

We cannot necessarily extend the result concerningIH to n = 3 because in that
case the image of the Type IV face in the product of spheres may have codimension-
one.

5. ConÞguration Space Integrals and Finite Type Invariants
of Homotopy String Links

In this section, we focus on classical homotopy links, son = 3, and we want to
see what invariants, i.e. forms in degree zero, one obtains through our integration.
It turns out that what appears are precisely finite type invariants of homotopy
links, and that is the main result of this section. One way of saying this is that
the vector space of weight systemsHWk from Sec.3.4 corresponds precisely toR-
valued “nite type k invariants of homotopy links via con“guration space integrals.
That the two are isomorphic is known [4], but we exhibit this isomorphism explicitly
using con“guration space integrals. For links, this statement appeared in [31, Sec. 4]
and is for convenience restated below as Theorem5.6. The bulk of this section is
devoted to proving the same statement for homotopy links (Theorem5.8). However,
since the proofs are essentially identical for links and homotopy links, and since we
supply most of the details here, this section can be thought of as also giving the
proof of Theorem 5.6. See Remark5.12 for more details.

One important di�erence between links and homotopy links in this section is
that one no longer has to worry about anomalous faces in the case of homotopy
links (see Remark5.1). Looking at Eq. (29), we see that it is precisely diagrams
in defect zero that give degree zero forms, so this is why we considered them in
Sec. 3.4; the reader may “nd it helpful to review that section before proceeding
with this one. Since the rest of the paper only deals withn = 3, one may now
safely confuse diagrams of defect zero with those of main degree zero, since the two
coincide for n = 3.
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5.1. The anomalous correction

As mentioned in the proof of Proposition 4.31, the map IL is not a chain map for
n = 3. Recall that, to prove that IL commutes with the di�erential, we have to
check the vanishing of certain integrals along the hidden faces or faces at in“nity
of ⊕lC[�dl + sl; Lnm, cl(�)]. That is, for � ∈ LDdk, Stokes• Theorem implies that

(d(IL(�)))( L) =
∫
∂(π−1

L,Γ(L))

αΓ,

and if � is a cocycle, we know that the principal face integrals contribute zero to the
right-hand quantity. While the vanishing along hidden faces and faces at in“nity
indeed happens forn > 3, there is one type of face for which this fails in the case
of defect zero andn = 3. This is known as the anomalous face and is indexed by
all vertices of a connected component of a diagram colliding at the same point in
R
n. To “x this, one introduces a correction term which we give for the convenience

of the reader in Eq. (40). This correction was “rst given by Bott and Taubes [5] in
the case of knots and was generalized to links in [31, Theorem 4.5].

Remarks 5.1. (i) The collision of all con“guration points can only take place in
the space

C[0, . . . ,0, kj, 0, . . . , 0;L, �] , 1≤ j ≤ m,

because points on di�erent strands of a link cannot come together. The diagram
� which corresponds to this situation t hus must have a connected component
with all its segment vertices on a single segment (and does not contain chords „
if it does, the integral along the anomalous face vanishes; see [31, Proposi-
tion 4.3]). Since the integral associated to such a � computes a form on the
space of knots (i.e. only on thejth strand of the link), the issue with anomalous
faces is thus purely a knotting phenomenon, rather than a linking one.

(ii) As a consequence of the previous remark, and as was mentioned in the proof
of Proposition 4.31, anomalous faces are thus not an issue for homotopy links.
Because of how the complexHD is de“ned, a homotopy link diagram con-
centrated on one segment must be the empty diagram. The pushforwardπH,Γ
along the anomalous face thus vanishes and this is whyIH does not require a
correction factor in Theorem 5.8.

To give the complete picture, we remind the reader of what the correction for
the case of links is: Let symS2 now be a rotation-invariant smooth unit volume
form on S2. Also recall the de“nition of a connected component of a diagram
(De“nition 3.4), and let LD0

conn be the subcomplex ofLD consisting of connected
diagrams of defect zero (or degree zero, sincen = 3). Consider the map

�IL :LD0
conn → � 0(L3

m)

1350061-59



2nd Reading

November 9, 2013 13:0 WSPC/S0218-2165 134-JKTR 1350061

R. Koytche�, B. A. Munson & I. Voli´ c

de“ned as follows:

• If �

◦ has segment vertices on only one segment, or;
◦ has segment vertices on more than one segment but also contains a chord, then

( �IL)Γ(L) = ( IL)Γ(L);

• If � has segment vertices on only one segment, labeleds, and contains no chords,
then

( �IL)Γ(L) = ( IL)Γ(L) − µΓ

∫
C[2,Ls]

(
x1 − x2

|x1 − x2|
)∗

symS2 . (40)

Here,Ls is the sth strand of the link L and µΓ is a real number which depends
only on � and not on the link (this number is usually di�cult to determine).

