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Abstract

The little N -disks operad, B, along with its variants, is an important tool in
homotopy theory. It is defined in terms of configurations of disjoint N -dimensional
disks inside the standard unit disk in RN and it was initially conceived for detecting
and understanding N -fold loop spaces. Its many uses now stretch across a variety
of disciplines including topology, algebra, and mathematical physics.

In this paper, we develop the details of Kontsevich’s proof of the formality of little
N -disks operad over the field of real numbers. More precisely, one can consider the
singular chains C∗(B;R) on B as well as the singular homology H∗(B;R) of B. These
two objects are operads in the category of chain complexes. The formality then
states that there is a zig-zag of quasi-isomorphisms connecting these two operads.
The formality also in some sense holds in the category of commutative differential
graded algebras. We additionally prove a relative version of the formality for the
inclusion of the little m-disks operad in the little N -disks operad when N ≥ 2m+1.

The formality of the little N -disks operad has already had many important ap-
plications. For example, it was used in a solution of the Deligne Conjecture, in
Tamarkin’s proof of Kontsevich’s deformation quantization conjecture, and in the
work of Arone, Lambrechts, Turchin, and Volić on determining the rational homo-
topy type of spaces of smooth embeddings of a manifold in a large euclidean space,
such as the space of knots in RN , N ≥ 4.
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CHAPTER 1

Introduction

In this paper we give a detailed proof of Kontsevich’s theorem on the formality of
the little N -disks operad. The theorem, whose proof was sketched in [21, Theorem
2], asserts that the singular chains on the little N -disks operads is weakly equivalent
to its homology in the category of operads of chain complexes. We also improve
that result in three directions:

(1) Formality is in the category of CDGA (commutative differential graded
algebras) which, following Sullivan and Quillen, models rational homotopy
theory;

(2) For us, the little disks operad has an operation in arity 0 while Kontsevich
discards that nullary operation;

(3) We establish a relative formality result, namely formality of the inclusion
of the little m-disks operad into the little N -disks operad for N ≥ 2m+1.

Our motivation for proving these results comes from applications to the study of the
rational homology of the space Emb(M,RN ) of smooth embeddings of a compact
manifold M into RN . Goodwillie-Weiss manifold calculus [33, 17] approximates
this embedding space by homotopical constructions based on a category O∞ of
open subsets of M diffeomorphic to finitely many open balls with inclusions as
morphisms. This category is closely related to the little balls operad. On the
other hand, formality theorems can often lead to collapse results for spectral se-
quences. Combining manifold calculus with formality, the authors, along with Greg
Arone, were thus able to prove in [3] the collapse of a spectral sequence computing
H∗(Emb(M,RN );Q), where Emb(M,RN ) is a slight variation of Emb(M,RN ). A
special case of this approach also led the authors, jointly with Victor Turchin, to
the proof in [24] of the collapse of the Vassiliev spectral sequence computing the
rational homology of the space of long knots in RN for N ≥ 4.

To explain the formality results that we prove here, fix an integer N ≥ 1 and recall
the classical little N -disks operad BN = {BN (n)}n≥0, where BN (n) is the space of
configurations of n closed N -disks with disjoint interiors contained in the unit disk
of RN [4]. The integer N will usually be understood so we will just denote this
operad by B and often simply say “little balls operad”. This operad is homotopy
equivalent to many other operads, such as the little N -cubes operad, or the Fulton-
MacPherson operad C[•] = {C[n]}n≥0 of compactified configurations of points in
RN . The latter will be important in our proofs and we will say more about it in
Chapter 5.

Fix a unital commutative ring K. The functor

S∗(−;K) : Top −→ ChK

1



2 1. INTRODUCTION

of singular chains with coefficients in K is symmetric monoidal. Therefore S∗(B;K)
is an operad of chain complexes. In addition, its homology H∗(B;K) can be viewed
as an operad of chain complexes with differential 0. One of the main results that
we will prove in detail is

Theorem 1.1 (Kontsevich [21]; Tamarkin for N = 2 [32]). The little N -disks
operad is stably formal over the real numbers, that is, there exists a chain of weak
equivalences of operads of chain complexes

S∗(BN ;R)
≃←− · · · ≃−→ H∗(BN ;R).

The proof of this theorem was sketched in [21, Section 3.3] but we felt that it
would be useful to develop it in full detail. In this paper, B(0) is the one-point
space, contrary to [21] where it is the empty set. This fact makes our proof more
delicate, but in the application we have in mind it will be important to have B(0) = ∗
(operad composition with this corresponds to the operation of forgetting a ball from
a configuration of little balls).

Morally, singular chains with coefficients in Q encode the rational stable homotopy
type of spaces or topological operads, and with coefficients in R we get the “real
stable homotopy type”. This is why in Theorem 1.1 we talk about stable formality.
The unstable real (or more correctly, rational) homotopy type of spaces is encoded
by commutative differential graded algebras (CDGAs for short), as was discovered
by Sullivan using the functor APL of polynomial forms (see Chapter 3). One then
has the important notion of a CDGA model for a space X , which by definition is
a CDGA weakly equivalent to APL(X). Any CDGA model (over the field Q) for
a simply-connected space with finite Betti numbers contains all the information
about its rational homotopy type. We can define an analogous notion of a CDGA
model for a topological operad, although the definition is a little bit more intricate
(see Definition 3.1). We then have the following unstable version of Theorem 1.1.

Theorem 1.2. For N 6= 2, a CDGA model over R of the little N -disks operad
is given by its cohomology algebra, that is, it is formal over R (in the sense of
Definition 3.1).

As explained in Chapter 3, one reason for which our definition of a CDGA model
for an operad is not as direct as one might wish is that APL(B) is not a cooperad.
This is because the contravariant functor APL is not comonoidal. It might be
better to consider the coalgebra of singular chains S∗(B;R), which is indeed an
operad of differential coalgebras. However, we do not know how to prove that
this operad is weakly equivalent to its homology in the category of differential
coalgebras. Moreover, that category is not very suitable for doing real homotopy
theory because of the lack of strict cocommutativity.

In Theorem 1.2, we assumed N 6= 2. Our proof in the case N = 2 fails because
some of our CDGAs become Z-graded instead of non-negatively graded as required
in rational homotopy theory. We still however obtain some results in the case
N = 2 and we believe that our proof can be adapted to include that case as well;
see Chapter 10.
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We now state a relative version of the above theorems. Let 1 ≤ m ≤ N be integers
and suppose given a linear isometry

ǫ : Rm −→ RN .

Define the map

Bǫ(n) : Bm(n) −→ BN (n)

that sends a configuration of n m-disks to the configuration of n N -disks where
the center of each N -disk is the image under ǫ of the center of the corresponding
m-disk and has the same radius. This clearly defines a morphism of operads.

Definition 1.3. A morphism of topological operads

α : A −→ A′

is stably formal over K if there exists a zig-zag of quasi-isomorphisms of operads
in ChK connecting the singular chains S∗(α;K) to its homology H∗(α;K) as in the
following diagram:

S∗(A;K)

S∗(α)

��

C1≃oo ≃ //

��

· · · Ck≃oo ≃ //

��

H∗(A;K)

H∗(α)

��
S∗(A′;K) C′1

≃oo ≃ // · · · C′k
≃oo ≃ // H∗(A′;K)

When K is a field of characteristic 0, we say that α is formal over K if the mor-
phism of CDGA cooperads H∗(α;K) is a model for α (see Chapter 3 for the precise
definition of a model for CDGA cooperads).

Theorem 1.4. Assume that m ≥ 1 and N ≥ 2m + 1. Then the morphism of
operads

Bǫ : Bm −→ BN
is stably formal over R. If m 6= 2, it is also formal over R.

There is also a notion of coformality which is Eckman-Hilton dual to that of (un-
stable) formality [25]. Roughly speaking, coformality of a space X means that
its rational homotopy type is determined by its rational homotopy Lie algebra
π∗(ΩX) ⊗ Q (instead of its rational cohomology algebra in the case of formality).
In some sense, the operad of little N -disks also seems to be coformal, although
there is difficulty in making this idea precise because of the lack of a basepoint for
the operad. We refer the reader to [2] for a discussion of coformality of the little
N -disks operad.

All of the above formality results are over the field of real numbers. It would be
more convenient to have rational formality because localization over Q is topolog-
ically meaningful, contrary to localization over R. This descent of fields for stable
formality of operads is always possible when one considers operads in which the
zeroth term (corresponding to 0-ary operations) is empty, as proved in [18, Theo-

rem 6.2.1]. In particular, we can consider the operad B̃ defined by B̃(0) = ∅ and

B̃(n) = B(n) for n ≥ 1. Our formality results for B are clearly also true for B̃;
the latter was the operad considered by Kontsevich in [21]. Moreover, since this

operad has no nullary operations, stable formality for B̃ over R descends to Q.
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For our applications to embedding spaces [3, 24], however, it is important to take
the usual little balls operad, B, which is only formal over R. In those applications,
this weaker formality is sufficient essentially because the main results there are
about collapse of spectral sequences, and these collapse results do not depend on
which field of characteristic 0 is used. The proof of descent of formality in [18,
Section 6] does not generalize easily to the case with nullary operations because of
the lack of minimal models when these degeneracy operations occur.

The formality of the operad B̃ implies the formality overQ of each space B(n), in the
sense that the CDGA APL(B(n)) is weakly equivalent to its cohomology algebra,
H∗(B(n);Q). Paolo Salvatore has recently proved using a computer that, for n = 4
and N = 2, the space B2(4) is not formal over the ring Z/2, i.e. its cohomology
algebra, H∗(B2(4);Z/2), and its algebra of singular cochains, S∗(B2(4);Z/2), are
not quasi-isomorphic. We do not know whether the (non-symmetric) little disks
operad is stably formal over some field of positive characteristic.

As a final comment, the Tamarkin’s and Kontsevich’s proofs of formality for N = 2
have been compared in [27] where it is proved that the weak equivalences obtained
in those two proofs are homotopic.

We end this introduction by explaining the general idea of Kontsevich’s proof of
formality that we develop in this paper. The main ingredient is a combinatorial
CDGA cooperad D = {D(n)}n≥0 of admissible diagrams and an explicit CDGA
map

(1.1) I : D(n) −→ ΩPA(C[n])

which we will call the Kontsevich configuration space integral . Here C[n] are com-
pact manifolds homotopy equivalent to B(n), and ΩPA is a semi-algebraic analog
of the deRham CDGA of differential forms ΩDR. A combinatorial argument will
show that the cooperad D is quasi-isomorphic to the cohomology of the little balls
operad. We will also show that I is a quasi-isomorphism and, since I also respects
the cooperad structures, the desired result will follow.

Let us elaborate on D(n) and I a bit further. We will work with the Fulton-
MacPherson operad C[•] = {C[n]}n≥0 which is homotopy equivalent to the little
balls operad. The space C[n] is a compact manifold with corners obtained by adding
a boundary to the open manifold Fn(R

N ), the space of configurations of n points
in RN , that is,

Fn(R
N ) := {(z1, . . . , zn) ∈ (RN )n : zi 6= zj for i 6= j}

(after normalizing by modding out by translations and positive dilations). Arnold
[1] computed the cohomology algebra of Fn(R

2) = Fn(C) and in fact proved that
these spaces are formal over C. His argument is as follows:

Consider the complex smooth differential one-forms

(1.2) ωij :=
d(zj − zi)

zj − zi
= d log(zj − zi) ∈ Ω1

DR(Fn(C);C)

which are cocycles and can easily be shown to be cohomologically independent for
1 ≤ i < j ≤ n. A direct computation shows that these forms satisfy the 3-term
relation

(1.3) ωij ∧ ωjk + ωjk ∧ ωki + ωki ∧ ωij = 0.
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It is convenient to represent this relation by the diagram pictured in Figure 1.1.

+

ji1 k nj1 1 i ji k n k n

+

Figure 1.1. Diagrammatic description of the 3-term relation.

In this figure, the vertices on the line correspond to the labels of the points z1, . . . , zn
of a configuration and each edge (u, v) between two vertices represents a differential
form ωuv.

The subalgebra of ΩDR(Fn(C);C) generated by the ωij is

∧(ωij : 1 ≤ i < j ≤ n)

(ωij ∧ ωjk + ωjk ∧ ωki + ωki ∧ ωij)
.

This algebra has a trivial differential and it maps to the cohomology algebra
H∗(Fn(C);C). A Serre spectral sequence argument shows that this map is ac-
tually an isomorphism. In other words, the cohomology embeds in the deRham
algebra of forms, and hence Fn(C) is formal.

Arnold’s argument for N = 2 can be generalized to all N as follows. Consider the
differential forms ωij = θ∗ij(vol) where

θij : Fn(R
N ) −→ SN−1

(z1, . . . , zn) 7−→ zj − zi
‖zj − zi‖

,

and vol ∈ ΩN−1
DR (SN−1) is the symmetric volume form on the sphere SN−1 that

integrates to 1. For N = 2, these are analogous to (1.2). It is well known by work
of F. Cohen that these forms generate the cohomology algebra of Fn(R

N ) and that
the 3-term relation holds in cohomology. However, the relation is not always true
at the level of forms. One only knows that, for each i, j, and k, there exists some
differential form β such that

(1.4) dβ = ωij ∧ ωjk + ωjk ∧ ωki + ωki ∧ ωij .

The key idea now is to describe an algorithm which constructs in a natural way such
a cobounding form β. To explain this, suppose that n = 3 and (i, j, k) = (1, 2, 3).
Consider the projection

(1.5) π : F4(R
N ) −→ F3(R

N )

that forgets the fourth point of the configuration. It is a fibration with fiber

F = RN \ {z1, z2, z3}.

We will obtain β by integration along the fiber of π of some suitable differential
form α on F4(R

N ). To ensure convergence of the integral, we replace the spaces
in the fibration (1.5) by their Fulton-MacPherson compactifications C[4] and C[3]
so that the fiber becomes diffeomorphic to a closed disk in RN with three small
open disks removed. We will denote this fiber by F . Intuitively, each of the three
inner boundary spheres of F corresponds to points z4 becoming infinitesimaly close
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to z1, z2, or z3, (which we denote by z4 ≃ zi), and the outer boundary sphere of
F corresponds to the point z4 going to infinity (which we denote by z4 ≃ ∞)).

Now consider the map

(1.6) θ := (θ14, θ24, θ34) : C[4] −→ SN−1 × SN−1 × SN−1.

The pullback form

θ∗(vol× vol× vol)

is a cocycle in Ω3N−3
DR (C[4]) and is exactly

ω14 ∧ ω24 ∧ ω34.

Integration along the fiber of π is a linear map

π∗ =

 

F

: Ω3N−3
DR (C[4]) −→ Ω2N−3

DR (C[3])

α 7−→
 

F

α.

The integration takes place along the variable z4 in the fiber F which corresponds to
the fourth component of a configuration z ∈ C[4]. The map π∗ satisfies a fiberwise
Stokes formula

(1.7) d(

 

F

α) =

 

F

d(α) ±
 

∂F

α.

When α = ω14 ∧ω24 ∧ω34, the first term on the right side of (1.7) vanishes because
α is a cocyle. We study its second term. One of the boundary components of F
corresponds to {z4 ≃ z1} ⊂ ∂F , and θ14 restricts to a diffeomorphism

θ14 : {z4 ≃ z1}
∼=−→ SN−1.

We then have

 

{z4≃z1}

ω14∧ω24∧ω34 =

 

{z4≃z1}

ω14∧ω21∧ω31 =




ˆ

SN−1

vol


·ω21∧ω31 = ω21∧ω31.

Similarly the components corresponding to z4 ≃ z2 and z4 ≃ z2 give the two other
summands of the 3-term relation (1.3). Another argument shows that the integral
along the outer boundary corresponding to z4 ≃ ∞ vanishes. Thus

β :=

 

F

α

satisfies Equation (1.4) and is naturally defined.

This algorithm for constructing β can be encoded by a diagram Γ as pictured in
Figure 1.2. In this diagram, vertices 1, 2, 3 (pictured on a line segment) are called
external and vertex 4 is called internal.

The three edges (1, 4), (2, 4), and (3, 4) correspond to the three components of the
map θ from (1.6). To such a diagram we have associated the differential form

(1.8) I(Γ) :=

 

fiber

θ∗14(vol) ∧ θ∗24(vol) ∧ θ∗34(vol) = π∗(θ
∗(×

3
vol))
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4

1 2 3

Figure 1.2. The diagram Γ that cancels the 3-term relation from Figure 1.1.

where the points of the fiber are those labeled by internal vertices in the diagram
Γ (that is, not on the horizontal line, which is z4 in this case).

We define the coboundary of such a diagram Γ by taking the sum over all possible
contractions of an edge with not all endpoints on the line. In particular, for Γ as
in Figure 1.2, its coboundary is exactly the diagrams of Figure 1.1 corresponding
to the 3-term relation specialized to n = 3 and (i, j, k) = (1, 2, 3). Applying I,
defined similarly as in (1.8), to the diagrams of Figure 1.1 gives the right hand side
of (1.4), which we have shown to be d(I(Γ)). In other words, I commutes with the
differential in this example.

The vector space of all such “admissible” diagrams will be denoted by D and will
be endowed with the structure of a cooperad in CDGA. The generalization of
Formula (1.8) will define the Kontsevich configuration space integral I from (1.1).
An algebraic computation will show that D(n), where n is the number of external
vertices (the ones drawn on the horizontal line segment), is quasi-isomorphic to
H∗(C[n]), from which we will deduce that I in (1.1) is a quasi-isomorphism and
hence that C[n] is formal. Since these quasi-isomorphisms respect the cooperadic
structure, this will prove the formality of the operad C[•] which is equivalent to the
little disks operad.

There is one last technical issue. The operad structure on C[n] corresponds to
the inclusions of various faces of the boundary of C[n]. Therefore, in order for I to
be a map of cooperads, it is essential that the forms I(Γ) are well-defined on this
boundary. However, the projection

π : C[n+ l] −→ C[n]

is unfortunately not a smooth submersion on the boundary ∂ C[n] (see Exam-
ple 5.9.1), and hence I(Γ) need not be a smooth form on this boundary. To fix
this problem we will replace ΩDR by the CDGA ΩPA of PA forms as defined in
[23, Appendix]. These were studied in great detail in [19] and are reviewed in
Chapter 4.

1. Plan of the paper

For a faster run through this paper, the reader could, after reading the Introduction,
jump directly to the beginning of Chapter 9 to get a better idea of the construction
of the quasi-isomorphism of operads

I : D(•) −→ ΩPA(C[•])
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which is central to our proofs. Along the way, a quick look at Sections 5.1 and
6.1–6.2 will supply a better sense of the Fulton-MacPherson operad C[•] and the
CDGA cooperad of admissible diagrams D(•), respectively.
The plan of the paper is as follows (see also the Table of Contents at the beginning
of the paper).

• In Chapter 2 we fix some notation, and in particular establish some terminol-
ogy relating to linear orders and weak ordered partitions which will be useful in
describing the operad structure maps.

• In Chapter 3 we define in detail what we mean by formality for operads. This is
not as straighforward as one might wish because the Sullivan-deRham functor APL

(or its semi-algebraic analog ΩPA) does not turn operads into genuine cooperads
of CDGAs. Our definition, however, is practical enough for applications.

