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Outline of the talks

Talk 1: Configuration space integrals for knots

1 Embedding spaces and the special case of knots

2 Motivation for configuration space integrals: The linking number

3 Configuration space integrals for knots and finite type invariants

4 Generalization to cohomology of knot spaces in dimension > 3

Talk 2: Generalizations and applications

1 Calculus of functors for knots

(a) Calculus of functors and finite type invariants
(b) Configuration space integrals and rational homotopy theory
(c) Calculus of functors and cohomology of knot spaces

2 Configuration space integrals for spaces of links

3 Configuration space integrals and multivariable calculus of functors
for spaces of links

4 Configuration space integrals for embeddings of Rk in R
n



1. Embedding spaces and the special case of knots

Definition

Let M and N be smooth manifolds. An embedding of M in N is
an injective map f : M →֒ N whose derivative is injective and
which is a homeomorphism onto its image.

When M is compact, an embedding is an injective map with the
injective derivative.

The set of all embeddings of M in N can be topologized so we get
the space of embeddings Emb(M,N) (a special case of a mapping
space).

For many M and N, this is a topologically interesting space, so we
want to know

π∗(Emb(M,N)), H∗(Emb(M,N)), H∗(Emb(M,N)).

Focus on H∗(Emb(M,N);R) for the special case of knots.



1. Space of long knots in R
3

K = {embeddings R →֒ R
3 fixed outside a compact set}

= space of long knots

K ∈ K

Classical knot theory is concerned with computing

H0(K) = {connected components of the space of knots}

= {knot types} = {isotopy classes of knots}

H0(K) = {knot invariants f : H0(K) → R},



1. Space of long knots in R
3

If one knot can be deformed (isotoped) into another, an invariant
f ∈ H0(K) takes on the same value on those knots. But an
invariant does not have to take on different values for different
knots. In fact, we do not know if such an invariant or a class of
invariants – a complete set of invariants that can tell all knots
apart – exists.

Conjecture

The set of finite type k invariants, k ≥ 0, is a complete set of
invariants.

Finite type invariants have received much attention in the last 15
years:

Motivated by physics (Chern-Simons Theory);

Connected to Lie algebras, three-manifold topology, etc.

More about these later.



2. Linking number

Related to the space of knots K is

L2 = {embeddings R ⊔ R →֒ R
3, fixed outside a compact set}

= space of long (string) links of two components

Let Conf(k ,Rn) = {(a1, a2, ..., ak) ∈ R
kn : ai 6= aj for i 6= j}

= configuration space of k points in R
n

Consider the maps Φ and π:

Φ: R× R× L2
evaluation // Conf(2,R3)

direction // S2

(x1, x2, L = (K1,K2))
� // (K1(x1),K2(x2))

� // K2(x2)−K1(x1)
|K2(x2)−K1(x1)|

K1(x1)K2

K2(x2)

Φ
K1

π : R× R× L2
projection

// L2 (trivial bundle)



1. Linking number

So have a diagram
R× R× L2

Φ //

π

��

S2

L2

which, on the complex of deRham cochains (differential forms),
gives a diagram

Ω∗(R× R×L2)

π∗

��

Ω∗(S2)
Φ∗

oo

Ω∗−2(L2)

Here Φ∗ is the usual pullback and π∗ is integration along the fiber,
or pushforward – a way to create forms on the base space of a
bundle from forms on the total space, shifted by the dimension of
the fiber.



1. Linking number

Let symS2 ∈ Ω2(S2) be the unit volume form on S2, i.e.

symS2 =
x dydz − y dxdz + z dxdy

4π(x2 + y2 + z2)3/2

Let α = Φ∗(symS2). Then the linking number is

Link(K1,K2) = π∗(α) =

∫

R×R

α ∈ Ω0(L2)

This is indeed a closed form, i.e. an element of H0(L2), and hence
an invariant of two-component links (this goes back to Gauss).

Now try to do the same, but for a single knot rather than a link.



2. Configuration space integrals: try to mimic lk(K1,K2)

The picture is
K (x1)

K

Φ

K (x2)

And the corresponding diagram is

Conf(2,R) ×K
Φ //

π

��

S2

K

The first issue is that an integral over Conf(2,R) may not
converge since this space is open. So need to compactify.