To extend �IL to a map

�IL :LD0 → � 0(L3
m) (41)

simply requires a little combinatorial organization. The reason is that if � has, say,
two connected components �1 and � 2, and con“guration points corresponding to
� 1 come together, the integral for this face is a product of two integrals,

(IL)Γ2 · ∂anom(IL)Γ1 ,

where the second factor is the restriction of (IL)Γ1 to the anomalous face. The
correction for this term is thus

(IL)Γ2 ·µΓ1

∫
C[2,Ls]

(
x1 − x2

|x1 − x2|
)∗

symS2 .

However, one also has a situation when the roles of �1 and � 2 are reversed, and
further, each correction has its own anomalous face because of the “rst integral in
the product. Thus, one has to account forcorrection terms of correction terms.

The pattern is clear if � has more tha n two connected components. Rather
than writing this out, we refer the reader to the succinct formula for this iterated
correction [26, Proposition 1.2] (this also appears in [1], but for framed knots).
Even though this is a formula for knots and not links, understanding it for knots
is su�cient by part (i) of Remark 5.1.

Again, by Stokes• Theorem, for any � ∈ LDdk, d( �IL(�)) can be written as an
integral along the boundary of the “ber of ⊕lC[�dl + sl; Lnm, cl(�)]. This integral
along the boundary can be broken up into contributions from principal faces, hidden
faces, and faces at in“nity. Using the proof of Proposition4.31, which provides the
erratum to [31] regarding faces at in“nity, we have the following.

Theorem 5.2 ([ 31, Theorem 4.5]). The contribution to d( �IL(�)) from any hid-
den face (including any anomalous face) or any face at infinity is zero.
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Remark 5.3. We again wish to emphasize that, for this theorem to be true, it is
important that we start with a rotation-invariant form sym S2 on S2. For details
on why this is necessary, see [5, Lemma 5.7] (which uses Lemma 5.3, which in turn
uses rotation invariance).

5.2. Finite type invariants and chord diagrams

We now brie”y review the theory of “nite type link invariants and recall how it
is connected to the combinatorics of chord diagrams. Literature on this subject is
abundant, but a good start for the case of knots is [3]. For a slightly more detailed
overview than we give here for the case of links, see [31, Sec. 4.3].

Suppose we are given a link or a homotopy link invariantV , so that V is an
element of H0(L3

m) or H0(H3
m). This invariant can be extended to singular links, by

which we mean links with “nitely many doubl e-point self intersections where the
two derivatives are independent. The singularities for ordinary links can come from
a single strand crossing itself or two di�erent strands intersecting. For homotopy
links, we only consider those singularities arising from two di�erent strands (if there
is a singularity on a single strand, we ignore it). The extension ofV is de“ned via
the skein relation given in Fig. 22. The orientation on the link, which for us is given
by the natural orientation of each of the m copies ofR, needs to be emphasized so
that the two resolutions can be distinguished from each other (otherwise the two
pictures on the right-hand side of the equation in Fig. 22 can be rotated into one
another).

A k-singular link (a link with k singularities) thus produces 2k links on which
V can be evaluated. We will call these theresolutions of a singular link. Because of
the signs, the order in which singularities are resolved does not matter.

DeÞnition 5.4. The invariant V is finite type k (or Vassiliev of type k) if it vanishes
on links with k + 1 singularities.

Let

LVk = real vector space generated by “nite type k link invariants;

HVk = real vector space generated by “nite type k homotopy link invariants.

Note that LVk−1 ⊂ LVk andHVk−1 ⊂ HVk so that it makes sense to form quotients
LVk/LVk−1 and HVk/HVk−1.