• In Chapter 4 we review the functor ΩPA of PA forms. This is the analog for
semi-algebraic spaces of the deRham functor ΩDR of differential forms for smooth
manifolds. We review the main results we will need from this theory, such as
the notion of semi-algebraic chains C∗(X) on a semi-algebraic set X , which are
weakly equivalent to singular chains; the fact that ΩPA encodes (monoidaly) the
real homotopy type of compact semi-algebraic sets; and the important notion of
integration along the fiber, or pushforward, of a “minimal” PA form along a semi-
algebraic bundle.

• In Chapter 5 we define and study in detail the Fulton-MacPherson operad C[•]
and prove the results about this operad that are necessary for establishing certain
properties of the Kontsevich configuration space integral. We also review the fact
that the Fulton-MacPherson operad is equivalent to the little balls operad.

• In Chapter 6 we construct the combinatorial CDGA D(n) of admissible diagrams

(on n external vertices), built from a larger companion CDGA D̂(n) of diagrams.
The CDGA D(n) will later be shown to be quasi-isomorphic to both ΩPA(C[n])
and its cohomology.

• In Chapter 7 we endow first D̂ and then D with the structure of a cooperad.
The cooperad structure is obtained by considering condensations , which will have
already appeared in the study of the Fulton-MacPherson operad in Chapter 5.

• In Chapter 8, we prove that the cooperadD is quasi-isomorphic to the cohomology
of the Fulton-MacPherson operad.

• In Chapter 9 we construct the Kontsevich configuration space integrals, which
are CDGA maps

Î : D̂(n) −→ ΩPA(C[n]) and I : D(n) −→ ΩPA(C[n]).

We prove that they are (almost) morphisms of cooperads. The arguments use many
properties of the Fulton-MacPherson operad developed in Chapter 5.

• In Chapter 10 we collect the results of the previous two chapters to deduce our
main formality results. In particular, we prove that I is a quasi-isomorphism.

• Lastly, for the convenience of the reader we have included an index of notation
in the Appendix.



CHAPTER 2

Notation, linear orders, weak partitions, and

operads

In this chapter we fix some notation, most of which is standard. We also review the
notion of linear orders and introduce the notion of a weak ordered partition which
is useful in describing the operad structure maps.

2.1. Notation

K will be a commutative ring with unit, often R.

An integer N ≥ 1 (which gives the ambient dimension) will be fixed.

For a set A we denote by |A| its cardinality. We denote by Perm(A) the group of
permutations of A. For a nonnegative integer n, we set n = {1, . . . , n}. We will
sometimes identify n and the set n. The set of all functions from a set X to a set
Y is denoted by Y X .

When f : X → Y is a map and A ⊂ X , we denote the restriction of f to A by f |A.
We denote the one-point space by ∗.
We use the notation x := def to state that the left hand side is defined by the right
hand side.

An extended index of notation is in the Appendix.

2.2. Linear orders

Definition 2.2.1. A linearly ordered (or a totally ordered) set is a pair (L,≤)
where L is a set and ≤ is a reflexive, transitive, and antisymmetric relation on L
such for any x, y ∈ L we have x ≤ y or y ≤ x. We write x < y when x ≤ y and
x 6= y.

Given two disjoint linearly ordered sets (L1,≤1) and (L2,≤2) their ordered sum is
the linearly ordered set L1 < L2 := (L1 ∪ L2,≤) such that the restriction of ≤ to
Li is the given order ≤i and such that x1 ≤ x2 when x1 ∈ L1 and x2 ∈ L2.

More generally if {Lp}p∈P is a family of linearly ordered sets indexed by a linearly
ordered set P , its ordered sum

<
p∈P

Lp

is the disjoint union ∐p∈PLp equipped with a linear order ≤ whose restriction to
each Lp is the given order on that set and such that x < y when x ∈ Lp and y ∈ Lq

with p < q in P .

9



10 2. NOTATION, LINEAR ORDERS, WEAK PARTITIONS, AND OPERADS

It is clear that the ordered sum < is associative but not commutative.

We define the position function on a linearly ordered finite set (L,≤) as the unique
order-preserving isomorphism

pos : L −→ {1, . . . , |L|}.
We write pos(x : L) for pos(x) when we want to emphasize the underlying ordered
set L.

2.3. Weak ordered partitions

The following terminology will be useful in the description of operad structures in
the next section.

Definition 2.3.1. A weak partition of a finite set A is a map ν : A→ P , where P
is a finite set. The preimages ν−1(p), for p ∈ P , are the elements of the partition.
Since we do not ask ν to be surjective, some of the elements ν−1(p) can be empty,
and hence the adjective weak. The weak partition is degenerate if ν is not surjective,
and non-degenerate otherwise. We will simply say partition for a non-degenerate
weak partition. The (weak) partition ν is ordered if its codomain P is equipped
with a linear order. The undiscrete partition is the partition ν : A → {1} whose
only element is A.

2.4. Operads and cooperads

Here we review the definition of operads that we will use. Let (C,⊗,1) be a sym-
metric monoidal category. Let IsoFin be the category whose objects are finite sets
(including the empty set) and whose morphisms are bijections between them. This
category is equivalent to the category with one object for each integer n ≥ 0 along
with the symmetric group Σn = Perm(n) as its set of automorphisms, and no other
morphisms. A symmetric sequence in C is a functor

O : IsoFin −→ C.
Thus a symmetric sequence in C is determined by a sequence (O(n))n≥0 of objects
of C together with an action of Σn on O(n).
An operad O is a symmetric sequence together with a unit map

u : 1 −→ O(1)
and, for each ordered weak partition ν : A→ P , natural operad structure maps

(2.1) Θν : O(P ) ⊗ ⊗
p∈P
O(ν−1(p)) −→ O(A)

satisfying the usual associativity, unital, and equivariance conditions. Here the
monoidal product ⊗

p∈P
is taken of course in the linear order of P .

A cooperad is an operad in the opposite category.

Our operads have an objectO(0) = O(∅) in arity 0. If we were working with operads
without a nullary term, then we would only need non-degenerate partitions ν.

When investigating (co)operads, we will often fix the following setting:
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Setting 2.4.1. Fix an ordered weak partition ν : A→ P , with A and P finite, and
P linearly ordered. We assume that 0 6∈ P and set

(2.2) P ∗ := {0}< P

where < is the ordered sum defined in Section 2.2. Set Ap = ν−1(p) for p ∈ P , and
A0 = P .

Under this setting the structure maps (2.1) become

Θν : ⊗
p∈P∗

O(Ap) −→ O(A).





CHAPTER 3

CDGA models for operads

In this chapter we give precise meaning to the notion of a CDGA model for a topo-
logical operad or for a morphism of topological operads. Our definition, although
not difficult, is perhaps not so elegant, but it suffices for the applications we have in
mind. At the end of the chapter we sketch an alternative, more concise definition.

Recall that Sullivan [31] (see [8] or [12] for a complete development of the theory)
constructed a contravariant functor of piecewise polynomial forms over a field K of
characteristic 0,

APL(−;K) : Top −→ CDGA

which mimics the deRham differential algebra of smooth differential forms on a man-
ifold. Here CDGA is the category of commutative differential graded K−algebras
(or CDGA for short) which are non-negatively graded. Sometimes we will also con-
sider Z-graded CDGAs which can be non trivial in negative degree, but those are
not the objects of the category CDGA. A CDGA (A, d) is a CDGA model (over K)
for a space X if the CDGAs (A, d) and APL(X ;K) are weakly equivalent, by which
we mean that there exists a chain of quasi-isomorphisms of CDGAs connecting
them:

(A, d)
≃←− · · · ≃−→ APL(X ;K).

The main feature of the theory is that when X is a simply-connected topologi-
cal space with finite Betti numbers and K = Q, then any CDGA model for X
determines the rational homotopy type of X . Moreover, many rational homotopy
invariants, like the rational cohomology algebra H∗(X ;Q) or the rational homotopy
Lie algebra π∗(ΩX)⊗ Q can easily be recovered from the model (A, d). For fields
K other than the rationals, we have

APL(−;K) = APL(−;Q)⊗Q K,

and by extension we say that the quasi-isomorphism type of APL(X ;K) determines
the K-homotopy type of X . We just write APL(X) when the field K is understood.

Also, if f : X → Y is a map of spaces, we say that a CDGA morphism

φ : (B, dB) −→ (A, dA)

is a CDGA model for f if there exists a zig-zag of weak equivalences connecting φ
and APL(f ;K), that is, if there exists a commutative diagram of CDGAs

(B, dB)

φ

��

•≃oo ≃ //

��

· · · •≃oo ≃ //

��

APL(Y ;K)

APL(f ;K)

��
(A, dA) •≃oo ≃ // · · · •≃oo ≃ // APL(X ;K)

13
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in which the horizontal arrows are quasi-isomorphisms.

We would like to define a similar notion of a CDGA model for a topological operad
O. A naive definition would be that such a model is a cooperad A of CDGAs
that is connected by weak equivalences of CDGA cooperads to APL(O). However,
there is a problem with this definition because the contravariant functor APL is not
comonoidal as there is no suitable natural map

(3.1) APL(X × Y ) −→ APL(X)⊗APL(Y ).

Therefore it seems that there is no cooperad structure on APL(O) naturally induced
from the operad structure on O. On the other hand, APL is monoidal through the
Kunneth quasi-isomorphism

(3.2) κ : APL(X)⊗APL(Y )
≃−→ APL(X × Y ).

This morphism becomes an isomorphism in the homotopy category, and its inverse
should correspond to the homotopy class of the missing map (3.1). We would thus
like to say that APL(O) is a cooperad “up to homotopy”. However, this sort of
“up to homotopy” structure needs to be handled with more care than is necessary
for our purpose, and so we will not pursue this in detail here and will just give an
indication of such a notion at the end of the chapter. Instead we will propose in
Definition 3.1 an ad hoc definition of a CDGA model for an operad.

There is a second difficulty which we will have do deal with and which comes
from the proof of the formality itself. Namely, in Kontsevich’s proof of the weak
equivalence between the (up to homotopy) cooperad APL(B) and its cohomology,
a functor ΩPA (to be reviewed in Chapter 4) is used. This functor is weakly
equivalent to APL(−;R) but is defined only after restriction to a subcategory of Top,
namely the category of compact semi-algebraic sets. This is analogous to the fact
that the deRham CDGA of smooth differential forms ΩDR is weakly equivalent to
APL(−;R) after restriction to the subcategory of smooth manifolds. Consequently,
our modeling functors will sometimes be defined on some subcategory u : T →֒ Top.

To finally define our notion of a CDGA model for an operad, we will need a few
definitions.

Two cooperads of CDGAs, A and A′, are weakly equivalent if they are connected
by a chain of quasi-isomorphism of CDGA cooperads,

A ≃←− · · · ≃−→ A′.

Let (T ,×,1) be a symmetric monoidal category and let

u : T −→ Top

be a symmetric strongly monoidal covariant functor, where by strongly we mean
that the natural map

(3.3) u(X)× u(Y )
∼=−→ u(X × Y )

is an isomorphism and u(1) = ∗ is the one-point space.

For us, a contravariant functor

Ω: T −→ CDGA
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is symmetric monoidal if it is equipped with a natural map

(3.4) κ : Ω(X)⊗ Ω(Y ) −→ Ω(X × Y )

satisfying the usual axioms and such that Ω(1) = K. In particular APL ◦ u is
symmetric monoidal.

A natural monoidal quasi-isomorphism between two such contravariant symmetric
monoidal functors Ω and Ω′ is a natural transformation

θ : Ω −→ Ω′

that induces an isomorphism in homology and that commutes with the monoidal
structure maps. Two symmetric monoidal contravariant functors are weakly equiv-
alent if they are connected by a chain of natural monoidal quasi-isomorphisms. If Ω
is weakly equivalent to APL◦u then the morphism κ of (3.4) is a quasi-isomorphism
because the corresponding one for APL in (3.2) is as well and because of the iso-
morphism (3.3).

Our definition of CDGA models for cooperads is then

Definition 3.1. A CDGA cooperad A is a CDGA model for a topological operad
O if there exist

• a CDGA cooperad A′ weakly equivalent to A;
• a symmetric monoidal category (T ,×,1);
• a symmetric strongly monoidal covariant functor u : T → Top;
• an operad O′ in T such that u(O′) is weakly equivalent to O;
• a symmetric monoidal contravariant functor Ω weakly equivalent to APL ◦
u;
• for each n ≥ 0 a Σn-equivariant quasi-isomorphism

Jn : A′(n)
≃−→ Ω(O′(n))

such that, for each k ≥ 0 and n1, . . . , nk ≥ 0 with n = n1 + · · ·+ nk, the
following diagram commutes:

A′(n)
Jn

≃
//

Ψ

��

Ω(O′(n))

Ω(Φ)

��
Ω(O′(k)×O′(n1)× · · · × O′(nk))

A′(k)⊗A′(n1)⊗ . . .A′(nk)
≃

Jk⊗Jn1⊗···⊗Jnk

// Ω(O′(k))⊗ Ω(O′(n1))⊗ · · · ⊗ Ω(O′(nk)).

κ≃

OO

Here Ψ and Φ are the (co)operad structure maps onA′ andO′ respectively,
and the composition

A′(1)
J1−→ Ω(O′(1))

Ω(η)−→ Ω(1) ∼= K

is required to be the counit of A′, where η is the unit of O′.
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If κ was an isomorphism, then κ−1 ◦ Ω(Φ) would define a cooperad structure on
Ω(O′) and the above diagram would simply mean that the cooperads A′ and Ω(O′)
are weakly equivalent.

The main examples of the above that we will consider are:

• the category T = CompactSemiAlg of compact semi-algebraic sets (Chap-
ter 4);
• the forgetful functor u : CompactSemiAlg→ Top;
• the functor Ω = ΩPA of semi-algebraic forms (Chapter 4);
• the topological operad of little balls O = BN ;
• the Fulton-MacPherson semi-algebraic operad O′ = C[•] (Chapter 5), and
• its cohomology A = H∗(C[•]);
• the cooperad of admissible diagrams A′ = D (Chapters 6-7); and
• the Kontsevich configuration space integral Jn = I: D(n) → ΩPA(C[n])
(Chapter 9).

We will let the reader generalize Definition 3.1 in an obvious way to say when a
morphism of CDGA cooperads

φ : A1 −→ A2

is a CDGA model for a morphism of topological operads

f : O2 −→ O1.

Definition 3.2. A topological operad is formal over K if the induced cohomology
algebra cooperad is a CDGA model for this operad over K.

A morphism of topological operads is formal if the induced morphism in cohomology
is a CDGA model for this operad morphism.

This definition, albeit perhaps a bit ad hoc, is good enough for the applications we
have in mind. A more elegant definition would have to use a precise notion of a
(co)operad up to homotopy as follows.

Recall, for example from [16, §1.2], that an operad can be seen as a functor on the
category of trees. More precisely let Tree be the category whose objects are rooted
planar trees and morphisms compositions of contractions of non-terminal edges.
Given trees S, T1, . . . , Tk where S has k leaves and each Ti has ni leaves, one can
build a new tree S(T1, . . . , Tk) with n1+ · · ·+nk leaves by grafting the root of each
tree Ti to the corresponding leaf of S. For n ≥ 0 we denote by 〈n〉 the tree with n
leaves and no internal vertex, that is a tree which is indecomposable with respect
to the grafting operation. Then an operad O in a symmetric monoidal category C
can be seen as a functor

O : Tree −→ C
where O(〈n〉) = O(n), for n ≥ 0. In order for a functor O to define an operad one
asks for isomorphisms

α(S,T1,...,Tk) : O(S(T1, . . . , Tk))
∼=−→ O(S) ⊗⊗k

i=1O(Ti)

satisfying obvious associativity, unital, and equivariance relations.

There is a morphism in Tree given by

〈k〉(〈n1〉, . . . , 〈nk〉) −→ 〈n1 + · · ·+ nk〉
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and its image under the functor O composed with the inverse of the isomorphism
α gives the structure maps of the operad.

An operad up to homotopy is an analogous functor O except that one only asks
α(S,T1,...,Tk) to be a weak equivalence instead of an isomorphism. Similarly we can
define cooperads up to homotopy.

If O is a topological operad, then APL(O) naturally becomes a cooperad up to
homotopy in this sense, with the weak equivalences α constructed from the Kun-
neth quasi-isomorphism (3.2). There is also an obvious notion of morphisms of
(co)operads up to homotopy and of weak equivalences. One could check that if
a CDGA cooperad A is a CDGA model for a topological operad O in the sense
of Definition 3.1, then A and APL(O) are also weakly equivalent as cooperads up
to homotopy. This therefore might give a better definition of an operad model,
but it is possible that some further “∞-version” would be necessary for obtaining
something useful.





CHAPTER 4

Real homotopy theory of semi-algebraic sets

In this chapter we give a brief review of Kontsevich and Soibelman’s theory of semi-
algebraic differential forms which is outlined in [23, §8]. In particular we discuss the
functor ΩPA which is analogous to the deRham functor ΩDR for smooth manifolds.
That functor and the way it encodes real homotopy theory of semi-algebraic sets
was developed in full detail by the authors jointly with Robert Hardt and Victor
Turchin in [19].

Definition 4.1 ([6]). A semi-algebraic set is a subset of Rp that is obtained by
finite unions, finite intersections, and complements of subsets defined by polynomial
equations and inequalities. A semi-algebraic map is a continuous map between
semi-algebraic sets whose graph is a semi-algebraic set.

We will consider the categories SemiAlg (and CompactSemiAlg) of (compact) semi-
algebraic sets. Endowed with the cartesian product, this category becomes sym-
metric monoidal and the obvious forgetful functor

u : SemiAlg −→ Top

is strongly symmetric monoidal because of the natural homeomorphism

u(X)× u(Y )
∼=−→ u(X × Y ).

We have for a semi-algebraic set X a functorial chain complex of semi-algebraic
chains C∗(X) [19, Definition 3.1], which is weakly equivalent to singular chains.
A typical element of Ck(X) is represented by a semi-algebraic map g : M → X
from a semi-algebraic compact oriented manifold M of dimension k. This element
is denoted by g∗(JMK) ∈ Ck(X). In particular, taking g = idM ,

(4.1) JMK ∈ Ck(M)

represents a canonically defined fundamental class of the manifold M at the level
of semi-algebraic chains. Also, a semi-algebraic map f : X → Y induces a chain
map

(4.2) f∗ : C∗(X) −→ C∗(Y ).

We in addition have a contravariant functor of minimal forms [19, Section 5.2]

(4.3) Ωmin : SemiAlg −→ CDGA .

By definition, a minimal form of degree k on X is represented by a linear combi-
nation of

µ = f0 · df1 ∧ · · · ∧ dfk

where
f0, f1, . . . , fk : X −→ R

19
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are semi-algebraic maps. Even though the fi’s may not be everywhere smooth, we
can define a differential dµ which is again a minimal form. Also for a compact semi-
algebraic oriented manifoldM of dimension k and a semi-algebraic map g : M → X ,
we can evaluate the form µ on g∗(JMK) ∈ Ck(X) by the formula

(4.4) 〈µ , g∗JMK〉 :=
ˆ

M

g∗(f0 · df1 ∧ · · · ∧ dfk).

The convergence of the integral on the right is a consequence of the semi-algebraicity
of M . Indeed that integral is the same as

(4.5)

ˆ

f∗(g∗(M))

x0 · dx1 ∧ · · · ∧ dxk

where f∗(g∗(M)) is the image of M in Rk+1 (counted with multiplities) under the
composition of g and f := (f0, f1, . . . , fk). Thus f∗(g∗(M)) is a compact semi
algebraic-set of dimension ≤ k, which implies that its k-volume is finite (this would
not be true for non semi-algebraic compact sets.) Hence the integral in Equa-
tion (4.5) converges. See [19, Theorem 2.4 and beginning of Section 3] for more
details.