2. Configuration space integrals: Fulton-MacPherson
compactification

Definition

Let Conf[k ,Rn] be the Fulton-MacPherson compactification of
Conf(k ,Rn).

Some properties:

Conf[k ,Rn] is homotopy equivalent to Conf(k ,Rn);

Conf[k ,Rn] is a manifold with corners;

Boundary of Conf[k ,Rn] is characterized by points colliding
with directions and relative rates of collisions kept track of;

Codimension 1 boundary (important for Stokes’ Theorem)
given by points coming together at the same time (rather
than in stages);

Conf[k ,R] is the associahedron;

Works for configurations in any manifold, not just Rn.



2. Configuration space integrals: simplest case for knots

But, even after compactifying, we still do not get an invariant.
The next case is that of four points and two directions:

Φ13

K

Φ24

K (x2)

K (x4)K (x1)

K (x3)

The maps are

Conf[4,R] ×K
Φ=Φ13×Φ24 //

π

��

S2 × S2

K

Let α = Φ∗(sym2
S2). Since α and Conf[4,R], the fiber of π, are

both 4-dimensional, we get a 0-form

I ( ,K ) = π∗(α) =

∫

Conf[4,R]
α



2. Configuration space integrals: simplest case for knots

So I ( ,K ) is a 0-form, i.e. an element of Ω0(K). But is it a
closed form, that is, is it an element of H0(K) – an invariant?

Want dI ( ,K ) = 0. Stokes’ Theorem says that

dI ( ,K ) = π∗(dα) + (∂π)∗(α)

= (∂π)∗(α) (π∗(dα) = 0 since symS2 is closed)

Here (∂π)∗(α) is the pushforward along codimension one faces of
Conf[4,R].

These faces can be represented by diagrams as follows.



2. Configuration space integrals: boundary diagrams

If there are four points moving on the knot, and two directions are kept
track of as above, the diagram encoding this information is

31 2 4

Codimension one faces (collisions of points) are then encoded by
diagrams obtained from the above one by contracting segments between
points (this mimics collisions)

1=2=3=4

1 2 3=4

1 2=3=4

1=2 43 41 2=3

41=2=3

(Loop corresponds to the derivative map.)
It turns out that the integrals corresponding to the bottom three
diagrams vanish, but not necessarily for the top three.

One way to resolve this: Look for another space to integrate over which

has the same three faces and subtract the integrals.



2. Configuration space integrals: the fix

The diagram that fits what we need is

4

1 2 3

since, when we contract edges to get 4=1, 4=2, and 4=3, we get
the same three relevant pictures as before (up to relabeling).

This suggests that we want a space of four configuration points in
R
3, three of which lie on a knot. In other words, we want the

following picture:

K(x3)
K

x4K(x2)

Φ24 Φ34

K(x1)
Φ14



2. Configuration space integrals: the fix

To make this precise, define pullback space

Conf[3, 1;K,R3] //

��

Conf[4,R3]

proj

��

Conf[3,R]×K
eval // Conf[3,R3]

Let
Φ = Φ14 ×Φ24 × Φ34 : Conf[3, 1;K,R3] −→ (S2)3

be the map giving the three directions as in the previous picture.

The natural map π : Conf[3, 1;K,R3] → K is a bundle
(Bott-Taubes) so the relevant maps are

Conf[3, 1;K,R3]
Φ //

π

��

(S2)3

K



2. Configuration space integrals: the fix

Let α′ = Φ∗(sym3
S2). This form can be integrated along the fiber

Conf[3, 1;K ,R3] over K . Thus for each K ∈ K, we get an integral

I ( ,K ) = π∗(α
′) =

∫

Conf[3,1;K ,R3]
α′

It turns out that the boundary contributions for this integral are
zero except for the three boundary pieces we care about. So we get

Theorem (Altschuler-Friedel, Bar-Natan)

The map
K −→ R

K 7−→
(

I ( ,K )− I ( ,K )
)

is a knot invariant, i.e. an element of H0(K). Further, it is a finite
type two invariant.

But there is no reason to stop at four configuration points...



3. Configuration space integrals: general case

T Dk ={R-vect. sp. gen’d by trivalent diagrams with 2k vertices,

modulo STU and IHX relations}.

(STU and IHX are some relations on the vector space of diagrams.)