Fig. 22. Skein relation.
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Next we want to describe a mapf which to a “nite type invariant associates
a weight system (see De“nition 3.35). Recall that we think of a weight system
(as is usual) as a functional on diagrams satisfying the usualSTU , IHX , and 1T
relations. The construction is standard in “nite type knot theory and this map is
in fact the “rst connection between “nite ty pe invariants and the combinatorics of
chord diagrams described in Sec.3.4 (a detailed account of this in the case of knots
is given in [3]). Here, we recall and adapt it to the setting of homotopy links. The
inverse off is given precisely by con“guration space integrals and this is how one
obtains isomorphisms in Theorems5.6 and 5.8. The former was already proven in
[31] so we will only provide a proof for the latter here.

Remark 5.5. Another way to construct an inverse to f is the famousKontsevich
Integral [14]. In fact, this integral provided the “rst proof of the isomorphism from
Theorem5.6 in the case of knots, i.e. whenm = 1. This is known as the Fundamental
Theorem of Finite Type Invariants.

To de“ne f , “rst recall Theorem 3.38 and the terminology introduced after its
statement. Let � be a chord diagram in (HC0

k)∗ and letHΓ be any singular homotopy
link with singularities as prescribed by �. By this we mean that HΓ is any smooth
map ofm copies ofR in R

3 with, as usual, disjoint images and which is “xed outside
a compact set, but which also hask •niceŽ self-intersections (locally embedded,
derivatives independent at intersection point) given byHΓ(xi) = HΓ(yj), xi, yj ∈ R,
if there is a chord between verticesxi and yj in �. The points HΓ(xi) and HΓ(yj)
are required to be on the strands corresponding to the segments that verticesxi
and yj are on, and if xi (yj) comes before some other segment vertexxi′ (yj′ )
in the ordering of the vertices of � (we picture xi as lying to the left of xi′ in
this case), then xi < xi′ (yj < yj′ ) as points in R (by abuse of notation, we
label the segment vertices the same way as coordinates inR). An example is given
in Fig. 23.

Fig. 23. An example of a homotopy link H Γ associated to a chord diagram Γ ∈ (HC0
3)∗. The

only requirement is that the relative positions of the singularities respect the relative positions of
the chords. Note that strand 2 intersects itself but we ignore such singularities.
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Now consider the value of a typek invariant V ∈ HVk on (the sum of the
resolutions of)HΓ. This value remains unchanged if a crossing between two strands
of HΓ is switched because, by the skein relation,

V (HΓ) − V (HΓ with a crossing changed) =V (some (k + 1)-singular link) = 0 .

This means that V does not depend on a particular link but only on the placement
of singularities. It thus makes sense to de“ne a map

f :HVk → HCWk,

V �→
(
W : (HC0

k)∗/(4T , 1T) → R

� �→ V (HΓ)

)
.

It follows immediately from the de“nitions that the kernel of f consists precisely of
type k − 1 invariants, so that f becomes an injection

f :HVk/HVk−1 ↪→ HCWk. (42)

We can then use the isomorphism

HWk
∼= HCWk

from (17) to extend f to a functional on trivalent diagrams which satis“es the usual
STU , IHX , and 1T relations. (Recall that this isomorphism is induced by sending a
chord diagram to itself and trivalent diagram to a sum of chord diagrams obtained
from it by resolving all the free vertices via the STU relation.) We obtain then an
extension off to an injection

f :HVk/HVk−1 ↪→ HWk,

V �→


W :HD0

k/(STU , IHX , 1T ) → R

� �→


V (HΓ), � chord diagram;∑
i

V (HΓi ), � trivalent diagram

,
(43)

where the � i are the chord diagram resolutions of a trivalent diagram �.

5.3. Integrals and finite type invariants of homotopy

string links

We are now almost ready to state and prove the main result of this section, Theo-
rem 5.8. This theorem states that con“guration space integrals give an isomorphism
between weight systems and “nite type invariants of homotopy links. We will show
this by exhibiting the map f above as the inverse to integration. The integration
of weight systems is essentially the same as the integration mapIH from the graph
complex. Before stating the theorem, we explain how this works.