In this paper, the only minimal forms that we will use are the standard volume
form on the sphere and its pullbacks along semi-algebraic maps.

The CDGA of minimal forms embeds in that of PA forms [19, Section 5.4] (“PA”
stands for “piecewise algebraic”)

(4.6) ΩPA : SemiAlg −→ CDGA .

Roughly speaking, PA forms are obtained by integration along the fiber of min-
imal forms along oriented semi-algebraic bundles, which are recalled below. The
important feature is the following

Theorem 4.2 ([19, Theorem 7.1]). When restricted to the category of compact
semi-algebraic sets, the contravariant symmetric monoidal functors ΩPA and
APL(u(−);R) are weakly equivalent.

Another important feature of minimal and PA forms is that classical integration
along the fiber for smooth forms can be extended to the semi-algebraic framework.
To explain, we have from [19, Section 8] the notion of a semi-algebraic bundle, or
SA bundle for short, which is the obvious generalization of the usual definition of
a locally trivial bundle.

An SA bundle
π : E −→ B

is oriented if its fibers are compact oriented semi-algebraic manifolds, with orien-
tation which is locally constant in an obvious sense. For each b ∈ B we then have
the fundamental class of the fiber over b,

(4.7) Jπ−1(b)K ∈ Ck(π
−1(b)),

where k is the dimension of the fiber.

Given an oriented SA bundle π : E → B whose fibers are compact SA manifolds,
there exists a subbundle

(4.8) π∂ : E∂ → B
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whose fibers are the boundaries of the fibers of π. This subbundle is called the
fiberwise boundary of π (see [19, Definition 8.1]). An example is the map

proj1 : E := [0, 1]× [0, 1]→ [0, 1]

which projects onto the first factor. In this case the fiberwise boundary is E∂ =
[0, 1]× {0, 1}, but this is not the boundary of E.

For an oriented SA bundle with k-dimensional fiber, there is a linear map of degree
−k [19, Definition 8.3],

(4.9) π∗ : Ω
∗+k
min (E) −→ Ω∗

PA(B),

which correponds to integration along the fiber, also called pushforward. In some
sense PA forms are obtained as (generalized) pushforwards of minimal forms [19,
Definition 5.20]. Properties of the pushforward that we will need here are collected
in [19, Section 8.2]. They are analogous to the standard properties of integration of
smooth differential forms along the compact fiber of a smooth bundle. In particular
one has a fiberwise Stokes formula which we will need later.





CHAPTER 5

The Fulton-MacPherson operad

Fix N ≥ 1. In this chapter we review the Fulton-MacPherson operad

C[•] = {C[n]}n≥0

which is weakly equivalent to the little N -disks operad. As a space, each C[n] is a
compactification of the space C(n) of normalized ordered configurations of n points
in RN . It is a compact semi-algebraic manifold with boundary, and so its real ho-
motopy type is encoded by the semi-algebraic analog of deRham theory, ΩPA(C[n]).
The operad structure maps correspond essentially to inclusions of various faces of
the boundary ∂ C[n].

We will also in this chapter study canonical projections

π : C[n+ l] −→ C[n]

given by forgetting some points of the configuration and will prove that they are
SA bundles with compact manifolds as fibers. This fact will be used in Section 9.1
to construct the Kontsevich configuration space integral I : D(n) → ΩPA(C[n]) of
(1.1) via integration along the fiber of π. We will also study the interaction of these
canonical projections with the operad structure in order to later prove that I is a
map of cooperads.

The plan of this chapter is the following:

5.1: We define the compactification C[n], compute its dimension, and charac-
terize its boundary.

5.2: We describe the operad structure on {C[n]}n≥0 and recall that this operad
is equivalent to the operad of little balls.

5.3: We study the canonical projection π : C[n + l] → C[n] and state that it
defines a bundle whose fibers are oriented compact manifolds.

5.4: We decompose the boundary ∂ C[n] into faces which are images of the ◦i
(“circle-i”) operad maps.

5.5: We construct singular configuration spaces which are variations of spaces
C[n] and will be needed for some technical points.

5.6: In this (long) section, we investigate the pullback of a canonical projec-
tion along an operad structure map. This will be needed for proving
that the Kontsevich configuration space integral respects the (co)operadic
structures. We introduce at the beginning of this section the notion of a
condensation which will also be needed for the definition of the cooperad
structure on the space of diagrams in Chapter 7.

5.7: We describe a decomposition of the fiberwise boundary of the total space
C[n + l] of a canonical projection. This will be used in proving that
Kontsevich’s configuration space integral is a chain map.

23
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5.8: We fix an orientation of C[n]; this will be important when we integrate
forms over this manifold.

5.9: We prove Theorem 5.3.2, stated in Section 5.3, which asserts that the
canonical projections are oriented SA bundles. This section also contains
an example showing that the canonical projections are not smooth bun-
dles.

On a first pass of this chapter, the reader may just concentrate on Sections 5.1-5.4
to acquire a good sense of the Fulton-McPherson operad. The last five sections are
more technical and are needed only for the details of the proof of certain properties
of the Kontsevich configuration space integral in Chapter 9. However, the reader
should still look at Definition 5.6.1 of a condensation in Section 5.6, as this will be
needed in Chapter 7 to define the cooperadic structure on the spaces of diagrams

D̂(n).

5.1. Compactification of configuration spaces in RN

We first recall the Fulton-MacPherson compactification C[n] of the configuration
space C(n) of n points in RN . This compactification (or at least some variation of
it) was defined in [13], with the operad structure given in [15], and alternatively
by Kontsevich in [21, Definition 12] and [22, Section 5.1]. We follow Kontsevich’s
approach, which was corrected by Gaiffi in [14, Section 6.2] and developed in detail
by Sinha in [28] (the equivalence of the Kontsevich and the Fulton-MacPherson
definitions follows from Sinha’s work as well).

Let A be a finite set of cardinality n which will serve as a set of labels for the points
of the configurations. Consider the space

(5.1) Inj(A,RN ) := {x : A →֒ RN}
of all injective maps from A to RN . An element x ∈ Inj(A,RN ) is an (ordered)
configuration (x(a))a∈A of n distinct points in RN . This space is topologized as a
subspace of the product (RN )A =

∏
a∈A RN .

The space Inj(A,RN ) is a smooth open manifold of dimension N · |A|. The group of
orientation-preserving similarities RN⋊R+

0 acts by translation and positive dilation
on RN , and hence diagonally on Inj(A,RN ). We denote its orbit space by

(5.2) C(A) := Inj(A,RN )/(RN ⋊R+
0 ).

(This space is denoted by C̃n(R
N ) in [28, Definition 3.9].)

When |A| ≥ 2 the action is free and smooth and hence C(A) is a manifold of
dimension

dimC(A) = N · |A| −N − 1,

and when |A| ≤ 1 then C(A) is a one-point space because the action is transitive.

Define the barycenter of a map x : A→ RN as the point

(5.3) barycenter(x) = barycenter(x(a) : a ∈ A) :=
1

|A|
∑

a∈A

x(a)

and its radius as the real number

(5.4) radius(x) = radius(x(a) : a ∈ A) := max(‖x(a) − barycenter(x)‖ : a ∈ A).
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When |A| ≥ 2, C(A) is homeomorphic to the space of normalized configurations

(5.5) Inj10(A,R
N ) :=

{
x ∈ Inj(A,RN ) : barycenter(x) = 0 and radius(x) = 1

}
.

We will use C(A) and Inj10(A,R
N ) interchangeably. Most of the time in this paper,

a configuration will be denoted by x or y (maybe with some decoration) and, when
seen as an element of Inj10(A,R

N ), its components will be points x(a) for a an
element of the set of labels of the components, A.

Denote by SN−1 the unit sphere in RN . Given two distinct elements a, b ∈ A,
consider the map

θa,b : C(A) −→ SN−1(5.6)

x 7−→ x(b)− x(a)

‖x(b)− x(a)‖
which gives the direction between two points of the configuration.

For three distinct elements a, b, c ∈ A, also define

δa,b,c : C(A) −→ [0,+∞](5.7)

x 7−→ ‖x(a)− x(b)‖
‖x(a)− x(c)‖

which gives the relative distance of 3 points of a configuration.

Set

A{2} = {(a, b) ∈ A×A : a 6= b}
A{3} = {(a, b, c) ∈ A×A×A : a 6= b 6= c 6= a}

and consider the map

ι : C(A) −→ (SN−1)A
{2} × [0,+∞]A

{3}

x 7−→
(
(θa,b(x))(a,b)∈A{2} , (δa,b,c(x))(a,b,c)∈A{3}

)
.

Up to translation and dilation, any configuration x : A →֒ RN can be recovered from
the directions θa,b(x) and relative distances δa,b,c(x). Hence ι is a homeomorphism
onto its image [28, Lemma 3.18] and we will identify C(A) with ι(C(A)).

Definition 5.1.1. The Fulton-MacPherson compactification C[A] of C(A) is the
topological closure of the image of ι, that is,

C[A] := ι(C(A)).

Intuitively, one should think of x ∈ C[A] as a “virtual” configuration in which
some points are possibly infinitesimally close to each other in such a way that the
direction between any two points and the relative distance between three points is
always well-defined. These directions and relative distances are given by the maps
θa,b and δa,b,c, which obviously extend to C[A]. Moreover an element x ∈ C[A] is
completely characterized by the values θa,b(x) ∈ SN−1 and δa,b,c(x) ∈ [0,+∞], for
distinct a, b, c ∈ A. By abuse of terminology an element x ∈ C[A] will be called a
configuration and we will talk informally of its components x(a) ∈ RN , for a ∈ A.
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The following notation will be useful: For a, b, c distinct in A and x ∈ C[A], when
δa,b,c(x) = 0 we write

(5.8) x(a) ≃ x(b) relx(c).

This happens exactly when the points x(a) and x(b) are infinitesimaly close to
each other in comparison to their distance to x(c). Pictorial interpretations of this
situation are given below in Example 5.2.1. In particular Figure 5.2 represents a
configuration x ∈ C[6] with N = 2.

The space C(A) ⊂ (RN )A and the map ι are clearly semi-algebraic, therefore so
is the closure C[A]. Moreover, by [7] or [28], C[A] is a compact manifold with
corners. It is easy to see that the atlases given in those papers are semi-algebraic,
and hence C[A] is a compact semi-algebraic manifold with boundary (charts are
given in Lemma 5.9.3).

In conclusion, we have

Proposition 5.1.2. For a finite set A, C[A] is a compact semi-algebraic manifold
with interior C(A) and its dimension is given by

dim(C[A]) =

{
0 if |A| ≤ 1;

N · |A| −N − 1 if |A| ≥ 2.

We also have the following important characterization of the boundary

Proposition 5.1.3. For x ∈ C[A], the following are equivalent conditions:

x ∈ ∂ C[A] ⇐⇒ (∃ a, b, c ∈ A distinct : x(a) ≃ x(b) relx(c)).

For |A| ≤ 1, C[A] is a one-point space; for |A| = 2, it is homeomorphic to the sphere
SN−1. For n ≥ 0 we set C[n] := C[{1, . . . , n}].

5.2. The operad structure

We will now define the structure of an operad on

C[•] = {C[n]}n≥0.

Recall from Chapter 2 the notion of weak ordered partitions and how operad struc-
ture maps are associated to them.

Fix a finite set A, a linearly ordered finite set P , and a weak ordered partition
ν : A→ P . Set

P ∗ = {0}< P, Ap = ν−1(p), and A0 = P

as in the setting 2.4.1 from Chapter 2. Hence
∏

p∈P∗

C[Ap] = C[P ]×
∏

p∈P

C[ν−1(p)].

We now construct an operad structure map

(5.9) Φν :
∏

p∈P∗

C[Ap] −→ C[A]
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as follows. Intuitively the configuration x = Φν((xp)p∈P∗) is obtained by replacing,
for each p ∈ P , the p-th component x0(p) of the configuration x0 ∈ C[P ] by the
configuration xp ∈ C[Ap] made infinitesimal. To illustrate, we first give an example.

Example 5.2.1. Consider P = {α, β, γ, δ} (with the linear order α < β < γ < δ),
A = {1, 2, 3, 4, 5, 6}, and let ν : A→ P be given by

ν(a) =





α, for a = 1, 2;

β, for a = 3, 4, 5;

δ, for a = 6.

Consider

x0 ∈ C[P ] ∼= C[4];

xα ∈ C[{1, 2}] ∼= C[2];

xβ ∈ C[{3, 4, 5}] ∼= C[3];

xγ ∈ C[∅] ∼= C[0] = ∗;
xδ ∈ C[{6}] ∼= C[1] = ∗

and suppose that these configurations are for example as in Figure 5.1 (withN = 2).

6

βx0 =
γ

δα

xα =

2

1 xβ =

5

4

3

xγ = xδ =

Figure 5.1

This kind of pictorial representation of compactified configuration spaces first ap-
peared in [28]. The plane represents RN and the “funnels” represent infinitesimal
configurations. Thus for example, in the picture of x0, points labeled by α and δ
are infinitesimally close to each other from the point of view of β and γ. In notation
of relation (5.8), x0(α) ≃ x0(δ) relx0(β) and x0(α) ≃ x0(δ) relx0(γ). Similarly in
the picture of x in Figure 5.2 below, points (labeled by) 4, 3, and 5 are infinites-
imally close to each other from the point of view of 6, 1, and 2, but 3 and 5 are
infinitesimally close to each other from the point of view of 4, as are 1 and 2 from
the point of view of 6.

Then the configuration x = Ψν(x0, xα, xβ , xγ , xδ) can be represented as in Figure
5.2.

More precisely, x = Φν((xp)p∈P∗) ∈ C[A] is characterized by, for distinct a, b, c ∈ A,

θa,b(x) =

{
θa,b(xp), if a, b ∈ Ap for some p ∈ P, that is ν(a) = ν(b) = p;

θν(a),ν(b)(x0), if ν(a) 6= ν(b),
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6

1

x =

4

3 5
2

Figure 5.2

and

δa,b,c(x) =





δa,b,c(xp), if a, b, c ∈ Ap for some p ∈ P ;

δν(a),ν(b),ν(c)(x0), if ν(a), ν(b), and ν(c) are all distinct;

0, if ν(a) = ν(b) 6= ν(c);

1, if ν(a) 6= ν(b) = ν(c);

+∞, if ν(a) = ν(c) 6= ν(b).

There is an obvious action of the group Perm(A) of permutations of the set A on
C[A], and in particular of the symmetric group Σn on C[n]. We define the unit in
C[1] as its unique point (or more precisely the unique map u : ∗ → C[1]).

The following is straightforward to check (see for example [29, Section 4]).

Proposition 5.2.2. The above data endows C[•] = {C[n]}n≥0 with the structure
of an operad of compact semi-algebraic sets.

The relevance of the Fulton-MacPherson operad for us is that it is weakly equivalent
to the little balls operad, as proved by P. Salvatore:

Proposition 5.2.3. [26, Proposition 4.9] The Fulton-MacPherson operad C[•] of
configurations in RN and the little N -disks operad B are weakly equivalent as topo-
logical operads.

For the sake of keeping this paper as self-contained as possible, we summarize
Salvatore’s proof here.

Summary of proof of Proposition 5.2.3. Recall the W construction of
Boardman-Vogt [5] which associates to a topological operad O(•) another operad
WO consisting of planar rooted trees τ whose internal edges have length between
0 and 1 and whose internal vertices of valence i+1 are decorated by an element of
O(i). The operad WO is a cofibrant replacement of O. The main idea of the proof
is then to construct a map R : WB → C[•] that sends a decorated tree τ to the con-
figuration of the centers of the configuration of balls obtained by multicomposition
of all the configurations of balls associated to the vertices of τ (after rescaling the
configuration of balls at each internal vertex in a way that depends on the length of
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the adjacent edge, length 1 corresponding to an infinitesimal rescaling). It turns out
that R is a homotopy equivalence of operads and, since WB is homotopy equivalent
to B, this proves the proposition. �

In particular, the formality of the little balls operad will follow from that of the
Fulton-MacPherson operad.

5.3. The canonical projections

Let V be a finite set containing A as a subset. Set I = V \A. There is an obvious
semi-algebraic map

(5.10) π : C[V ] −→ C[A]

given by forgetting from the configuration y ∈ C[V ] all the points labeled by I.
This map π can also be defined as an operad structure map. Indeed choose an
arbitrary linear order on V and consider the inclusion ι : A →֒ V as a weak ordered
partition. For v ∈ V , ι−1(v) is either empty or a singleton {v}. Since C[∅] and
C[{v}] are both one-point spaces, the projection on the first factor

proj: C[V ]×
∏

v∈V

C[ι−1(v)]
∼=−→ C[V ]

gives a homeomorphism which we use to identify these two spaces. Then the operad
structure map

C[V ] = C[V ]×
∏

v∈V

C[ι−1(v)]
Φι−→ C[A]

is exactly the map π.

Definition 5.3.1. The map π : C[V ] → C[A] of (5.10) is called the canonical
projection (associated to the inclusion A ⊂ V ).

The Kontsevich configuration space integral will be defined through a pushforward
of some minimal semi-algebraic forms along such canonical projections. For this to
be possible, canonical projections have to be oriented SA bundles (that is, semi-
algebraic bundles whose fibers are compact oriented manifolds; see Chapter 4 and
[19, Definition 8.1]):

Theorem 5.3.2. Let A be a finite set and let I be a linearly ordered finite set
disjoint from A. The canonical projection

π : C[A ∪ I] −→ C[A]

is an oriented SA bundle with fiber of dimension

dim(fiber(π))

{
= N · |I|, if |A| ≥ 2 or I = ∅;
< N · |I|, otherwise.

Assume moreover that |A| ≥ 2. Then the fiber of π is the space of configurations of
|I| points in RN \A compactified by adding a boundary to this open manifold.

• When N is odd the orientation of the fiber of π depends on the linear order
of I. A transposition of that linear order reverses the orientation.
• When N is even the orientation of the fiber is independent of the linear
order on I.
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For example, when |I| = 1 and |A| ≥ 2, the fiber of π is a closed N -ball with |A|
disjoint open balls removed from its interior.

The proof of this theorem is not very difficult but it is long. Since techniques used in
the proof are not used anywhere else in the paper we decided to delay it until Section
5.9. Notice however that although C[n] are smooth manifolds with corners, it is not
true that the canonical projections are smooth bundles, because their restrictions
to the boundary are usually not submersions, as shown in Example 5.9.1. This is
the reason why we have to work with semi-algebraic forms instead of smooth forms.

Canonical projections can also be used to construct retractions to the operad struc-
ture maps associated to a non-degenerate partition (see Definition 2.3.1) as in the
following easy-to-prove proposition and corollary.

Proposition 5.3.3. Let ν : A → P be an ordered weak partition and set Ap =
ν−1(p) for p ∈ P as in the setting 2.4.1. For q ∈ P denote by πq the canonical
projection associated to the inclusion Aq ⊂ A. Then the composition

C[P ]×
∏

p∈P

C[Ap]
Φν−→ C[A]

πq−→ C[Aq]

is the projection on that factor.

Suppose moreover that ν is non-degenerate, that is, it is surjective. Use any section
of ν to identify P as a subset of A and let π0 be the associated canonical projection.
Then the composition

C[P ]×
∏

p∈P

C[Ap]
Φν−→ C[A]

π0−→ C[P ]

is the projection on the first factor.