Example

T D2 = { , , , }

T D3 = { , , , , etc.}

Given D ∈ T Dk with p vertices on the segment and q off the
segment, consider the pullback

Conf[p, q;K,R3] //

��

Conf[p + q,R3]

proj

��

Conf[p,R]×K
eval // Conf[p,R3]



3. Configuration space integrals: general case

Then have map

Φ: Conf[p, q;K,R3] −→ (S2)e

where

Φ is the product of the direction maps between pairs of
configuration points corresponding to the edges of D, and

e is the number of edges of D.

Let α = Φ∗(syme
S2).

Then for each K ∈ K, have integral

I (D,K ) = π∗(α) =

∫

Conf[p,q;K ,R3]
α



3. Configuration space integrals: general case

Let Wk = T D∗
k

Theorem (Bott-Taubes, D.Thurston)

For each W ∈ Wk , the map

K −→ R

K 7−→
∑

D∈T Dk

W (D)I (D,K )

is a knot invarianta. Further, it is a finite type k invariant. In fact,
we get all finite type k invariants by varying W .

aSlight lie.



2. Configuration space integrals and finite type invariants

This therefore gives a map

Wk −→ H0(K)

which surjects onto finite type k invariants.

In fact, it is not hard to see that this is an isomorphism:

Wk ∼=

configuration space integrals
// {finite type k invariants} ⊂ H0(K).

This theorem is also called the Fundamental Theorem of Finite
Type (or Vassiliev) Invariants and was first proved by Kontsevich
using the famous Kontsevich Integral;

Now let’s generalize to knots in R
n, n > 3.



4. Generalization to knot spaces in dimension > 3

For n > 3, let

Kn = {embeddings R →֒ R
n fixed outside a compact set}

We are interested in understanding the topology of Kn, i.e. we
want to compute

H∗(K
n) and H∗(Kn).

H0(Kn) and H0(K
n) are now trivial, but higher (co)homology is

very interesting.



4. Generalization to knot spaces in dimension > 3

Take more general diagrams (at least trivalent), such as

For each n ≥ 3, let

Dn = {R-vect. sp. gen’d by diagrams with valence ≥ 3},

where diagrams are connected, vertices are labeled, no loops on
off-segment vertices, edges are labeled or oriented (depending on
parity of n). Mod out by diagrams with double edges and impose
some sign relations.

Degree of D ∈ D is

deg(D) = 2(#edges)− 3(#off-segment vert.)− (#segment vert.)



4. Generalization to knot spaces in dimension > 3

Coboundary δ is given by contracting non-chord and non-loop
edges and segments, for example

δ
(

(last two are zero)

)

= ±

± ±

±

Easy to see that δ raises degree by 1 and that δ2 = 0. Thus

(Dn, δ) is a cochain complex.



4. Generalization to knot spaces in dimension > 3

For each D ∈ Dn and K ∈ Kn, we can still set up the integral
I (D,K ) as before. The only difference is that we will not
necessarily get a form in degree zero but in some degree of Ω∗(Kn).

Theorem (Cattaneo, Cotta-Ramusino, Longoni)

For n > 3, configuration space integrals give a cochain map

IK : (Dn, δ) −→ (Ω∗(Kn), d).

Corollary

The knot space Kn, n > 3, has nontrivial cohomology beyond
arbitrarily high dimension.

Conjecture

This map is a quasi-isomorphism.



4. Generalization to knot spaces in dimension > 3

This is compatible with what we already did in the case of classical
knots K = K3:

For n = 3, one does not get a cochain map in all degrees, but in
degree zero the map can be modified so that it does commute with
the differential. So we can see what happens on H0. It turns out
that

H0(D3) = T D (trivalent diagrams)

So kernel of δ in degree zero is defined by imposing the the STU
and IHX relations. Thus we get a map (after identifying T D with
its dual, the weight systems W),

(H0(D3))∗ = W −→ H0(K).

But we already know that the image of this map is precisely the
finite type knot invariants.



Preview of second talk

Next time, we’ll talk about

Manifold calculus of functors and a homotopy-theoretic
framework for finite type invariants;

Generalization to links and homotopy links and interesting
connection to Milnor invariants (and lots of open questions);

Configuration space integrals and operad formality, which
leads to;

A combinatorial description of the rational homology and
homotopy of the space of knots in R> 3;

Brief mention of the generalization to embeddings of Rk in
R
n.