We can considerHWk
∼= ((HD0

k)∗/(STU , IHX , H1T ))∗ as a space of func-
tionals on (LD0

k)∗ satisfying certain relations (since (HD0
k)∗/(STU , IHX , H1T ) is

1350061-63



2nd Reading

November 9, 2013 13:0 WSPC/S0218-2165 134-JKTR 1350061

R. Koytche�, B. A. Munson & I. Voli´ c

a quotient of (LD0
k)∗). Choose a basisBk of diagrams for (LD0

k)∗. Certainly Bk
is “nite (and it is canonical up to signs of the elements). SinceLWk

∼= H0(LD∗
k)

canonically, a weight systemW corresponds canonically to some linear combination
of diagrams

∑
Γ∈Bk

aΓ�.
Thus, we have a composition

LWk
�� ∼= �� H0(LD∗

k)
I0L �� � 0(L3

m)

given by

W �� ��
∑

Γ∈Bk

aΓ� � ��
∑

Γ∈Bk

aΓ(IL)Γ.

Since for all � ∈ Bk,W (�) = 〈aΓ� , � 〉 = aΓ|Aut(�) |, we haveaΓ = W (�) /|Aut(�) |.
So we can rewrite this composition as

W �→
∑

Γ∈Bk

W (�)
|Aut(�) | (IL)Γ. (44)

The latter expression is similar to one of the two formulae for producing a knot
invariant from a weight system via con“guration space integrals originally written
down in [29]. The only di�erence is that our formula above contains no anomaly
term becauseW is an element ofHWk, rather than an arbitrary element of LWk.
For ordinary link invariants (including knot invariants), all of the above paragraph
applies, except that we would have to use the correction for the anomaly term̃IL
instead of the map IL. This is what we do in the statement of Theorem5.6.

The second formula in [29] equivalent to (44) is a sum over labeled diagrams in
which the |Aut(�) | factors do not appear. This latter formula (which also appears
in [30]) is not immediately compatible with integration from the graph complex
because in the graph complex, diagrams with di�erent labels are equal up to sign.
Nonetheless, the above description as a sum over unlabeled diagrams should clarify
the relationship between integration of weight systems (i.e. functionals) for “nite
type invariants (as in [29, 30]) and integration from the graph complex of diagrams
(as in [7]).

The following statement for links already appeared as [31, Theorems 4.7
and 4.11], though the correct proof of those theorems requires the erratum we
provided in proving Proposition 4.31.

Theorem 5.6. For k ≥ 0 and m ≥ 1, the map

I0
L :LWk → LVk

given by

W �→
(
L �→

∑
Γ∈Bk

W (�)
|Aut(�) | (

�IL)Γ(L)

)
gives a section to the natural projection LVk → LVk/LVk−1

∼= LWk.

1350061-64



2nd Reading

November 9, 2013 13:0 WSPC/S0218-2165 134-JKTR 1350061

Integrals and Cohomology of Homotopy Links

Remark 5.7. Note that the map I0
L exists even forn > 3. However, one then

obtains cohomology classes ofLnm in degree (n − 3)k rather than in degree zero.
The same is true for the mapI0

H in Theorem 5.8.

We now prove the same statement for homotopy links.

Theorem 5.8. For k ≥ 0 and m ≥ 1, the map

I0
H :HWk → HVk

given by

W �→
(
H �→

∑
Γ∈Bk

W (�)
|Aut(�) | (IH)Γ(H)

)
gives a section to the natural projection HVk → HVk/HVk−1

∼= HWk.

Remark 5.9. The sums in the two theorems above are both taken over the basis
Bk for (LD0

k)∗, though equivalently, one could remove fromBk all the � such that
the 1T relation (or its homotopy link analogue) forcesW (�) = 0; this subset of Bk
will be smaller for HW than for LW .

We “rst prove part of this theorem in the following.

Proposition 5.10. The image of I0
H is a subset of HVk.

Proof. We have a commutative diagram as below. The inclusionHWk → LWk

just comes from the fact that an element satisfying the relations de“ning HWk must
satisfy the weaker relations de“ning LWk. The rest of the diagram is the square
(37), where we use Theorem5.6 to deduce that the middle map in the bottom row
is injective:

HWk
�� ∼= ��

� �

��

H0(HD∗
k)

I0H ��
� �

��

H0(H3
m)� �

��
LWk

�� ∼= �� H0(LD∗
k)

� � I0L �� LVk � � �� H0(L3
m)

(45)

As shown in the diagram, we already know that elements in the image ofI0
H are

invariants of homotopy links, since I0
H is a chain map. Furthermore, invariants in

the image ofI0
H are “nite type since their image under the rightmost vertical map

is in LVk. This proves the desired statement.