Corollary 5.3.4. If ν : A → P is a non-degenerate ordered partition, then the
operad structure map

Φν : C[P ]×
∏

p∈P

C[Ap] −→ C[A]

is injective and admits a continuous semi-algebraic retraction.

Proof. A retraction is given by (πp)p∈P∗ where πp is as in the previous propo-
sition. �

This corollary is clearly wrong when the weak partition ν is degenerate.

5.4. Decomposition of the boundary of C[n] into codimension 0 faces

In this section we show that the boundary of C[n] decomposes as the union of the
images of certain operad structure maps. Indeed, Proposition 5.4.1 below gives a
partition of ∂C[n] (up to codimension 1 intersections) whose pieces are images of
“◦i” operations. Most of the operad structure on C[•] can in fact be understood as
an explicit decomposition of the boundary of C[n] as a union of faces homeomorphic
to products of the form C[k]×C[n1]× · · · ×C[nk]. This is not true for the nullary
part though.
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Let V be a finite set. We will study the boundary of the manifold C[V ]. Recall
that the elements of that boundary are characterized in Proposition 5.1.3. For a
non-empty subset W of V , we will consider the configurations y ∈ C[V ] such that
the points y(w) labeled by w ∈ W are infinitesimally closer to each other with
respect to any other point y(v) labeled by v ∈ V \W . We will show that these
subsets of configurations give a decomposition of ∂ C[V ] into codimension 0 faces
(Proposition 5.4.1) when W runs over proper subsets of cardinality ≥ 2.

For a non-empty subset W ⊂ V , let V/W be the quotient set of V in which all the
elements ofW are identified to a single element. In particular |V/W | = |V |−|W |+1.
Suppose given a linear order on V/W and consider the projection to the quotient

q : V −→ V/W

which is an ordered non-degenerate partition of V . One then has a structure map

Φq : C[V/W ]×
∏

p∈V/W

C[q−1(p)] −→ C[V ].

Since q−1(p) is either a singleton {v} or the subset W and since C[{v}] is a one-
point space, we can identify the domain of Φq with C[V/W ] × C[W ]. This defines
a map

(5.11) ΦW := Φq : C[V/W ]× C[W ] −→ C[V ]

that we will denote by ΦV
W when we want to emphasize the set V .

In terms of operads, the map ΦW corresponds to a “circle-i” operadic operation
◦i, up to some permutation. Indeed, when V = {1, . . . , n + k} = n+ k and W =
{i, . . . , i+ k} ∼= k + 1 then V/W ∼= n and ΦW is exactly

◦i : C[n]× C[k + 1] −→ C[n+ k].

The image of ΦW consists of configurations in C[V ] such that the points labeled by
W are infinitesimaly close to each other compared to any point labeled by V \W .
This condition is empty when V = W or when W is a singleton; in other words for
such a W the image of ΦW is all of C[V ]. For proper subsets W ⊂ V of cardinality
≥ 2, the image of ΦW is in the boundary of C[V ]. Actually, the next proposition
shows that the images of all these ΦW supply a decomposition of ∂ C[V ]. The pieces
of this decomposition are indexed by the “boundary faces” set

(5.12) BF(V ) := {W ⊂ V : W 6= V and |W | ≥ 2}.
Proposition 5.4.1.

(i) The boundary of C[V ] decomposes as

∂ C[V ] =
⋃

W∈BF(V )

im(ΦW );

(ii) For W ∈ BF(V ),

dim(im(ΦW )) = N · |V | −N − 2 = dim(∂ C[V ]);

(iii) For W1 6= W2 in BF(V ),

dim(im(ΦW1) ∩ im(ΦW2)) < N · |V | −N − 2.
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Proof. (i) By Proposition 5.1.3, im(ΦW ) ⊂ ∂ C[V ] for W ∈ BF(V ). We will
prove that the boundary is contained in the union of the images of the ΦW . Let
y ∈ ∂ C[V ]. By Proposition 5.1.3 there exist distinct elements u0, v0, w0 ∈ V such
that

y(v0) ≃ y(w0) rel y(u0).

Set

W = {w ∈ V : y(v0) ≃ y(w) rel y(u0)}.
Then v0, w0 ∈W and u0 ∈ V \W , and hence W ∈ BF(V ). Consider the canonical
projections

π1 : C[V ] −→ C[(V \W ) ∪ {w0}] ∼= C[V/W ] and π2 : C[V ] −→ C[W ].

Then y = ΦW (π1(y), π2(y)). This proves (i).

(ii) For W ∈ BF(V ), the map ΦW is injective (by Corollary 5.3.4) and hence, by
compactness, it is a homeomorphism onto its image. Since |W | ≥ 2 and |V/W | ≥ 2,
Proposition 5.1.2 implies that

dim(imΦW ) = dimC[V/W ] + dimC[W ]

= (N · |V/W | −N − 1) + (N · |W | −N − 1

= N · |V | −N − 2.

(iii) Let W1,W2 ∈ BF(V ) with W1 6= W2. We consider three cases.

Case 1: Suppose that W1 ∩W2 = ∅. Then im(ΦW1)∩ im(ΦW2) is the image of the
composition

C[(V/W2)/W1]× C[W1]× C[W2]

(
Φ

V/W2
W1

)
×id

−→ C[V/W2]× C[W2]
ΦV

W2−→ C[V ]

and an analogous computation as in (ii) implies that this image is of
dimension N · |V | −N − 3.

Case 2: Suppose that W1 ⊂ W2 (or the other way around). Then im(ΦW1) ∩
im(ΦW2 ) is the image of the composition

C[V/W2]× C[W2/W1]× C[W1]
id×

(
Φ

W2
W1

)

−→ C[V/W2]× C[W2]
ΦV

W2−→ C[V ]

and again this image is of dimension N · |V | −N − 3.
Case 3: Suppose that W1 ∩ W2 6= ∅, W1 6⊂ W2, and W2 6⊂ W1. Choose a ∈

W1 ∩W2, b ∈ W1 \W2, and c ∈ W2 \W1. For y ∈ im(ΦW1)∩ im(ΦW2) we
simultaneously have

y(a) ≃ y(b) rel y(c) and y(a) ≃ y(c) rel y(b),

which is impossible. Thus im(ΦW1) ∩ im(ΦW2) is empty.

�

More generally the operad structure maps

Φν : C[k]× C[n1]× · · · × C[nk] −→ C[n]

map homeomorphically to faces of codimension (k−2) in the boundary ∂ C[n] when
2 ≤ k < n, n = n1 + · · · + nk, and n1, . . . , nk ≥ 1. This in fact gives a complete
stratification of that boundary, but we will not use this fact. However, when ni = 0
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for some 1 ≤ i ≤ k, then Φν is not an inclusion, and in this case the study of Φν

can require a more careful treatment as will be the case for example in Section 5.6.

5.5. Spaces of singular configurations

Remark 5.5.1. This and the next four sections discuss some of the more tech-
nical properties of the Fulton-MacPherson operad which will be needed for the
corresponding technical parts of the proof of the properties of the Kontsevich con-
figuration space integral in Chapter 9. The reader can thus safely skip Sections
5.5-5.9 for the time being and jump to Chapter 6, except for the notion of conden-
sation in Definition 5.6.1 which is necessary for defining the cooperad structure on
the space of diagrams in Chapter 7.

At times we will need to consider variations of the configuration spaces C[V ] in
which some components of a configuration are allowed to coincide exactly, that is,
without extra infinitesimal information to distinguish the points. The goal of this
section is to make this situation precise.

Let A, I1, I2 be disjoint finite sets. Set Vi = A∪ Ii for i = 1, 2 and V = A∪ I1 ∪ I2.
Hence we have a pushout of sets V = V1 ∪A V2. Consider the following pullback
where π1 and π2 are canonical projections:

(5.13) Csing[V1, V2]
q1 //

q2

��
pullback

C[V1]

π1

��
C[V2] π2

// C[A].

Intuitively, Csing[V1, V2] can be seen as a compactified singular space of configu-
rations of points in RN labeled by v ∈ V . By “singular” we mean that, for a
configuration y, the component y(i1) labeled by i1 ∈ I1 may coincide with another
component y(i2) labeled by i2 ∈ I2.

Since Vi ⊂ V , we have for i = 1, 2 the canonical projections

ρi : C[V ] −→ C[Vi].

As π1ρ1 = π2ρ2, we have a surjective map

(5.14) ρ : C[V ] −→ Csing[V1, V2]

to the pullback induced by (ρ1, ρ2). Intuitively, when y(i1) and y(i2) are infinites-
imally close in y ∈ C[V ], ρ(y) is the singular configuration in which we forget the
infinitesimal data associated to those components.

Consider the canonical projections π : C[V ] → C[A] and πV1 : C[V ] → C[V1], and
the composition

π′ := q1 ◦ π1 = q2 ◦ π2 : Csing[V1, V2] −→ C[A].

Recall the notation JMK for semi-algebraic chains from (4.1), (4.2), and (4.7) in
Chapter 4.
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Lemma 5.5.2. There is a commutative diagram

C[V ]
ρ //

πV1 ""❋
❋❋

❋❋
❋❋

❋❋
Csing[V1, V2]

q1
yyrrr

rr
rr
rr
r

C[V1]

where πV1 and q1 are orientable SA bundles. If moreover |V1| ≥ 2, then for each
x ∈ C[V1]

ρ∗
(
JπV1

−1(x)K
)
= ±Jq1

−1(x)K.

In other words, ρ induces a map of degree ±1 between the fibers of πV1 and q1.

Similarly there is a commutative diagram

C[V ]
ρ //

π
""❋

❋❋
❋❋

❋❋
❋❋

Csing[V1, V2]

π′

yyrrr
rr
rr
rr
r

C[A],

and if |A| ≥ 2, then ρ induces a map of degree ±1 between the fibers of π and π′.

Proof. Theorem 5.3.2 states that canonical projections are oriented SA bun-
dles, and hence so are πV1 and π2. Therefore q1 is also an oriented SA bundle as the
pullback of π2 along π1 [19, Proposition 8.4]. When |V1| ≥ 2, the fiber πV1

−1(x) of
πV1 over any x ∈ C[V1] is a compact manifold whose interior can be identified with
the space of injections

Inj(I2,R
N \ V1) = {y : I2 →֒ RN \ V1}

where V1 is seen as a fixed subset in RN . From the pullback (5.13) the fiber of q1
is the same as the fiber of π2 whose interior can similarly be identified with

Inj(I2,R
N \A).

Thus ρ maps the interior of the fiber πV1
−1(x) homeomorphically to a dense subset

of the fiber q1
−1(x), and hence induces a degree ±1 map between the fibers of πV1

and q1.

The proof of the second part of the lemma is similar. �

5.6. Pullback of a canonical projection along an operad structure map

In Chapter 9 we will define the Kontsevich configuration space integral I along the
lines of (1.8) in the Introduction, and will want to prove that it is a morphism of
(almost) cooperads. Since this integral is defined using pushforward along a canon-
ical projection, we need to investigate the pullback of a canonical projection along
an operad structure map, as in Diagram (5.15) below. This is the aim of this sec-
tion. The main results are Proposition 5.6.2 (complemented by Proposition 5.6.6)
and Proposition 5.6.5. This section is technical and is only needed in Section
9.5, except for the notion of condensation in Definition 5.6.1, which, as mentioned
before, is needed to define the cooperad stucture on the space of diagrams.
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Throughout this section we fix a weak ordered partition ν : A→ P and set

P ∗ = {0}< P, Ap = ν−1(p), and A0 = P

as in the setting 2.4.1. We also have an associated operad structure map

Φν : C[P ]×
∏

p∈P

C[Ap] =
∏

p∈P∗

C[Ap] −→ C[A]

from (5.9). We also fix a linearly ordered finite set I disjoint from A and P and set
V = A ∪ I. Thus we can consider the canonical projection

π : C[V ] −→ C[A]

associated to A ⊂ V as in (5.10). The elements of I := V \A will be called internal
vertices, the elements of A external vertices, and the elements of V vertices. As
the case |A| ≤ 1 is somewhat degenerate and has to be treated separately, we will
always in this section assume that |A| ≥ 2.

Define C[V, ν] as the pullback

(5.15) C[V, ν]
Φ′

ν //

π′
ν

��
pullback

C[V ]

π

��∏
p∈P∗

C[Ap]
Φν

// C[A],

where π is the canonical projection (5.10) and Φν is the operad structure map (5.9).

The main goal of this section is to show that this pullback decomposes as a union

(5.16) C[V, ν] =
⋃

λ

C[V, λ]

(Proposition 5.6.2) such that the restrictions Φ′
λ := Φ′

ν |C[V, λ] are closely related to
some operad structure maps Φ′

λ (Proposition 5.6.5). Moreover (5.16) is “almost” a
partition, in the sense that the intersections C[V, λ]∩C[V, µ] are of lower dimension
for λ 6= µ (Proposition 5.6.6).

Let us first give a rough idea of how we will show this. To make it easier, let us
temporarily make an additional assumption that ν is non-degenerate (that is, each
Ap is non-empty) and that P contains at least two elements. In that case, the map
Φν is the inclusion of some part of the boundary of C[A]. More precisely, im(Φν)
consists of all configurations x ∈ C[A] such that, for a, b, c ∈ A, if ν(a) = ν(b) 6= ν(c)
then x(a) ≃ x(b) relx(c). We will say that such a configuration x ∈ C[A] is ν-
condensed. In other words, a configuration x ∈ im(Φν) can be thought of as a
family indexed by p ∈ P of clusters of points, where the p-th cluster consist of
points x(a) indexed by a ∈ Ap = ν−1(p). For example, the configuration x ∈ C[6]
from Figure 5.2 in Section 5.2 is ν-condensed for the partition ν given at beginning
of Example 5.2.1.

As Φν is an inclusion (because of our extra assumption), the pullback C[V, ν] is
the subset of C[V ] consisting of all configurations y ∈ C[V ] such that x := π(y) is
ν-condensed. Consider such a y ∈ C[V, ν]. One can then look at the position of the
points y(i), for i ∈ I, with respect to the various clusters of points {x(a) : a ∈ Ap},
for p ∈ P . Such a point y(i) could be inside or infinitesimally close to some cluster
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indexed by p ∈ P , in which case we say that, for this configuration, i is p-local ;
or y(i) could be close to none of the clusters in which case we say that i is global.
These cases can be encoded by a function

λ : I −→ P ∗

with λ(i) = p if i is p-local, and λ(i) = 0 if i is global. It is natural to extend λ
to V by letting λ|A = ν. Such a map λ : V → P ∗ will be called a condensation
(Definition 5.6.1 below), and there is a natural partition of C[V, ν] as a union of the
subspaces C[V, λ] consisting of λ-condensed configurations y. Moreover, under our
extra assumption, each C[V, λ] is homeomorphic to the product

∏
p∈P∗ C[Vp] where

V0 = λ−1(0)∪P and Vp = λ−1(p) for p ∈ P , and through this homeomorphism the
restriction Φ′

ν |C[V, λ] is an operad structure map.

The precise description of the decomposition of C[V, ν] is a bit more delicate when
the weak partition ν is degenerate, that is, when our extra assumption does not
hold. We now proceed with the details and first define the notion of a condensation.

Definition 5.6.1. Let A be a finite set, ν : A→ P be a weak ordered partition, I
be a finite linearly ordered set disjoint from A, P ∗ := {0}<P , and V := A∐ I. Set
Ap = ν−1(p) for p ∈ P and A0 = P . Elements of V are called vertices as above.

• A condensation of V relative to ν is a map

λ : V −→ P ∗

such that λ|A = ν.
• The set of all such condensations λ is denoted by Cond(V, ν), or simply
Cond(V ) when ν is understood.
• Given a condensation λ ∈ Cond(V ), a vertex v ∈ V is p-local if λ(v) = p
for some p ∈ P , and it is global if λ(v) = 0.
• A configuration y ∈ C[V ] is λ-condensed if for each u, v, w ∈ V and
p ∈ P such that u and v are p-local and w is not p-local we have y(u) ≃
y(v) rel y(w).
• A condensation λ ∈ Cond(V, ν) is essential if for each p ∈ λ(I) we
have that |Ap| ≥ 2. We denote the set of essential condensations by
EssCond(V, ν), or simply EssCond(V ) when ν is understood.

The terminology condensation comes from the idea that a λ-condensed configura-
tion x ∈ C[V ] consists of clusters of points condensed together according of the
values of λ on their vertices.

It is easy to convince oneself that a configuration y ∈ C[V ] is λ-condensed if and

only if it is in the image of an operad structure map Φλ̂, where λ̂ is some weak

partition of V constructed from λ (see (5.22) and (5.23) below for definitions of λ̂
and Φλ̂).

A condensation is essential if there are no internal p-vertices when |Ap| ≤ 1, p ∈ P ,
and no global (internal) vertices when |P | ≤ 1. We will see latter that non-essential
condensations are in some sense negligible. For example they are not needed in the
decomposition of C[V, ν] in Proposition 5.6.2 below and their contribution to the
Kontsevich configuration space integral is zero as we will see in Lemma 9.5.3.
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For λ a condensation of V relative to ν, set

(5.17) C[V, λ] := {g ∈ C[V, ν] : Φ′
ν(g) is λ-condensed}

where C[V, ν] and Φ′
ν are from (5.15).

Recall that in this section we assume |A| ≥ 2. Our first important result is the
following decomposition of the pullback C[V, ν].

Proposition 5.6.2. For |A| ≥ 2, there is a decomposition

C[V, ν] =
⋃

λ∈EssCond(V,ν)

C[V, λ]

where λ runs over all essential condensations relative to ν.

Proof. Recall the pullback C[V, ν] of diagram (5.15) and let

g = (y, (xp)p∈P∗) ∈ C[V, ν]

with y ∈ C[V ], xp ∈ C[Ap], and π(y) = Φν ((xp)p∈P∗). We need to construct an
essential condensation λ such that g ∈ C[V, λ]. For i ∈ I and p ∈ P we say that i
is p-local for g if

(i) |Ap| ≥ 2, and
(ii) ∀a, b ∈ A : (ν(a) = p and ν(b) 6= p) =⇒ (y(a) ≃ y(i) rel y(b)).

If i is p-local, then it cannot be q-local for q 6= p because otherwise there would
exist a ∈ Ap and b ∈ Aq (since |Ap|, |Aq| ≥ 2), with both y(a) ≃ y(i) rel y(b) and
y(b) ≃ y(i) rel y(a), which is impossible.

Define a condensation λ : V → P ∗ by

λ(v) =





ν(v), if v ∈ A;

p, if v ∈ I and v is p-local for g, for some p ∈ P ;

0, if v ∈ I and there is no p ∈ P for which v is p-local for g.

Let us show that λ is essential. If p ∈ λ(I) ∩ P then |Ap| ≥ 2 by condition (i).
If 0 ∈ λ(I) then |P | ≥ 2 because otherwise P is a singleton {p1} (as P cannot be
empty since |A| ≥ 2), in which case every i ∈ I is p1-local (except if |Ap1 | < 2
which is again impossible since we assume in this section that |A| ≥ 2). Therefore
λ is an essential condensation relative to ν.

We now show that g ∈ C[V, λ]. Let u, v, w ∈ V such that λ(u) = λ(v) = p 6= 0 and
λ(w) 6= p. We need to show that

(5.18) y(u) ≃ y(v) rel y(w).

If |Ap| ≤ 1 then u, v ∈ Ap since no internal vertex can be p-local due to (i). Hence
u = v and (5.18) is obvious. Suppose now that |Ap| ≥ 2. As λ(w) 6= p, there are
two cases:

(A) w ∈ Aq for some q 6= p, or
(B) w ∈ I and there exists a ∈ Ap and b ∈ Aq for some q 6= p such that

y(a) 6≃ y(w) rel y(b).
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In case (A) we can pick a ∈ Ap and, whether u ∈ I or u ∈ Ap, we have y(a) ≃
y(u) rel y(w). Similarly y(a) ≃ y(v) rel y(w). By transitivity we get (5.18).

In case (B) we have y(a) 6≃ y(w) rel y(b). Since y(a) ≃ y(u) rel y(b) we deduce that
y(a) ≃ y(u) rel y(w). Similarly y(a) ≃ y(v) rel y(w). Again by transitivity we get
(5.18). �

The various C[V, λ] that appear in the union of the previous proposition are not
necessarily pairwise disjoint. However, their intersection is of positive codimension
as we will see in Proposition 5.6.6. We have assumed in this section that |A| ≥ 2;
when |A| < 2 it is possible that there are no essential condensations at all, in which
case the decomposition from the last proposition cannot hold.

Let λ : V → P ∗ = P ∪ {0} be an essential condensation. Our next goal is to show
that the restriction of Φ′

ν : C[V, ν]→ C[V ] to C[V, λ] is closely related to a map

Φ′
λ :

∏

p∈P∗

C[Vp] −→ C[V ],

where Vp = λ−1(p) for p ∈ P , V0 = λ−1(0) ∪ P , and the map Φ′
λ can be identified

with an explicit operad structure map Φλ̂. Here λ̂ is some refined partition of λ.
In short, this amounts to saying that λ-condensed configurations are exactly the
image of a certain operad structure map. This is the content of Proposition 5.6.5.

To prove this, we will need to construct various maps that are collected in the
following diagram for reader’s convenience, along with numbers of equations where
they can be found. The two identifications are due to the fact that

∏
i∈I0

C[{i}] is
a one-point space.

C[V0]×
∏

i∈I0

C[{i}]×
∏
p∈P

C[Vp]

id

proj //GF

@A BC
Φ

λ̂

(5.23)

OO

C[V +
0 ]×

∏
i∈I0

C[{i}] ×
∏

p∈P+

C[Vp]

id

ED

BC
Φ

λ+

operad map
oo

C[V0]×
∏
p∈P

C[Vp]
ρ0×id

(5.21)
//

(5.31)πλ

##

(5.31)ρλ

��
Φ′

λ

(5.24)

&&▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

▲▲
▲▲

Csing[V +
0 , P ]×

∏
p∈P

C[Vp]

∼= (Lm. 5.6.3)

Φ′′
λ

tt✐✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐✐✐
✐✐✐

✐

C[V, λ]

(5.31)π′
λ

��

(5.17)

ww

C[V +
0 ]×

∏

p∈P+

C[Vp]

Φ′
λ+ (5.25)

��
C[V, ν]

Φ′
ν

//

π′
ν

��
pullback (5.15)

C[V ]

π

��∏
p∈P∗

C[Ap]
Φν

// C[A]



5.6. PULLBACK OF A CANONICAL PROJECTION 39

First we show that C[V, λ] is homeomorphic to the product of configuration spaces

C[Vp], p ∈ P , and another, maybe singular, configuration space Csing[V +
0 , P ]. Let

us construct the Vp’s. Recall that Ap = ν−1(p) = A ∩ λ−1(p) for p ∈ P , A0 = P ,
and V = A∐ I. For p ∈ P ∗, set

(5.19) Ip = I ∩ λ−1(p) and Vp = Ap ∪ Ip,

so Vp = λ−1(p) for p ∈ P , and V0 = λ−1(0) ∪ P . The linear order of I restricts to
linear orders on Ip for p ∈ P ∗. Moreover we order V0 as (remember that A0 = P )

V0 = I0 < P.

Also define the subsets

P+ := {p ∈ P : Ap 6= ∅} ⊂ P

and

V +
0 := I0 ∪ P+ ⊂ V0.

Hence we have a pushout of sets V0 = V +
0 ∪P+ P . Consider the following pullback

(5.20) Csing[V +
0 , P ]

q
V

+
0 //

qP

��
pullback

C[V +
0 ]

π+

��
C[P ]

π′+

// C[P+],

where π+ and π′+ are the canonical projections. This defines a singular configura-
tion space as in Section 5.5. When ν is non-degenerate then P+ = P , V +

0 = V0, and

Csing[V +
0 , P ] is just the configuration space C[V0]. In any case we have an induced

map, as in (5.14),

(5.21) ρ0 : C[V0] −→ Csing[V +
0 , P ],

which, by Lemma 5.5.2, induces a degree ±1 map between the fibers.

Define the weak ordered partition

λ̂ : V −→ V0(5.22)

v 7−→ λ̂(v) =

{
v, if λ(v) = 0;

λ(v), otherwise.

There is an associated operad structure map

(5.23) Φλ̂ : C[V0]×


∏

i∈I0

C[{i}]×
∏

p∈P

C[Vp]


 −→ C[V ].

Since C[{i}] are one-point spaces, the domain of Φλ̂ is homeomorphic to
∏

p∈P∗ C[Vp]

(through the obvious projection), and the composition of this homeomorphism with
Φλ̂ gives a map

(5.24) Φ′
λ :

∏

p∈P∗

C[Vp] −→ C[V ].

We next show that Φ′
λ factors through the composition of Φ′

ν |C[V, λ] with a home-

omorphism Φ′′
λ between Csing[V +

0 , P ]×∏p∈P C[Vp] and C[V, λ].
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By definition P+ = im(ν) and, since λ is essential, im(λ) ⊂ P+∪{0}. Therefore the
weak partition λ̂ factors as the composition of an ordered non-degenerate partition

λ+ : V −→ V +
0

and the inclusion V +
0 →֒ V0.

For p ∈ P \ P+ we have Ap = ∅, and hence Vp = ∅ because λ is essential, and so
C[Vp] = ∗. Also C[{i}] = ∗ for i ∈ I0. Thus the projections induce a homeomor-
phism

C[V +
0 ]×

∏

p∈P

C[Vp] ∼= C[V +
0 ]×

∏

i∈I0

C[{i}]×
∏

p∈P+

C[Vp].

The composition of this homeomorphism with the operad structure map Φλ+ is a
map

(5.25) Φ′
λ+ : C[V +

0 ]×
∏

p∈P

C[Vp] −→ C[V ].

Recall qV +
0

and qP from (5.20), let

πp : C[Vp]→ C[Ap]

be the canonical projections, and consider the two maps

Φ′
λ+ ◦ (qV +

0
× id) : Csing[V +

0 , P ]×
∏

p∈P

C[Vp] −→ C[V ]

and

qP × (×p∈Pπp) : Csing[V +
0 , P ]×

∏

p∈P

C[Vp] −→ C[P ]×
∏

p∈P

C[Ap] =
∏

p∈P∗

C[Ap].

They induce a map

(5.26) Φ′′
λ : Csing[V +

0 , P ]×
∏

p∈P

C[Vp] −→ C[V, ν]

into the pullback (5.15).

Lemma 5.6.3. Φ′′
λ of (5.26) is a homeomorphism onto C[V, λ] ⊂ C[V, ν].

Proof. Since the domain of Φ′′
λ is compact, it is enough to prove that Φ′′

λ is
injective and that its image is C[V, λ]. This is in fact not hard to see using the
pictorial interpretations of virtual configurations. Here is a more formal proof.

For injectivity, let

z = (z0, (zp)p∈P ) and z′ = (z′0, (z
′
p)p∈P ) ∈ Csing[V +

0 , P ]×
∏

p∈P

C[Vp]

be such that Φ′′
λ(z) = Φ′′

λ(z
′). Since π′

ν ◦ Φ′′
λ = qP ×

(
×

p∈P
πp

)
, we get that

(5.27) qP (z0) = qP (z
′
0).

As λ+ is a non-degenerate partition, by Corollary 5.3.4 Φ′
λ+ is injective. Since

Φ′
ν ◦ Φ′′

λ = Φ′
λ+ ◦ (qV +

0
× id), we deduce that

(5.28) (qV +
0
(z0), (zp)p∈P ) = (qV +

0
(z′0), (z

′
p)p∈P ).

From (5.27) and (5.28) we deduce that z = z′ using the pullback diagram (5.20).
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The image of Φλ̂ consists of λ-condensed configurations, and hence im(Φ′′
λ) ⊂

C[V, λ]. Let us prove surjectivity. Let

g = (y, (xp)p∈P∗) ∈ C[V, λ].

As y ∈ C[V ] is λ-local it belongs in the image of Φ′
λ. Since

Φ′
λ = Φ′

λ+ ◦ (qV +
0
× id) ◦ (ρ0 × id),

we can set

y = Φ′
λ+(z

+
0 , (zp)p∈P ) for some (z+0 , (zp)p∈P ) ∈ C[V +

0 ]×
∏

p∈P

C[Vp].

Since π(y) = Φν((xp)p∈P∗), using π+ and π′+ from (5.20), we deduce that π+(z+0 ) =
π′+(x0) (this can be seen for example by factoring ν through a non-degenerate

partition ν+ : A→ P+ and using Corollary 5.3.4). Set z0 = (z+0 , x0) ∈ Csing[V +
0 , P ].

Then g = Φ′′
λ(z0, (zp)p∈P ). �

Define the product of canonical projections

(5.29) πλ := ×p∈P∗πp :
∏

p∈P∗

C[Vp] −→
∏

p∈P∗

C[Ap]

and the restriction

(5.30) π′
λ := (π′

ν |C[V, λ]) : C[V, λ] −→
∏

p∈P∗

C[Ap]

where π′
ν is from (5.15). Define also

ρλ := Φ′′
λ ◦ (ρ0 × id) :

∏

p∈P∗

C[Vp] −→ C[V, λ].

So we get the following commutative diagram we are aiming for

(5.31)
∏

p∈P∗ C[Vp]
ρλ //

πλ
''PP

PP
PP

PP
PP

PP
C[V, λ]

π′
λxxqqq

qq
qq
qq
qq

∏
p∈P∗ C[Ap].

Lemma 5.6.4. πλ and π′
λ are orientable SA bundles with fibers of dimension N · |I|.

Proof. For πλ, this is a direct consequence of Theorem 5.3.2 since πλ is a
product of canonical projections. Since λ is essential, |Ap| ≥ 2 or Ip = ∅ for each
p ∈ P ∗, which yields the formula for the dimension of the fiber.

For π′
λ, the result comes from the homeomorphism Φ′′

λ (Lemma 5.6.3) through
which π′

λ can be identified with qP × ×
p∈P

πp, and from the fact that qP is also an

oriented SA bundle as it is the pullback of the canonical projection π+ along π′+

in Diagram (5.20). �

We fix the orientations of the fibers of πλ and π′
λ as follows. For the fibers of πλ,

we orient them as the product, in the linear order of P ∗, of the fibers of πp oriented
as in Theorem 5.3.2 with respect to the linear order of Ip restricted from that of I.
For the fibers of π′

λ, they are connected codimension 0 submanifolds of the fibers
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of π′
ν , which are canonically identified with the fibers of π because of the pullback

(5.15). We orient then the fibers of π′
λ by the orientation of the fibers of π defined

in Theorem 5.3.2 from the given linear order on I.

We will see that ρλ in (5.31) induces a change of orientation of the fibers according
to the sign

(5.32) σ(I, λ) := (−1)N ·|S(I,λ)|

where

(5.33) S(I, λ) := {(v, w) ∈ I × I : v < w and λ(v) > λ(w)}.

Recall the fundamental class of the fiber of an oriented SA bundle as in (4.7). The
second main result of this section can then be summarized in the following

Proposition 5.6.5. Let λ ∈ EssCond(V, ν) be an essential condensation relative
to ν and consider Diagram (5.31) above.

(i) πλ and π′
λ are oriented SA bundles with fibers of dimension N · |I|.

(ii) ρλ induces a map of degree σ(I, λ) = ±1 between the fibers. More pre-
cisely, for x ∈∏p∈P∗ C[Ap],

ρλ∗(Jπ
−1
λ (x)K) = σ(I, λ) · Jπ′

λ
−1

(x)K

in C∗(π
−1
λ (x)), where σ(I, λ) = ±1 is defined in (5.32)-(5.33).

(iii) The composition Φ′
ν ◦ ρλ is the map

(5.34) Φ′
λ :

∏

p∈P∗

C[Vp] −→ C[V ]

of (5.24) which can be identified with the operad structure map Φλ̂ of
(5.23).

Proof. (i) is Lemma 5.6.4 with the orientations given right after it.

For (ii), remember that ρλ = Φ′′
λ ◦ (ρ0 × id) where Φ′′

λ is a homeomorphism by
Lemma 5.6.3. When |P | ≥ 2, Lemma 5.5.2 implies that ρ0 induces a map of degree
±1 between the fibers over C[P ], and when |P | ≤ 1, using that λ is essential, ρ0 is
the identity map. Hence in both cases ρλ induces a map of degree ±1 between the
fibers over

∏
p∈P∗

C[Ap]. We have fixed the orientations so that the fibers of πλ are

oriented according to the linear order of <p∈P∗Ip and the fibers of π′
λ are oriented

according to the linear order of I. The number of transpositions needed to reorder
<p∈P∗Ip as I is exactly the cardinality of S(I, λ). So the sign of the degree of ρλ
on the fibers is a consequence of the change of orientation rule in Theorem 5.3.2.

For (iii), the equation Φ′
ν ◦ ρλ = Φ′

λ follows from the construction of ρλ and Φ′
λ.

The identification of that map with the operad structure map Φλ̂ is through the
canonical homeomorphism

C[V0]×


∏

i∈I0

C[{i}]×
∏

p∈P

C[Vp]


 ∼=−→

∏

p∈P∗

C[Vp]

induced by the projection (see (5.23) and (5.24)). �
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Recall from Proposition 5.6.2 the decomposition

C[V, ν] =
⋃

λ∈EssCond(V,ν)

C[V, λ].

We just proved that the fibers π′−1
λ (x) of each

π′
λ : C[V, λ]→

∏

p∈P∗

C[Ap]

are of dimension N · |I|. Our next proposition can then be interpreted as saying
that the pairwise intersections of the terms in this union are of codimension ≥ 1.
In other words, the above union is a partition of C[V, ν] “up to codimension 1”.

Proposition 5.6.6. If λ 6= µ in EssCond(V, ν), then for each x ∈ ∏p∈P∗ C[Ap],

dim
(
π′−1
λ (x) ∩ π′−1

µ (x)
)
< N · |I|.

Proof. Let x ∈ ∏p∈P∗ C[Ap] and pick v ∈ I such that λ(v) 6= µ(v). For

concreteness suppose that λ(v) = k where k = max(P ). Set Vp = V ∩ λ−1(p), for
p ∈ P , and V0 = λ−1(0) ∪ P . Hence v ∈ Vk.

If (y, x) ∈ C[V, λ] ∩C[V, µ] then, as y ∈ C[V ] is λ-local,

(5.35) ∀a ∈ Ak, ∀b ∈ Ap with p 6= k : y(a) ≃ y(v) rel y(b)

and, as y is also µ-local,

(5.36) ∀a, a′ ∈ Ak : y(a) ≃ y(a′) rel y(v).

Consider the following diagram in which π′′ and πv are products of canonical pro-
jections, Φ2 : C[2]×C[Ak]×C[{v}]→ C[Ak ∪{v}] is an operad structure map, and
the upper left square is a pullback:

E
ĵ //

π̂′′

��
pullback

∏
p∈P∗ C[Vp]

ρλ //

π′′

��

C[V, λ]

π′
λ

ss

∏
p<k C[Ap]× (C[2]×C[Ak]× C[{v}])

�

� j:=id×Φ2 // ∏
p<k C[Ap]×C[Ak ∪ {v}]

πv

��∏
p∈P∗ C[Ap].

The proximity relations (5.35) and (5.36) imply that

C[V, λ] ∩ C[V, µ] ⊂ im(ρλ ◦ ĵ).
Therefore

dim
(
π′−1
λ (x) ∩ π′−1

µ (x)
)

= dim(fiber(π′
λ) ∩ C[V, µ])

≤ dim(fiber(πv ◦ π′′) ∩ ĵ(E))

= dim(fiber(πv ◦ j ◦ π̂′′))

= dim(fiber(πv ◦ j)) + dim(fiber(π̂′′))

= dim(C[2]) + dim(fiber(π′′))

= (N − 1) +N · (|I| − 1) < N · |I|.
�
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5.7. Decomposition of the fiberwise boundary along a canonical

projection

We turn now to a fiberwise version of the decomposition of the boundary, extending
the results of Section 5.4. These results will be needed in Section 9.4 to prove that
the Kontsevich configuration spaces integral I is a chain map.

Let A ⊂ V and consider the canonical projection

π : C[V ] −→ C[A]

which is a bundle whose fibers are oriented compact manifolds by Theorem 5.3.2
(which we will prove in Section 5.9). Ŗecall from (4.8) and [19, Definition 8.1] the
fiberwise boundary of an oriented SA bundle. The fiberwise boundary of π is

(5.37) C∂ [V ] :=
⋃

x∈C[A]

∂(π−1(x))

which is a closed subspace of C[V ]. This space is not the same as

∂ C[V ] or
⋃

x∈C[A]

π−1(x) ∩ ∂ C[V ]

(see the example of [0, 1]× [0, 1]→ [0, 1] right after (4.8)).

We also consider the restriction map

π∂ := (π|C∂ [V ]) : C∂ [V ] −→ C[A].

Recall from (5.12) in Section 5.4 the set BF(V ) indexing the faces of ∂ C[V ] and
define

(5.38) BF(V,A) = {W ∈ BF(V ) : A ⊂W or |W ∩ A| ≤ 1}.
The following is a fiberwise version of Proposition 5.4.1.

Proposition 5.7.1. There is a decomposition

C∂ [V ] =
⋃

W∈BF(V,A)

im(ΦW )

where ΦW are the maps defined in (5.11) of Section 5.4.

Proof. Recall that C(A) is the interior of the compact manifold C[A], that is

C(A) = C[A] \ ∂ C[A].

Then

C∂ [V ] ∩ π−1(C(A)) = (∂ C[V ]) ∩ π−1(C(A)).

Since C∂ [V ] is a bundle over C[A] and C[A] = C(A), we get that

C∂ [V ] = C∂ [V ] ∩ π−1(C(A)) = (∂ C[V ]) ∩ π−1(C(A))

where by E we mean the topological closure of the subspace E.

For W ∈ BF(V ), if A 6⊂ W and |W ∩ A| ≥ 2, then π(imΦW ) ⊂ ∂ C[A] because
W ∩ A ∈ BF(A) and π(imΦW ) is in the image of

ΦA
W∩A : C[A/(W ∩ A)]× C[W ∩A] −→ C[A].
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Therefore, using Proposition 5.4.1(i),

C∂ [V ] = ∂ C[V ] ∩ π−1(C(A))

= ∪W∈BF(V ) im(ΦW ) ∩ π−1(C(A))

= ∪W∈BF(V,A)im(ΦW ) ∩ π−1(C(A))

= ∪W∈BF(V,A) im(ΦW ).