Remark 5.11 (Explicit proof of link-homotopy invariance). From Theo-
rem 4.33, we already knew that the link invariants in the image of I0

H are invariant
under link homotopy. We now present a hands-on, concrete proof of this fact; since
this is an argument reminiscent of the original proofs that Bott…Taubes integrals
produce “nite type invariants, we think this might be bene“cial for the reader.
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Fig. 24. Homotopy links H + and H − are the same outside the ball B � where they differ as
pictured. The two arcs in B � come from the same strand.

By the discussion at the end of Sec.2, it su�ces to show that this integral takes
the same value on a link before and after a crossing change. Thus, it su�ces to
show that given a diagram � ∈ HDk and links H+, H− which di�er only inside a
ball Bδ or radius δ as pictured in Fig. 24, we have

(IH)Γ(H+) = ( IH)Γ(H−).

In other words,∫
⊕lC[�dl+sl;H+,cl(Γ)]

∏
edges (a, b) of Γ

(
xa − xb
|xa − xb|

)∗
symS2

−
∫
⊕lC[�dl+sl;H−,cl(Γ)]

∏
edges (a, b) of Γ

(
xa − xb
|xa − xb|

)∗
symS2 = 0 . (46)

As usual, the con“guration points xa and xb here correspond to diagram verticesa
and b.

The domain of integration over which the two integrals di�er has measure a
constant times δ, and the integrals over these regions are bounded since|xa−xb| >
ε > 0 for someε independent ofδ for all a and b because suchxa and xb will never
lie on the same strand. It follows that the di�erence of the integrals can be made
arbitrarily small.

Proof of Theorem 5.8. To show that I0
H is an isomorphism, we argue that its

inverse is the map

f :HVk/HVk−1 ↪→ HWk
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from (43). We claim it su�ces to prove that the composition

HWk
I0H−−→ HVk/HVk−1

f
↪→ HWk (47)

is the identity. In fact, f ◦I0
H = id will imply f ◦(I0

H◦f ) = f , and sincef is injective,
it will follow that I0

H ◦ f = id. Furthermore, by the isomorphism HCWk
∼= HWk

we may think of the composition above as

HCWk
I0H−−→ HVk/HVk−1

f
↪→ HCWk. (48)

To describe this composition, we choose a singular (homotopy) linkHΓ for each
chord diagram � with k chords. The (labeled) singularities inHΓ will be prescribed
by �, much like in the discussion preceding Fig. 23. In this setting of invariants of
link homotopy, we can actually construct the HΓ•s quite explicitly.

We start the construction with a trivial string link with its segments all horizon-
tal, numbered in decreasing order ofy-coordinate.c More precisely, we start with m
disjoint copies ofR, where inside some interval [−t0, t0] ⊂ R the ith strand is given
by t �→ (t,−i, 0), and outside a larger interval [−t1, t1], the ith strand is given by
t �→ (t, |t|(m+1

2 − i), 0).
In what follows, •aboveŽ (respectively, •belowŽ) will mean above (respectively,

below) the xy-plane in R
3. We manipulate the strands (within �m[−t0, t0] ⊂ �mR)

to make the singular link HΓ, as follows. If there is a chord between theith and jth
strands and i < j, then move strand i so that it passes below strandsi+1 , . . . , j−1,
intersect strand j in a single point, passes beneath strandsj, j − 1, . . . , i + 1, and
then resumes its course along{(x,−i, 0)}.

Figure 25shows a picture of such anHΓ. (We only show the image of the smaller
intervals [−t0, t0] ⊂ R. Recall that di�erent directions toward in“nity, outside of
[−t1, t1], were required for certain evaluation maps, and hence the con“guration
space integrals, to be well-de“ned.)

By the Vassiliev skein relation (Fig. 22), the value of a type k invariant on HΓ

is its value on a signed sum of the 2k resolutions ofHΓ. It will be useful to de“ne
speci“c resolutions ofHΓ, one resolutionHS

Γ for each S ⊆ {1, 2, . . . , k}. We can
take HΓ (and hence eachHS

Γ ) to lie in the xy-plane, except for crossings which take
place inside small balls. EachHS

Γ will agree with HΓ outside ofk small balls around
the k double points ofHΓ.