�

5.8. Orientation of C[A]

In this section, we fix an orientation on C[A]. This will be important since we will
integrate over this manifold. The orientation will be canonical when N is even and
will depend on a linear order on A when N is odd. We will also fix an orientation
on the sphere SN−1.

We first review a few classical facts and fix our conventions about orientation:

• A codimension 0 submanifold of an oriented manifold inherits that orien-
tation;
• Conversely, the orientation of a connected manifold is determined by the
orientation of any non-empty codimension 0 connected submanifold;
• The product M1 × M2 of two oriented manifolds has a canonical ori-
entation. Exchanging the factors preserves or reverses that orientation
according to the sign

(−1)dim(M1)·dim(M2);

• R, and hence RN = R×· · ·×R, is equipped with the standard orientation;
• When M is an oriented smooth manifold and ω is a smooth differential
form with compact support of maximal degree on M , one can consider
the integral

ˆ

M

ω ∈ R;

• The orientation of a non-empty connected smooth manifold M corre-
sponds to an equivalence class of a smooth differential form α of maxi-
mal degree with connected non-empty bounded non-vanishing set, so that
´

M
α > 0;

• We orient the boundary of a manifold so that the Stokes’ formula holds
without a sign, that is,

ˆ

∂M

ω =

ˆ

M

dω

for a smooth differential form ω with compact support and of maximal
degree on the smooth oriented manifold M .

When |A| ≤ 1 then C[A] is a one-point space and we choose the positive orientation
on it. Suppose now that |A| ≥ 2 and suppose given a linear order on A. We then
have a natural orientation on the codimension 0 submanifold

Inj(A,RN ) ⊂
∏

a∈A

RN
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defined in (5.1), where the product is taken in the linear order of A. A transposition
in the linear order of A changes this orientation by a sign (−1)N .

Set

Inj0(A,R
N ) =

{
x ∈ Inj(A,RN ) : barycenter(x) = 0

}
.

This is a manifold without boundary. We have a diffeomorphism

Inj0(A,R
N )× RN ∼=−→ Inj(A,RN )

(x, b) 7−→ x+ b

defined by (x + b)(a) := x(a) + b, for a ∈ A. We fix the unique orientation on
Inj0(A,R

N ) for which the above diffeomorphism preserves the orientation. Consider
the codimension 0 submanifold

Inj≤1
0 (A,RN ) :=

{
x ∈ Inj0(A,R

N ) : radius(x) ≤ 1
}
⊂ Inj0(A,R

N )

with the induced orientation. This is a manifold with boundary and its boundary
inherits the orientation.

Identifying C(A) with Inj10(A,R
N ) from (5.5), we have

C(A) = ∂ Inj≤1
0 (A,RN )

and this defines our prefered orientation on C(A), and hence on C[A].

We orient the sphere SN−1 so that the map

θa,b : C([{a, b}]) ∼=−→ SN−1

from (5.6) is orientation-preserving when the set {a, b} is ordered by a < b.

Consider a permutation σ ∈ Perm(A) of the set A. It induces an obvious automor-
phism C[σ] of the manifold C[A]. We then have

Proposition 5.8.1. For a permutation σ of A, the induced homeomorphism

C[σ] : C[A] −→ C[A]

is orientation-preserving or orientation-reversing according to the sign

(sign(σ))N

where sign(σ) = ±1 is the signature of the permutation σ.

5.9. Proof of the local triviality of the canonical projections

The only aim of this long section is to prove Theorem 5.3.2, which asserts that the
canonical projection

π : C[V = A ∐ I] −→ C[A]

is a semi-algebraic oriented fiber bundle with fibers of prescribed dimension. These
fibers should be thought of as a compactification of the configuration space of |I|
points in RN with |A| points removed. In particular, when I is a singleton, the fiber
of π is homeomorphic to a closed ball DN with |A| disjoint open balls removed.

That the projection C(V )→ C(A) is a bundle is a classical result due to Fadell and
Neuwirth [11]. The proof for the compactified version is more technical because
of the existence of a boundary. Note that, although the spaces C[V ] and C[A] are
smooth manifolds with corners, it is not true that π : C[V ] → C[A] is a always a
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smooth bundle since it is not necessarily a submersion as the following example
shows.

Example 5.9.1. We now show that π : C[4] → C[3] is not a smooth bundle. Fix
N = 1, that is, consider configurations of n points on the real line. In that dimen-
sion, C[n] consists of n! copies of the connected component Cincr[n] corresponding
to configurations (x1, . . . , xn) with x1 < · · · < xn. For the remainder of this ex-
ample we only consider this connected component but drop the superscript incr to
simplify notation.

The space C[n] is exactly the Stasheff associahedron Kn−2 [30]. In particular C[3]
is homeomorphic to the interval [0, 1] and C[4] is homeomorphic to a pentagon.
Label the 4 points of a configuration in C[4] by V = {a, b, c, d} and set A = {a, b, c}.
The five vertices of the pentagon are indexed by all possible way of parenthesiz-
ing the product abcd in the most refined way as (ab)(cd), (a(bc))d, etc. Each
parenthetisation encodes the proximity relations of the points of the configurations
(a, b, c, d) ∈ C[4], as shown in Figure 5.3.

ab(cd)

(ab)(cd)

a(b(cd))

(a(bc))d a((bc)d)

((ab)c)d
abcd

a(bc)d

a(bcd)

(ab)cd

(abc)d

Figure 5.3. Stasheff associahedron K2 depicting the structure of C[4].

Each of these five vertices corresponds to a point on the boundary of C[4]. For
example, the vertex a((bc)d) corresponds to the limit, as r → 0+, of the configura-
tions

(0, 1− r − r2, 1− r, 1) ∈ C(4).

Similarly C[3] is an interval whose endpoints are labeled as (ab)c and a(bc).

A smooth chart of the manifold with corners C[4] about the point a((bc)d) is given
by the unique continuous map

f : [0, 1)× [0, 1) −→ C[4]

whose restriction to (0, 1)× (0, 1) is defined by the map

(0, 1)× (0, 1) −→ C(4) ⊂ C[4]

(r, s) 7→ (0, 1− r, 1− r + rs, 1).

Also, there is a chart

g : (0, 1] −→ C[3]
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defined, for 0 < t < 1, by

g(t) = (0, t, 1) ∈ C(3) ⊂ C[3],

and extented continuously to (0, 1].

We then have the following commutative diagram of smooth maps between mani-
folds with corners

[0, 1)× [0, 1)
f //

p

��

C[4]

π

��
(0, 1]

g // C[3]

where

p(r, s) =
1− r

1− r + rs
.

The partial derivatives of p are

∂p

∂r
(r, s) =

s

(1 − r + rs)2

∂p

∂s
(r, s) =

−r(1− r)

(1 − r + rs)2
.

When r = 0 and s = 0, corresponding to the point f(0, 0) = a((bc)d), both these
partial derivatives are 0, showing that p is not a submersion at (0, 0). Hence π is
not a submersion at a((bc)d). Therefore π is not a smooth bundle.

We now come to the proof of Theorem 5.3.2. The composition of two oriented SA
bundles is again an oriented SA bundle [19, Proposition 8.5], and therefore it is
enough to prove that

π : C[n+ 1] −→ C[n]

is an oriented SA bundle. For n ≤ 1, this is trivial, so we assume that n ≥ 2. In
that case the fiber F of π will be homeomorphic to a disk DN with n disjoint open
disks removed.

We first give a rough idea of the proof in an example. Take n = 9 and consider
the virtual configuration x0 ∈ C[9] as in Figure 5.4 (see Example 5.2.1 for an
explanation of what such a figure represents). We need to build some neighborhood
V of x0 such that the restriction of π over V is equivalent to the projection V ×F →
V .

For this configuration we have proximity relations such as

x0(1) ≃ x0(2) relx0(4),

x0(1) ≃ x0(4) relx0(5),

etc.

All these relations are encoded in the rooted tree T of Figure 5.5.

To the virtual configuration x0 we associate a configuration of nested balls in RN

as in Figure 5.6, with one ball Bv for each vertex v ∈ {1, . . . , 9, a, b, c, root} of the
tree T , so that Bv ⊂ Bw iff w is below v in the tree and such that any two balls are
either disjoint or one is contained in the other. The centers of the balls labeled by
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21 3

4 987
5

6

Figure 5.4. A virtual configuration x0 ∈ C[9].

4

1

root

2

7 98

3

a

b c
5 6

Figure 5.5. The tree T associated to x0 ∈ C[9].

the leaves define a configuration x1 = (x1(1), . . . , x1(9)) ∈ C(9). We also assume
that each ball is centered at the barycenter of the centers of the balls immediately
contained in that one. For example, Bb is centered at the barycenter of the centers
of Ba and B4. Also, the largest ball Broot is centered at the origin.

Consider a self-map

φr : R
N −→ RN

parametrized by 0 < r ≤ 1 whose effect is to iteratively shrink each ball Bv by a
homothety of factor r and extend gradually up to the identity map outside of a
small neighborhood of the ball. For r = 1, φr is just the identity, but as r → 0, the
image of the configuration x1 under φr tends to the virtual configuration x0.

Now take a point z anywhere inside the outermost closed ball Broot but outside
of the innermost open balls Bi for 1 ≤ i ≤ 9. Let y1 = (x1, z) ∈ C(10) be the
configuration obtained by adjoining the point z to the configuration x1. Then the
image of y1 under lim

r→0
φr gives an element in the fiber π−1(x0) ⊂ C[10]. By choosing

the maps φr with care, we can ensure that the fiber π−1(x0) is covered by such z’s,
giving a homeomorphism F ∼= π−1(x0) where F is a closed ball with 9 small disjoint
open balls removed.

We want to prove the local triviality of π, so allow now the centers of the nested balls
to move a bit around their initial value while preserving the barycentric relations.
Moreover, bound the shrinking of each ball Bv below by some parameter τ(v) ∈
[0, 1], for v a vertex other than the root or a leaf i = 1, . . . , 9. Then applying φr

to the configuration of the centers of the balls labeled by the leaves and letting
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c

5

6

2

4

3

1

7

8

9

root

a

b

Figure 5.6. A configuration of nested balls associated to x0 ∈ C[9].

r → 0 describes a neighborhood V of x0 in C[9]. A parametrized (by V ) version
of the above construction will then give a trivialization V × F ∼= π−1(V ) of π over
V . This trivialization can be made semi-algebraic and this will prove that π is a
semi-algebraic bundle with an oriented compact generic fiber F .

We now proceed with the details of the proof of Theorem 5.3.2. Our goal is to build
a neighborhood V of x0 in C[n] and a diagram (Diagram (5.59))

W × [0, r1]
V∗

0 × F
Φ̂ //

proj

��

C[n+ 1]

π

��
W × [0, r1]

V∗
0

Φ
∼=

// V ⊂ C[n].

such that Φ is a semi-algebraic homeomorphism on V and Φ̂ is a semi-algebraic
homeomorphism on π−1(V ). Here F is the fiber which will be homeomorphic to a
unit disk DN with n open disjoint balls removed. For the domain W × [0, r1]

V∗
0 of

the chart Φ, W is a neighborhood in some products of configuration spaces, and
V∗
0 is the set of internal vertices of the tree T associated to x0.

5.9.1. A stratification of C[n].

We first review a classical stratification of the Fulton-MacPherson configuration
spaces indexed by trees (see also [7, appendix] and [28]).

Definition 5.9.2. A rooted tree T with labels in n = {1, . . . , n} is a tree (that is, an
isomorphism class of a simply connected 1-dimensional finite simplicial complex)
with one distinguished vertex called the root of valence ≥ 2 and such that none of
the other vertices is bivalent. The univalent vertices are called the leaves and are
in bijection with the set n.
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An example is given in Figure 5.5 for n = 9.

Denote by V the set of vertices of the tree T , including the root and the leaves.
The leaves are identified with the subset n ⊂ V . Set

V0 := V \ {root}, V∗ := V \ n, V∗
0 := V∗ ∩ V0.

Define a partial order on V by letting w ≤ v when the shortest path in the tree
joining v to the root contains w. We write w < v when w ≤ v and w 6= v. The
root is then the minimum of V . Two vertices v1, v2 are not comparable if neither
v1 ≤ v2 nor v2 ≤ v1. For a non-root vertex v we define its predecessor

pred(v) := max{w ∈ V : w < v}.
For a non-leaf vertex w we define its output set

output(w) := {v ∈ V : w = pred(v)}.
The height function

height: V −→ N

is defined inductively by height(root) = 0 and height(v) = height(pred(v))+1 when
v is not the root.

For example, in the tree of Figure 5.5 we have: b ≤ 1; pred(4) = b; output(root) =
{b, 5, 6, c}; b and 7 are not comparable; and height(a) = 2. For any w ∈ V∗,
| output(w)| ≥ 2.

For a rooted tree T with leaves labeled by n and set of vertices V , consider the
product of configuration spaces

CT :=
∏

w∈V∗

C(output(w)).

We now recall how CT can be identified, via a homeomorphism hT (see (5.40) be-
low), to a stratum in C[n].Let ξ = (ξw)w∈V∗ ∈ CT . Thus, identifying C(output(w))
with Inj10(output(w),R

N ) from (5.5), for w ∈ V∗ we have

ξw : output(w) →֒ RN ,

with

barycenter(ξw) = 0 and radius(ξw) = 1.

For v ∈ V0 we set

ξ(v) := ξpred(v)(v).

For r > 0 and v ∈ V , define
(5.39) x(ξ, r, v) :=

∑

w∈V0
w≤v

ξ(w) · rheight(w).

The latter formula is equivalent to the inductive definition
{

x(ξ, r, root) = 0

x(ξ, r, v) = x(ξ, r, pred(v)) + rheight(v)ξ(v).

For r > 0 small enough,

(x(ξ, r, i)1≤i≤n)
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determines a configuration in C(n). When r → 0 this configuration converges to a
virtual configuration in C[n] whose proximity relations are described by the tree T .
Define

(5.40) hT : CT −→ C[n]

by

hT (ξ) = lim
r→0+

(x(ξ, r, i))1≤i≤n) .

Then hT is a homeomorphism onto its image and the family of {im(hT )}, indexed
by all rooted trees T with labels in n, gives a stratification of C[n] [7, Appendix]
(see also [28, Sections 2 and 3]). The maximal stratum is C(n), which is the image
of hT0 where T0 is the tree for which all leaves are of height 1.

A comment about the notation in this section might be in order. Along the rest of
the proof, and as it has already appeared above, we will need to consider many con-
figurations in C(A) = Inj10(A,R

N ) or C[A], for some A ⊂ V . They will sometimes
come with various decorations and arguments, such as

(5.41) ξw, ξw0 , x(ξ, r), x0, x1, x(ξ, r), x(ξ, τ, r), x1 , y , y1 , y2, etc.

We will also consider the components of these configurations in RN , such as

(5.42) ξw(v), ξ(w), x(ξ, r, v), x(ξ, τ, r1, root), ξ0(i), x1(u), etc.

It might therefore sometimes be confusing whether the notation corresponds to a
configuration in C[A] or to one of its components in RN . As a rule of thumb, the
notation will correspond to a point in RN when the last argument is a vertex, that
is an element of V , like

v, w, i, root, 1, . . . , n, u, p, q, v1, v2, . . . ∈ V ,
as in (5.42). Otherwise it will be a configuration, as in (5.41). In particular, in ξw

the vertex w is a superscript and not an argument, and indeed ξw is a configuration
but ξ(v) is a point in RN .

5.9.2. The chart Φ about x0.

Let x0 ∈ C[n]. Our first goal is to build a neighborhood V of x0 over which π will
be trivial and a chart Φ of that neighborhood. We have

(5.43) x0 = hT (ξ0)

for some tree T and some ξ0 ∈ CT .

For a finite set A of at least two elements and for ζ ∈ Inj10(A,R
N ) = C(A) (see

(5.5)) define

δ(ζ) := min{‖ζ(a)− ζ(b)‖ : a, b ∈ A, a 6= b} ∈ (0, 2].

Set

(5.44) r1 :=
1

4
min{δ(ξw0 ) : w ∈ V∗},

which is a positive number and set

W := {ξ ∈ CT : ∀ v ∈ V0, ‖ξ(v)− ξ0(v)‖ ≤ rn+1
1 }

which is a compact neighborhood of ξ0 in CT .
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Consider now any function
τ : V∗

0 −→ [0, r1]

that we extend to V by τ(root) = 0 and τ(i) = 0 for 1 ≤ i ≤ n. Define for ξ ∈ W
and 0 ≤ r ≤ r1, by induction on the height of v ∈ V ,
(5.45){

x(ξ, τ, r, root) = 0
x(ξ, τ, r, v) = x(ξ, τ, r, pred(v)) + ξ(v) · ∏

root≤u<v

max(r, τ(u)) ∈ Rn

Note that x(ξ, τ, r, w) is the barycenter of the points x(ξ, τ, r, v) for v ∈ output(w).
Note also that when τ is bounded above by r then x(ξ, τ, r, v) = x(ξ, r, v) from
(5.39).

Finally define

Φ: W × [0, r1]
V∗

0 −→ C[n](5.46)

(ξ, τ) 7−→ lim
r→0+

(x(ξ, τ, r, i))1≤i≤n) .

Lemma 5.9.3. Φ is a semi-algebraic homeomorphism onto a compact neighborhood
of x0 in C[n].

(Statements similar to this one appear in [28], but without the semi-algebraic
condition.)

Proof. Let us first show that Φ is semi-algebraic. The map

ϕ : W × [0, r1]
V∗

0 × (0, r1] −→ C[n]× (0, r1]

(ξ, τ, r) 7−→ ((x(ξ, τ, r, i)1≤i≤n, r)

is semi-algebraic, and hence the graph of ϕ is a semi-algebraic set. This map can
be continuously extented to a function

ϕ : W × [0, r1]
V∗

0 × [0, r1] −→ C[n]× [0, r1]

whose restriction to r = 0 is the limit function Φ (after projection on the first fac-
tor). The graph of ϕ is also semi-algebraic as it is the closure of a semi-algebraic set.
Therefore ϕ, and hence Φ as well, is semi-algebraic. (This argument is analogous
to [6, Proposition 2.9.1].)

Next we prove the injectivity of Φ. Let y be in the image of Φ, that is

y = lim
r→0+

(x(ξ, τ, r, i))1≤i≤n) .

We want to show that we can uniquely determine ξ and τ from y. Define inductively,
for w ∈ V , y(w) as the (virtual) barycenter of the points y(v) for v ∈ output(w).
Then

ξw = (y(v) : v ∈ output(w))

and the function τ can be recovered by comparing the radii of the various sets
{y(v) : v ∈ output(w)}, w ∈ V∗. This proves the injectivity of Φ.

Since the domain of Φ is compact, Φ is a homemorphism onto its image and it is
clear that this image is a neighborhood of x0 = Φ(ξ0, 0). �

We denote this compact neighborhood of x0 in C[n] by

(5.47) V := Φ(W × [0, r1]
V∗

0 ).
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5.9.3. Shrinking balls to the limit configurations Φ(ξ, τ).

We now build a configuration of nested balls of centers x1(ξ, v) ∈ RN (for ξ ∈
W ⊂ CT and v a vertex in V) and of suitable radii ǫ(v), as well as semi-algebraic
self-maps φr of RN which will shrink these balls (φr will depend on r > 0, but also

on ξ ∈ W and τ ∈ [0, r1]
V∗

0 not appearing in the notation).

The important features are

(1) Applying the shrinking map φr to the configuration of centers of inner-
most balls (x1(ξ, i))1≤i≤n ∈ C(n) gives the configurations x(ξ, τ, r, i)1≤i≤n

which serves, as r→ 0, to define the chart Φ in (5.46) (Lemma 5.9.6).
(2) The complement of the innermost balls inside the outermost ball will serve

as the fiber of the projection π (this will appear in the next section and
will be based on the properties of Lemma 5.9.5 (2).)

We define first the centers x1(ξ, v) and the radii ǫ(v) of the balls that we will
consider. Suppose given ξ ∈ W and recall the map x defined in (5.39) and the
radius r1 > 0 from (5.44). For v ∈ V , we set

(5.48) x1(ξ, v) := x(ξ, r1, v)

and

ǫ(v) := 4 · rheight(v)+1
1 .

The balls B[x1(ξ, v) , ǫ(v)] satisfy the following nesting properties:

Lemma 5.9.4.

(1) If w < v in V then

B[x1(ξ, v), ǫ(v)] ⊂ B[x1(ξ, w), ǫ(w)/3].

(2) If v1 and v2 are not comparable in V then

B[x1(ξ, v1), ǫ(v1)] ∩ B[x1(ξ, v2), ǫ(v2)] = ∅.

Proof. To simplify notation, we set r = r1 in this proof. Note that r ≤ 1/2
because δ(ξw0 ) ≤ 2.

For w < v,

x1(ξ, v) = x1(ξ, w) +
∑

w<u≤v

ξ(u) · rheight(u).

Therefore

‖x1(ξ, v)− x1(ξ, w)‖ + ǫ(v) ≤
∑

w<u≤v

‖ξ(u)‖ · rheight(u) + 4 · rheight(v)+1

≤
(

sup
w<u≤v

‖ξ(u)‖
)
· r

height(w)+1

1− r
+ 4 · rheight(v)+1

≤ rheight(w)+1

(
1

1− r
+ 4 · r

)

≤ (4/3) · rheight(w)+1

= ǫ(w)/3.

This proves the first part of the lemma.



5.9. PROOF OF THE LOCAL TRIVIALITY OF THE CANONICAL PROJECTIONS 55

For the second part, suppose first that v1 and v2 have a common predecessor w.
Then

‖ξ(v2)− ξ(v1)‖ ≥ ‖ξ0(v2)− ξ0(v1)‖ − ‖ξ(v1)− ξ0(v1)‖ − ‖ξ(v2)− ξ0(v2)‖
≥ δ(ξw0 )− 2 · rn+1

≥ 4 · r − 2 · rn+1

> 2 · r.
Since height(v1) = height(v2) we get

‖x1(ξ, v1)− x1(ξ, v2)‖ = ‖ξ(v1)− ξ(v2)‖ · rheight(v1)

> 2 · r · rheight(v1)
= ǫ(v1) + ǫ(v2).

This implies the desired formula when v1 and v2 have a common predecessor.

For the general case, since v1 and v2 are not comparable, there exists w1 ≤
v1 and w2 ≤ v2 such that w1 and w2 have a common predecessor. Therefore
B[x1(ξ, w1), ǫ(w1)] ∩B[x1(ξ, w2), ǫ(w2)] = ∅. Combining this with the fact that, by
the first part of the proposition, B[x1(ξ, vi), ǫ(vi)] ⊂ B[x1(ξ, wi), ǫ(wi)], for i = 1, 2,
we deduce the desired formula. �

We next define a suitable morphism shrinking a given ball.

Lemma 5.9.5. There exists a continuous semi-algebraic map

φ : RN × [0, 1]× [0, 2]× RN −→ RN

(c, r, ǫ, x) 7→ φc,ǫ
r (x)

with the following properties:

(1) the map x 7→ φc,ǫ
r (x)

(a) is radial, centered at c;
(b) is the identity outside of the ball B(c, ǫ);
(c) restricts on B[c, ǫ/3] to a homothety of rate r;
(d) when r > 0, it is a self-homeomorphism of RN ;
(e) when r = 0, its restriction to RN \B[c, ǫ/2] is a homeomorphism onto

RN \ {c}, and φc,ǫ
0 (B[c, ǫ/2]) = {c};

(2) let r > 0 and let x(1), . . . , x(n) be n ≥ 2 distinct points in B[c, ǫ/3]; then
(a) (φc,ǫ

r (x(1)), . . . , φc,ǫ
r (x(n))) determines a configuration in C(n) which

does not depend on r; hence its limit as r→ 0+ determines the same
configuration;

(b) if z1, z2 are two distinct points in B(c, ǫ/2) and are different from the
x(p)’s for 1 ≤ p ≤ n, then

yi := lim
r→0+

(φc,ǫ
r (x(1)), . . . , φc,ǫ

r (x(n)), φc,ǫ
r (zi))

determines two different configurations y1 and y2 in C(n + 1) such
that yi(p) 6≃ yi(q) rel yi(n+ 1) for 1 ≤ p 6= q ≤ n and i = 1, 2;

(c) if z ∈ RN \ B(c, ǫ/2) then
y := lim

r→0+
(φc,ǫ

r (x(1)), . . . , φc,ǫ
r (x(n)), φc,ǫ

r (z))
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determines a configuration in C[n+1] such that y(p) ≃ y(q) rel y(n+
1) for 1 ≤ p, q ≤ n.

Proof. The proof consists of explicitly constructing the semi-algebraic func-
tion φ. Define first a semi-algebraic function

g : [0, 1]× R+ −→ [0, 1]

(r, u) 7−→ g(r, u)

by

g(r, u) =





r, if 0 ≤ u ≤ 1/3;
r

3−6u , if 1/3 ≤ u ≤ 1/2 and
√
r ≤ 3− 6u;√

r, if 1/3 ≤ u ≤ 1/2 and
√
r ≥ 3− 6u;

2
√
r(1− u) + 2u− 1, if 1/2 ≤ u ≤ 1;

1, if u ≥ 1.

In other words, the function g is determined by the picture in Figure 5.7 where the
curve inside the second rectangle is the parabola

√
r = 3− 6u.

1

+
2
√
r(1 − u)

2u− 1

r
3−6u

√
r

1r

r = 1

r = 0

0
u

1/3 1/2

Figure 5.7. Definition of the function (r, u) 7−→ g(r, u).

For c ∈ Rn, ǫ > 0, and r ≥ 0 define

φc,ǫ
r : RN −→ RN(5.49)

x 7−→ φc,ǫ
r (x) = c+ (x − c) · g

(
r ,
‖x− c‖

ǫ

)
.

Properties (1a-e) of x 7→ φc,ǫ
r (x) are then immediate.

(2a) follows from (1c).

(2b-c) are consequences of the following properties of g as r → 0:
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• For u < 1/2, the map

u 7→ lim
r→0

g(r, u)

r

is the constant 1 over [0, 1/3] and gives a semi-algebraic homeomorphism
between [1/3, 1/2) and [1,+∞).
• For u ≥ 1/2,

lim
r→0+

g(r, u)

r
= +∞

and the map

u 7→ lim
r→0

g(r, u)

is a homeomorphism between [1/2, 1] and [0, 1].

�

Fix ξ ∈ W and τ ∈ [0, r1]
V∗

0 . Recall that we extend τ to V by 0 on the root and
the leaves. For v ∈ V and 0 < r ≤ r1, set

φv
r := φ

x1(ξ,v),ǫ(v)
max(r,τ(v))/r1

.

Note that φv
r depends on ξ and τ even if this does not appear in the notation.

Then φv
r is a self-map of RN which is the identity outside of B[x1(ξ, v), ǫ(v)], and

shrinks the ball B[x1(ξ, v), ǫ(v)/3] by a homothety of rate max(r, τ(v))/r1. We will
compose all these maps φv

r for v ∈ V .
If v1, v2 ∈ V are two distinct vertices of the same height, then they are non compa-
rable and Lemmas 5.9.5 (1b) and 5.9.4 (2) imply that

(5.50) φv1
r ◦ φv2

r = φv2
r ◦ φv1

r .

Let hmax := max{height(v) : v ∈ V}. For h = 1, . . . , hmax we define

φ[h]
r := ◦

v∈V0, height(v)=h
φv
r

which is the composition of the maps φv
r for all vertices v of height h, the order of

composition being irrelevant because of (5.50). Finally we set

φr := φ[1]
r ◦ φ[2]

r ◦ · · · ◦ φ[hmax]
r

which is a self-map of RN which has the effect of iteratively shrinking all the balls
of center x1(ξ, v) starting with the innermost ones first.

Using φr, we can recover the x(ξ, τ, r, i), which appears in the chart Φ from (5.46),
as follows:

Lemma 5.9.6. For r > 0 and 1 ≤ i ≤ n, we have, in RN ,

φr(x1(ξ, i)) = x(ξ, τ, r, i).

Proof. Set, for w ∈ V ,

(5.51) xr(w) :=

{
φr(x1(ξ, w)), if w is a leaf;

barycenter(xr(v) : v ∈ output(w)), otherwise.
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Since x(ξ, τ, r, v) defined in (5.45) satisfies a barycentric relation analoguous to
(5.51), the idea of the proof is to compare, by induction on the height of v ∈ V ,

xr(v) and x(ξ, τ, r, v).

For the sake of the proof, define for h ≥ 1 and w ∈ V

φ≥[h]
r := φ[h]

r ◦ φ[h+1]
r ◦ · · · ◦ φ[hmax]

r

φ≤[h]
r := φ[1]

r ◦ φ[2]
r ◦ · · · ◦ φ[h]

r

x≥[h]
r (w) :=

{
φ
≥[h]
r (x1(ξ, w)), if w is a leaf;

barycenter(x
≥[h]
r (v) : v ∈ output(w)), otherwise.

In particular, φr = φ
≥[1]
r and xr(v) = x

≥[1]
r (v).

We begin by proving three claims on the relations between these self-maps and
configurations.

Claim 1: For w ∈ V∗, h = height(w), and v > w,

(5.52) x≥[h]
r (v) = φw

r

(
x≥[h+1]
r (v)

)
.

The claim is proved by induction on v > w. If v is a leaf then

x≥[h]
r (v) = φ[h]

r (x≥[h+1]
r (v)) = φw

r (x
≥[h+1]
r (v)).

Suppose that the claim has been proved when v is replaced by any u ∈ output(v)
in (5.52). Then

x≥[h]
r (v) = barycenter(x≥[h]

r (u) : u ∈ output(v))
induction

= barycenter(φw
r (x

≥[h+1]
r (u)) : u ∈ output(v)).(5.53)

Set

(5.54) Bw := B[x1(ξ, w), ǫ(w)/3].

By Lemma 5.9.5 (1c), the restriction φw
r |Bw is a homothety and hence commutes

with taking the barycenter. Since x
≥[h+1]
r (u) ∈ Bw for u > w, we deduce from

(5.53) that

x≥[h]
r (v) = barycenter(φw

r (x
≥[h+1]
r (u)) : u ∈ output(v))

= φw
r (barycenter(x

≥[h+1]
r (u) : u ∈ output(v)))

= φw
r (x

≥[h+1]
r (v)).

This proves Claim 1.

Claim 2: For v ∈ V ,

x≥[height(v)]
r (v) = x1(ξ, v).
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The proof of Claim 2 is by induction. The claim is clear when v is a leaf. Suppose
that the claim is true for all v ∈ output(w) and set h = height(w). Then

x≥[h]
r (w) = barycenter(x≥[h]

r (v) : v ∈ output(w))
Claim 1
= barycenter(φw

r (x
≥[h+1]
r (v)) : v ∈ output(w))

induction hyp.
= barycenter(φw

r (x1(ξ, v)) : v ∈ output(w))

φw
r |Bw homothety

= φw
r (barycenter(x1(ξ, v)) : v ∈ output(w))

= φw
r (x1(ξ, w))

= x1(ξ, w),

which proves Claim 2.

As a special case we have

(5.55) xr(root) = x1(ξ, root) = 0.

Claim 3: For v ∈ V0 and h = height(v),

xr(v) = φ≤[h−1]
r (x1(ξ, v)) = φ≤[h]

r (x1(ξ, v)).

Let w = pred(v). Then the restriction of φ
≤[h−1]
r to Bw is a composition of homo-

theties and hence commutes with taking the barycenter. Since xr(v) is defined by
iterated barycenters from a collection of points

xr(i) = φ≤[h−1]
r (x≥[h]

r (i))

which belong to the convex Bw (because i are leaves above w), we deduce that

xr(v) = φ≤[h−1]
r (x≥[h]

r (v))
Claim 2
= φ≤[h−1]

r (x1(ξ, v)).

Finally, since

φ[h]
r (x1(ξ, v)) = φv

r(x1(ξ, v)) = x1(ξ, v)

we have

φ≤[h−1]
r (x1(ξ, v)) = φ≤[h]

r (x1(ξ, v)).

This proves Claim 3.

We are ready for the proof of the lemma. Let w ∈ V∗. Recall that the restriction

of φ
≤[height(w)]
r to Bw is a composition of homotheties of total rate

Rw :=
∏

root<u≤w

max(r, τ(u))

r1
.

Consider the normalization map

N : Inj(A,RN ) −→ Inj10(A,R
N ) = C[A]

that translates the barycenter to the origin and rescales to radius = 1. This map
is invariant under homotheties of the arguments. Therefore

N(xr(v) : v ∈ output(w))
Claim 3
= N(φ≤[height(w)]

r (x1(ξ, v) : v ∈ output(w))
homotheties

= N(x1(ξ, v) : v ∈ output(w))

= ξw.(5.56)
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Also

radius(xr(v) : v ∈ output(w)) = radius(φ≤[height(w)]
r (xr(v)) : v ∈ output(w))

= Rw · radius((x1(ξ, v) : v ∈ output(w))

= Rw · rheight(w)
1

=
∏

root<u≤w

max(r, τ(u)).(5.57)

Comparing Equations (5.55), (5.56) and (5.57) with (5.45), we deduce that for all
v ∈ V ,

xr(v) = x(ξ, τ, r, v).

The statement of the lemma is the special case when v is a leaf. �

5.9.4. The chart Φ̂ of π−1(V ).

We are ready to define the trivialization Φ̂ of the canonical projection π. Set

F := B[0, n+ 1] \ ∪ni=1 B(i, 1/4).

This is a closed ball with n disjoint open balls removed and will serve as the generic
fiber of π. For ξ ∈ W , also set

Fξ := B[x1(ξ, root), ǫ(root)/2] \ ∪ni=1 B(x1(ξ, i), ǫ(i)/2).

It is easy to build semi-algebraic homeomorphisms

Θξ : F
∼=−→ Fξ

that depend continuously and semi-algebraically on ξ ∈W since W is “small”.

Recall the homeomorphism

Φ: W × [0, r1]
V∗

0
∼=−→ V ⊂ C[n]

from (5.46) and Lemma 5.9.3. Define

Φ̂ : W × [0, r1]
V∗

0 × F −→ C[n+ 1]

by

(5.58) Φ̂(ξ, τ, z0) := lim
r→0+

(φr(x1(ξ, 1)), . . . , φr(x1(ξ, n)), φr(Θξ(z0))) .

By (5.46), (5.58), and Lemma 5.9.6, the following diagram commutes:

(5.59) W × [0, r1]
V∗

0 × F
Φ̂ //

proj

��

C[n+ 1]

π

��
W × [0, r1]

V∗
0

Φ
∼=

// V ⊂ C[n].

We want to show that Φ̂ is a homeomorphism onto π−1(V ), where V = imΦ is

from (5.47). Fix (ξ, τ) ∈ W × [0, r1]
V∗

0 . It is enough to show that Φ̂ restricts to a
homeomorphism on the fibers:

φ̂ : Fξ

∼=−→ π−1(Φ(ξ, τ))(5.60)

z 7−→ Φ̂(ξ, τ,Θ−1
ξ (z)).
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We first show that φ̂ is injective. Let z1, z2 be two distinct elements in Fξ. Set

yi = φ̂(zi) ∈ C[n+ 1] for i = 1, 2. We treat different cases.

• Suppose that there exists a vertex v ∈ V such that z1 ∈ B(x1(ξ, v), ǫ(v)/2)
but z2 6∈ B(x1(ξ, v), ǫ(v)/2) (or the other way around). By definition of
Fξ, v is not a leaf. Thus v has at least two distinct outputs and we choose
two leaves p and q above each of these outputs. Using Lemma 5.9.5 (2b-c),
we get

y1(p) 6≃ y1(q) rel y1(n+ 1)

but

y2(p) ≃ y2(q) rel y2(n+ 1).

Thus y1 6= y2.
• Suppose that the highest vertex v ∈ V such that z1 ∈ B(x1(ξ, v), ǫ(v)/2) is
the same as the highest vertex w ∈ V such that z2 ∈ B(x1(ξ, w), ǫ(w)/2),
that is v = w. Choose again two leaves p, q above two distinct outputs
of v. Set

φ≥v
r := φ[height(v)]

r ◦ · · · ◦ φ[heightmax]
r .

By Lemma 5.9.5 (2b), we have that

lim
r→0

(φ≥v
r (zi), φ

≥v
r (x1(ξ, p)), φ

≥v
r (x1(ξ, q)))

defines two distinct configurations in C(3). Then applying

lim
r→0

φ[0]
r ◦ · · · ◦ φ[height(v)−1]

r ,

which is a composition of homotheties of a ball containing the configura-
tions, still gives two distinct configurations in C(3). Therefore the images
of y1 and y2 under some canonical projection π : C[n + 1] → C[3] are
distinct. Thus y1 6= y2.
• It remains to treat the case when there is no v ∈ V such that zi ∈
B(x1(ξ, v), ǫ(v)/2) for i = 1 or i = 2. Then z1, z2 ∈ ∂ B[x1(ξ, root), ǫ(root)/2]
are in the boundary of the largest ball which is centered at the origin. In
that case

θ1,n+1(yi) = zi/‖zi‖
where θ1,n+1 from (5.6) gives the direction between the first and the last
point of the configuration, and these two directions are distinct. Thus
y1 6= y2.

This proves that φ̂ is injective. For surjectivity, since Fξ and π−1(Φ(ξ, τ)) are

compact connected manifolds, it is enough to show that φ̂ is surjective on the
intersection of the boundary with the fiber. This boundary consists of virtual
configurations y ∈ C[n+ 1] such that:

(a) either for some 1 ≤ i ≤ n and for all j ∈ n \ {i}, we have: y(i) ≃
y(n+ 1) rel y(j);

(b) or for all 1 ≤ i, j ≤ n, we have: y(i) ≃ y(j) rel y(n+ 1).

It is clear that φ̂ maps ∂ B[x1(ξ, i), ǫ(i)/2] surjectively onto the boundaries of type
(a) and ∂ B[x1(ξ, root), ǫ(root)/2] onto that of type (b).
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This proves that φ̂ from (5.60) is a homeomorphism and hence that Φ̂ in Diagram
(5.59) is a homeomorphism onto π−1(V ). Thus

π : C[n+ 1] −→ C[n]

is an SA bundle. For n ≥ 2, its fiber F is a compact manifold of dimension N
whose interior is homeomorphic to RN with n points removed. For n = 0 the fiber
is a point and for n = 1 the fiber is an (N − 1)-dimensional sphere SN−1.

Thus π : C[V := A∐I]→ C[A] is an oriented SA bundle, as it is the composition of
oriented SA bundles π : C[n+ 1]→ C[n] [19, Proposition 8.5]. When |A| ≥ 2, the
interior of the fiber of π can be identified with Inj(I,RN \A) which is of codimension
0 inside (RN )I . The latter manifold has a canonical orientation when N is even or
when N is odd and I is linearly ordered, and in the second case a transposition in
the linear order reverses the orientation.