De“ne the link HS
Γ as follows: Consider a chord in � corresponding to an� ∈

{1, . . . , k}. This also corresponds to a double point inHΓ. Let i < j be the endpoints
of the chord �. If � ∈ S, then in HS

Γ , resolve the double point� by perturbing strand

cThese are not quite the “horizontal” or “tangle” chord diagrams considered by some authors.
The reason is that there could be two chords between two strands that cross and there is no way to
draw all chords horizontally in such a situation. However, weight systems that are associated with
Milnor invariants vanish on chord diagrams with more that one chord connecting two segments
[19], so in that case one can reduce to the case of genuine tangles. More will be said about this in
future work.
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i slightly so that it goes over strand j. If � �∈ S, then perturb strand i slightly
so that it goes under strand j. Perhaps a better way of thinking about this is as
follows: eachHS

Γ is the resolution of HΓ where each double point inS has been
resolved •positivelyŽ (as in the “rst picture on the right-hand side of the equation
in Fig. 22), while the remaining singularities have been resolved •negativelyŽ (as in
the second picture on the right-hand side of the equation in Fig.22). An example
is shown in Fig. 25.

Returning to the composition (48), it is given by

(� �→W (�)) �→
� �→

∑
Γ′∈Bk

W (� ′)
∑

S⊆{1,2,...,k}
(−1)k−|S|(IH)Γ′ (HS

Γ )

,
whereas before,Bk is a basis of trivalent diagrams (canonical up to the sign of each
diagram). Here, W ∈ HCWk is determined on arbitrary trivalent diagrams � ′ by
the STU relation.

This composition will be the identity if we can show that

IΓ′ :=
∑

S⊂{1,2,...,k}
(−1)k−|S|(IH)Γ′ (HS

Γ ) =

{
1, � ′ = � ,

0, � ′ �= � .
(49)

Fig. 25. An example of a diagram Γ, its horizontal version, a singular homotopy link H Γ, and

its resolution H +
Γ := H {1,...,k }

Γ for which (I 0
H)Γ is nonzero.
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First, let C be the subspace of con“guration space where there are exactly two
points in the ball around each resolved double point. We “rst consider the case
where � ′ is a chord diagram. We consider the contributions toIΓ′ from integrating
over C, then show that the integral over the complement ofC is zero.

If � ′ is a chord diagram other than �, then C is empty.
If � = � ′, the signed sum of integralsI ′Γ over the subspaceC can be rewritten as

a sum of integrals with all +1 signs by reversing the orientation on every •under-
strandŽ in HS

Γ . The resulting sum is the integral over a con“guration space of
points on circles enclosing (straight) arcs. By choosing smaller perturbations of
the strands in all the resolutions, this integral can be made arbitrarily close to a
product of linking numbers, one for each circle-arc pair. See Fig.26. But the linking
number of each such pair is +1 (assuming appropriate choices of orientation on the
con“guration space and the k spheres from which the integrand is pulled back).
Thus, the integral IΓ over C can be made arbitrarily close to 1.

For any chord diagram � ′, the integral IΓ′ over the complement ofC vanishes.
Indeed, for any con“guration in the complement of C, there will be some pair of
points joined by a chord � ∈ {1, . . . , k} where at least one of the points is outside
the ball around the resolved double point �. Partitioning the 2 k terms into two
parts according to the sign of this �th resolution, one can show that the two parts
nearly cancel; that is, by making the balls smaller, these contributions can be made
arbitrarily close to 0. The details are similar to the proof of [30, Lemma 5.4], though
arguably simpler because ourHS

Γ •s are •almost horizontalŽ.
Finally, if � ′ is not a chord diagram, then the integralIΓ′ overC is also arbitrarily

close to 0 because the contributions over the sum of the 2k terms can be similarly
cancelled in pairs. The details are exactly as given in [30], at the end of the proof
of Lemma 5.4 of that paper.

Now the integral IΓ′ is an isotopy invariant. Thus, in the arguments above, we
may replace •arbitrarily close toŽ by •equal toŽ. So the only nonzero contribution
to IΓ′ is when � = � ′ in which caseIΓ′ = 1. This proves (49), which completes the
proof of the theorem.

Remark 5.12. Even though in the proof of Proposition 5.10we appealed to The-
orem 5.6 and the fact that I0

L is a universal “nite type invariant of ordinary string
links, it is easy to prove Proposition 5.10 in a way that is independent of Theo-
rem 5.6. In addition, the proof of Theorem 5.8 essentially works the same way for

Fig. 26. A schematic if how, for Γ = Γ′, the integral I Γ′ over the subspace C is a product of
linking numbers of circles with arcs.
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string links as it does for homotopy string links. In light of the fact that the proof
of Theorem 5.6 is only outlined in [31] (and requires the erratum from our Proposi-
tion 4.31to see that the integration map gives link invariants), one can thus regard
the complete picture given here for “nite type invariants of homotopy string links
as also giving a fairly complete picture of “nite type invariants for ordinary string
links.

5.4. Milnor invariants of homotopy string links

With Theorem 5.8 in hand, we can now quickly deduce the corollary about Milnor
invariants of string links as promised in Sec. 1.

For m-component string links, each non-repeating index Milnor invariant
µi1i2···ik+1 , 1 ≤ ij ≤ m, is well-de“ned (for closed links, there is an indetermi-
nacy, modulo which one gets theµ invariants), and it is a “nite type k invariant
[4, 16]. Furthermore, this is a link-homotopy invariant [ 21]. Thus, µi1i2···ik+1 can
be thought of as a “nite type invariant of H3

m (here, we again use the discussion
following Corollary 2.4).

We have then the following consequence of Theorem5.8.

Theorem 5.13. Each Milnor invariant µi1i2···ik+1 of string links of m components
is given, up to a type (k − 1) invariant, by

µi1i2···ik+1 (H) = ( I0
H(W ))(H) =

∑
Γ∈Bk

W (�)
|Aut(�) | (IH)Γ(H) (50)

for some weight system W ∈ HWk, where Bk is a basis of diagrams for (HD0
k)∗.

We can re“ne this statement. If k + 1 < m, then some indexj between 1 andm
does not appear in the subscript ofµi1i2···ik+1 , and we then have a Milnor invariant
of (m − 1)-component links, namely an invariant of the link obtained by deleting
the jth strand. By relabeling, we can assume that the deleted strand is in fact the
mth one. To understand Milnor invariants, it su�ces to study those invariants of
m-component links that are not induced by the projection

H3
m → H3

m−1

given by deleting themth strand of a link. This means that, in the sum from ( 50),
we only take those diagrams � with segment vertices appearing onall segments. If
the sum is taken over only those diagrams that do not have any segment vertices
on, say, themth segment, then one obtains an invariant of (m−1)-component links.
This is easy to see as such diagrams account for all the necessary cancellations of
integration along faces and thus produce a closed form. We will call diagrams with
segment vertices on all segmentsmaximal and will denote them by � max.

It follows that, since µi1i2··· im is a type m − 1 invariant, each � max must have
2(m − 1) vertices, at leastm of which are segment vertices, lying onm segments.
These can also be characterized as forests with at leastm but no more than
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2(m − 1) leaves with m distinct labels (each label is associated with a unique
segment/strand). Recall that by a forest we mean a disjoint union of trees, and by
a tree we mean the collection of vertices and edges, but not segments, of a diagram,
where the leaves are the segment vertices.

We thus get the following corollary.

Corollary 5.14. Each Milnor invariant µi1i2···im of string links of m components
is given, up to a type (m− 2) invariant, by

µi1i2···im (H) = ( I0
H(W ))(H) =

∑
Γmax∈Bm−1

W (�)
|Aut(�) | (IH)Γmax (H) (51)

for some weight system W ∈ HWm−1, where Bm−1 is a basis of diagrams for
(HD0

m−1)∗.

Remark 5.15. Suppose that in addition we required that � max ∈ (HDm−1)∗ be
connected. It is immediate that such a trivalent diagram must have preciselym
segment vertices (one on each of them segments) andm − 2 free vertices. Since
diagrams in (HDm)∗ have no loops of edges, it follows that a connected �max is
precisely a tree withm leaves.

The next step is to understand precisely which weight systems appear in Corol-
lary 5.14. In particular, one could to this end utilize the combinatorial properties
of such •Milnor weight systemsŽ established in [19]. The connection to [12] should
also be explored; one of the results of that paper is that Milnor invariants of string
links correspond to the tree part of the Kontsevich integral, and it is this integral
that gives an alternative way of showing that weight systems correspond to “nite
type invariants. (In fact, the Kontsevich integral provided the “rst proof of this the-
orem.) In addition, as mentioned in Sec. 1, a further study of con“guration space
integrals and Milnor invariants in the context of manifold calculus of functors could
also be bene“cial.
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