This finishes the proof of Theorem 5.3.2.



CHAPTER 6

The CDGAs of admissible diagrams

In this chapter we introduce the CDGA of admissible diagrams D(A), where A
is a finite set, for example A = n = {1, . . . , n}. As we will prove later, this
differential algebra is a model for both ΩPA(C[A]) and its cohomology, and it will
serve as an intermediate model in the formality proof. In Chapter 7 we will endow
D := {D(n)}n≥0 with the structure of a cooperad.

The CDGA D(A) could be defined directly but we will describe it as a quotient of a

larger CDGA of diagrams D̂(A) that we will introduce first. One reason for doing

so is that it will be easier to define a cooperad structure on D̂ := {D̂(n)}n≥0 and
establish some of its properties, and then induce from this the cooperad structure
for D.
In this entire chapter we fix an integer N ≥ 2 which is the ambient dimension and
a unital commutative ring K. The case N = 1 is somewhat special, although trivial,
and will be treated separately in Chapter 10.

6.1. Diagrams

Roughly speaking, a diagram is a finite oriented graph where the vertices come
in two flavors, external and internal, and where the sets of edges and internal
vertices are linearly ordered. An example is given in Figure 6.1 and explained in
Example 6.1.2 below. The precise definition is as follows.

Definition 6.1.1. A diagram is a quintuple Γ = (AΓ, IΓ, EΓ, sΓ, tΓ) where

• AΓ is a finite set;
• IΓ is a linearly ordered finite set disjoint from AΓ;
• EΓ is a linearly ordered finite set; and
• sΓ, tΓ : EΓ → AΓ ∐ IΓ are functions.

We fix the following terminology and notation:

• the elements of AΓ are the external vertices, the elements of IΓ are the
internal vertices, and we set VΓ := AΓ ∐ IΓ; this is the set of all vertices.
We extend the order of IΓ to a partial order on VΓ by letting a < i when
a ∈ AΓ and i ∈ IΓ;
• the elements of EΓ are the edges ;
• sΓ(e) is the source and tΓ(e) is the target of the edge e; both are the
endpoints of the edge;
• two distinct vertices are called adjacent if they are the endpoints of some
edge;

63
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• we say that the edge e is oriented from sΓ(e) to tΓ(e);
• we partition the set of edges into the following four families:

– a loop is an edge whose endpoints are identical;
– a chord is an edge between two distinct external vertices;
– a dead end is an edge that is not a loop and such that at least one if

its endpoints is internal and has only one adjacent vertex;
– a contractible edge is an edge that is neither a chord, nor a loop, nor

a dead end;
• we denote by Econtr

Γ the set of contractible edges of Γ;
• the valence of a vertex is the number of edges for which the vertex is an
endpoint, with loops adding two to the valence;
• an edge e is simple if there exists no other edge with the same set of
endpoints;
• double edges are distinct edges having the same set of endpoints, that is,
a pair {e1, e2} such that {sΓ(e1), tΓ(e1)} = {sΓ(e2), tΓ(e2)};
• two vertices v and w are connected if there exists a path of edges join-
ing them (ignoring orientations), that is, if there exists a sequence of
edges e1, . . . , ek such that v ∈ {sΓ(e1), tΓ(e1)}, w ∈ {sΓ(ek), tΓ(ek)}, and
{sΓ(ei), tΓ(ei)} ∩ {sΓ(ei+1), tΓ(ei+1)} 6= ∅ for 1 ≤ i < k;
• given a finite set A, a diagram on A is a diagram Γ such that AΓ = A;
• a diagram on A is a unit if it has no internal vertices or edges. We denote
a unit by 1. In other words 1 = (A, ∅, ∅, ∅, ∅);
• two diagrams Γ and Γ′ are isomorphic if AΓ = AΓ′ and there exist two

order-preserving bijections φE : EΓ

∼=−→ EΓ′ and φI : IΓ
∼=−→ IΓ′ (that we

extend into a bijection φV := idAΓ ∐ φI : VΓ

∼=−→ VΓ′) such that φV ◦ sΓ =
sΓ′ ◦ φE and φV ◦ tΓ = tΓ′ ◦ φE .

We will abuse notation by denoting a diagram and its isomorphism class by the
same letter Γ.

One should be careful about the definition of a dead end. Our definition is not
equivalent to saying that a dead end is an edge with a univalent internal vertex.
Indeed in Example 6.1.2 and Figure 6.1 below, the edge (12, 14)1 is a dead end
(because the vertex 14 is internal and has only 12 as an adjacent vertex), although
neither of its endpoints 12 and 14 is of valence 1. However, when a diagram has no
loops or double edges, dead ends appear only with univalent internal vertices. The
reason for distinguishing dead ends from contractible edges will be given in Remark
6.5.3

Example 6.1.2. Consider the diagram in Figure 6.1. By convention, all the external
vertices are drawn on a horizontal line which is not a part of the graph. This picture
represents a diagram Γ with

• the set of external vertices AΓ = {1, . . . , 5};
• the set of internal vertices IΓ = {6, . . . , 15} with its natural order;
• the set EΓ consists of eighteen edges, each one oriented from the lower to
the higher vertex and ordered as follows (right lexicographic order):

(3, 4) < (1, 6) < (2, 6) < (3, 7) < (6, 7)1 < (6, 7)2 < (7, 8) <
< (8, 8) < (8, 9) < (4, 10) < (5, 10) < (11, 12) < (11, 13) <
< (12, 13) < (12, 14)1 < (12, 14)2 < (14, 14)1 < (14, 14)2.
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There are three loops, at vertices 14 and 8; three dead ends, (8, 9), (12, 14)1
and (12, 14)2; a chord (3, 4); double contractible edges (6, 7)1 and (6, 7)2;
and nine other simple contractible edges. The valence of the vertex 3 is
2, that of 8 is 4, that of 14 is 6, that of 15 is 0, etc.

9

11

13

14

12
15

7

10

2 43 5

6

1

8

Figure 6.1. An example of a diagram (see Example 6.1.2.)

Remark 6.1.3. Given two diagrams Γ1 and Γ2 with the same set of external ver-
tices, we can always find a diagram Γ′

2 isomorphic to Γ2 such that the sets IΓ1and
IΓ′

2
, and EΓ1 and EΓ′

2
respectively, are disjoint. This will be used in the definition

of the product of two (isomorphism classes of) diagrams in Section 6.3. Also, if
A and P are disjoint sets and Γ is a diagram on A, we can assume (after maybe
replacing diagram Γ by an isomorphic one) that P and IΓ are disjoint.

6.2. The module D̂(A) of diagrams

We will define the K-module generated by isomorphism classes of diagrams modulo
some signed relations when the linear order of internal vertices or edges is permuted,
or the orientation of some edge is reversed. To make this precise, we need the
following:

Definition 6.2.1. Let Γ and Γ′ be two diagrams with the same set of external
vertices.

• Γ and Γ′ differ by an inversion of an edge if, up to isomorphism, these
two diagrams have the same ordered sets of internal vertices and edges,
there exists an edge e such that sΓ′(e) = tΓ(e) and tΓ′(e) = sΓ(e), and sΓ
and sΓ′ (respectively, tΓ and tΓ′) agree on all the other edges.
• Γ and Γ′ differ by a transposition in the linear order of internal vertices,
if, up to isomorphism, they have the same ordered set of edges, the same
underlying set of internal vertices I, the same source and target functions,
and there exists a transposition σ = (a, b) in the group of permutations
of the set I, for some pair of distinct internal vertices a and b, such that
for all internal vertices i1, i2 ∈ I we have that i1 ≤IΓ i2 if and only if
σ(i1) ≤IΓ′ σ(i2).
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• Γ and Γ′ differ by a transposition in the linear order of the edges, if, up
to isomorphism, they have the same ordered set of internal vertices, the
same underlying set of edges E, the same source and target functions,
and there exists a transposition σ = (a, b) in the group of permutations of
the set E, for some pair of distinct edges a and b, such that, for all edges
e1, e2 ∈ E, e1 ≤EΓ e2 if and only if σ(e1) ≤EΓ′ σ(e2).

Definition 6.2.2. Fix an integer N ≥ 1. The space of diagrams on a set A is

the free K-module D̂(A) generated by the isomorphism classes of diagrams with
the set of external vertices A, modulo the equivalence relation ≃ generated by the
following:

• Γ ≃ (−1)NΓ′ if Γ and Γ′ differ by an inversion of an edge;
• Γ ≃ (−1)NΓ′ if Γ and Γ′ differ by a transposition in the linear order of
internal vertices;
• Γ ≃ (−1)N+1Γ′ if Γ and Γ′ differ by a transposition in the linear order of
edges.

When we want to emphasize the ambient dimension N , we will denote the space of

diagrams by D̂N (A).

By abuse of notation we will denote by the same symbol a diagram and its equiv-

alence class in D̂(A).

Because of the relations, when N is odd (respectively even) and 1/2 ∈ K, a diagram
with a loop (respectively a double edges) vanishes in the space of diagrams. Other
symmetries of a diagram can also make it vanish. Also because of the relations,
when N is even the orientation of the edges and the linear order on internal vertices
are irrelevant; when N is odd it is the linear order on the edges which is irrelevant.

When 1/2 ∈ K, D̂(A) is a free K−module generated by a suitable collection of
diagrams (if 1/2 6∈ K the relation ≃ produces 2-torsion.)

Definition 6.2.3. The degree of a diagram Γ is defined to be

deg(Γ) = |EΓ| · (N − 1)− |IΓ| ·N
where |EΓ| is the number of edges and |IΓ| is the number of internal vertices.

The motivation for defining deg(Γ) as such comes from the fact that in Chapter 9
we will construct a differential form I(Γ) ∈ ΩPA(C[A]) whose degree is exactly that.
The integration producing this form is what motivates the signs in Definition 6.2.2.

The degree is compatible with the equivalence relation ≃, and so D̂(A) becomes a
graded K-module.

6.3. Product of diagrams

Let Γ1 and Γ2 be two isomorphism classes of diagrams on the same set A. By Re-
mark 6.1.3, we can assume that the sets IΓ1and IΓ2 , and EΓ1 and EΓ2 respectively,
are disjoint. Remember the sum of linearly ordered sets < defined in Section 2.2.
Define the product diagram Γ = Γ1 · Γ2 by

• AΓ := A;
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• IΓ := IΓ1 < IΓ2 ;
• EΓ := EΓ1 < EΓ2 ;
• sΓ|EΓi = sΓi and tΓ|EΓi = tΓi .

Example 6.3.1. An example of a product of two isomorphism classes of diagrams
is represented in Figure 6.2. In each picture the edges are oriented from the lower-
labeled to the higher-labeled vertex and are ordered by the right lexicographic order
as in Example 6.1.2.

6

3 4213 421 3 421

6
5 8

7

9

8
7

=·

5 5

Figure 6.2. Example of a product of two diagrams.

Proposition 6.3.2. The above product extends to a degree 0 linear map

D̂(A)⊗ D̂(A) −→ D̂(A)
which endows D̂(A) with the structure of a commutative Z-graded algebra.

Proof. The multiplication has been defined on generators and we extend it
bilinearly. This multiplication is compatible with the equivalence relation ≃ on
diagrams. It is also clearly associative and

deg(Γ1 · Γ2) = deg(Γ1) + deg(Γ2).

The unit diagram 1 = (A, ∅, ∅, ∅, ∅) is of degree 0 and is indeed a unit for the prod-
uct.
It remains to check that the multiplication is graded-commutative. Let Γi =
(A, Ii, Ei, si, ti), for i = 1, 2, be two diagrams. We distinguish two cases.

• Suppose that N is odd. The diagrams Γ1 · Γ2 and Γ2 · Γ1 differ by the
order of the edges, which is irrelevant in this case, and the order of internal
vertices. The number of pairs of transposed vertices is |I1| · |I2|. Since N is
odd, |Ii| ≡ deg(Γi) mod 2. Therefore Γ2 · Γ1 = (−1)deg(Γ1)·deg(Γ2)Γ1 · Γ2.
• Suppose that N is even. The argument is the same as for N odd after
exchanging the roles of the linear orders of edges and the internal vertices.

�

6.4. A differential on the space of diagrams

We define now a differential on the K-module D̂(A) by “contracting edges” on dia-
grams. Recall from Definition 6.1.1 the notion of a contractible edge in a diagram.
Also remember that in Definition 6.1.1 we extended the linear order on internal
vertices into a partial order on the set of all vertices by making external vertices
precede internal ones. In particular, if e is a contractible edge of a diagram Γ then
the pair {sΓ(e), tΓ(e)} is linearly ordered.
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Definition 6.4.1. Let Γ be a diagram and let e be a contractible edge of Γ. The
diagram obtained from Γ by contraction of the edge e is the diagram Γ/e defined
as follows:

• AΓ/e := AΓ

• IΓ/e := IΓ \ {max(sΓ(e), tΓ(e))}
• EΓ/e := EΓ \ {e}
• sΓ/e := q ◦ sΓ and tΓ/e := q ◦ tΓ where q is defined by:

q : VΓ −→ VΓ/e

v 7−→
{

min(sΓ(e), tΓ(e)), if v = max(sΓ(e), tΓ(e));
v, otherwise,

where the linear orders on IΓ/e and EΓ/e are the restrictions of those on IΓ and EΓ.

Notice that Γ/e is well-defined because max(sΓ(e), tΓ(e)) is internal since e is not
a chord, and min(sΓ(e), tΓ(e)) 6= max(sΓ(e), tΓ(e)) since e is not a loop.

When e′ is an edge distinct from a contractible edge e, we will denote by e′ the
edge of Γ/e corresponding to e′ in Γ through the inclusion EΓ/e →֒ EΓ.

Example 6.4.2. An example of contraction of an edge is given in Figure 6.3 (where

we omit precise ordering and orientation of the edges). The edge (8, 7) is the edge
(8, 4) in the diagram after contraction of the edge (4, 7).

53 421

6 8

5

7

(4, 7)

=

3 421

6 8

Figure 6.3. Contraction of an edge.

Before defining the differential d, we need to introduce some signs. Recall from
Section 2.2 the position function pos associated to linearly ordered sets such as IΓ
and EΓ. Define ǫ(Γ, e) = ±1 according to the following table (where s := sΓ and
t := tΓ are the source and the target of edges)

Value of ǫ(Γ, e)
N odd N even

(−1)pos(max(s(e),t(e)):IΓ) if s(e) < t(e) (−1)pos(e:EΓ)

−(−1)pos(max(s(e),t(e)):IΓ) if s(e) > t(e)

Let Γ be a diagram on a set of external vertices A. Define its differential d(Γ) ∈
D̂(A) by the formula

(6.1) d(Γ) :=
∑

e∈Econtr
Γ

ǫ(Γ, e) · Γ/e

where the sum runs over all contractible edges e in Γ and the sign ǫ(Γ, e) is from the
above table. An example of this is the diagram Γ in Figure 1.2 of the Introduction
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for which d(Γ) is the diagram of Figure 1.1 with k = 3, (i, j, l) = (1, 2, 3), and with
a suitable orientation and ordering of the edges.

Lemma 6.4.3. Formula (6.1) induces a linear map d : D̂(A)→ D̂(A).

Proof. The proof that d is compatible with the equivalence relation ≃ of
Definition 6.2.2 is straightforward (but tedious). We give the sketch of the argument
in one case (the one for which the proof is more complicated) and leave the others
to the reader. Proofs of analogous statements can be find in [9, Theorem 4.2].

Assume thatN is odd and let Γ and Γ′ be two diagrams that differ by a transposition
in the linear order of internal vertices. Then Γ ≃ −Γ′.

Let a and b be the transposed vertices. Since any transposition of the linear order of
internal vertices is obtained as a composition of transpositions of adjacent vertices,
we can assume without loss of generality that a and b are consecutive in VΓ, so

pos(b : IΓ) = pos(a : IΓ) + 1.

Moreover, since it is easy to check that the differential is compatible with inversion
of orientations of edges, we can assume that each contractible edge e of Γ is oriented
so that sΓ(e) ≤ tΓ(e) in VΓ.

Let e be a contractible edge. We need to show that

ǫ(Γ, e) · Γ/e ≃ −ǫ(Γ′, e) · Γ′/e.

We distinguish three cases.

(1) Suppose that {sΓ(e), tΓ(e)} = {a, b}. Since s(e) and t(e) are permuted,
we have that ǫ(Γ, e) = −ǫ(Γ′, e). On the other hand, Γ/e ≃ Γ′/e since one
of the two consecutive vertices a or b disappears.

(2) Suppose that {sΓ(e), tΓ(e)}∩{a, b} = ∅. In that case ǫ(Γ, e) = ǫ(Γ′, e) but
Γ/e ≃ −Γ′/e.

(3) Suppose that {sΓ(e), tΓ(e)} ∩ {a, b} is a singleton. We have assumed that
a and b are consecutive in VΓ and that sΓ(e) ≤ tΓ(e). Moreover sΓ(e) 6=
tΓ(e) since e is contractible. Therefore we have four possibilities for the
order of a, b, sΓ(e), tΓ(e) in VΓ:
(a) a = sΓ(e) < b < tΓ(e). Then ǫ(Γ, e) = ǫ(Γ′, e) and Γ/e ≃ −Γ′/e.
(b) a < sΓ(e) = b < tΓ(e). Then ǫ(Γ, e) = ǫ(Γ′, e) and Γ/e ≃ −Γ′/e.
(c) sΓ(e) < a < b = tΓ(e). Then ǫ(Γ, e) = −ǫ(Γ′, e) and Γ/e ≃ Γ′/e.
(d) sΓ(e) < a = tΓ(e) < b. Then ǫ(Γ, e) = −ǫ(Γ′, e) and Γ/e ≃ Γ′/e.

In all cases we have ǫ(Γ, e) · Γ/e = −ǫ(Γ′, e) · Γ′/e. This proves that d(Γ) = −d(Γ′)
as desired. �

Lemma 6.4.4. d is homogeneous of degree +1.

Proof. This is clear from Definition 6.2.3 of degree since, for a contractible
edge e of a diagram Γ, the diagram Γ/e has one fewer edge and one fewer internal
vertex than Γ. �

Lemma 6.4.5. d satisfies the Leibniz rule, that is,

d(Γ · Γ′) = d(Γ) · Γ′ + (−1)deg(Γ)Γ · d(Γ′).
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Proof. Recall that EΓ·Γ′ = EΓ < EΓ′ . It is clear than an edge is contractible
in Γ or Γ′ if and only if it is contractible in Γ · Γ′. Moreover if e is a contractible
edge of Γ then (Γ · Γ′)/e = (Γ/e) · Γ′, and if e′ is a contractible edge of Γ′ then
(Γ · Γ′)/e′ = Γ · (Γ′/e′). It remains to study the signs ǫ which appear in the
differentials, which is straightforward. �

Lemma 6.4.6. d2 = 0.

Proof. Let Γ be a diagram and let e1 and e2 be distinct edges. If e1 is
contractible, denote by e2 the edge in Γ/e1 corresponding to e2. It is easy to check
that e2 is contractible in Γ/e1 if and only the following two conditions hold:

• e1 and e2 are contractible in Γ, and
• e1 and e2 do not have the same endpoints, and if e1 and e2 have one
endpoint in common, then another endpoint of e1 or e2 is an internal
vertex.

Since these conditions are symmetric, we deduce that e2 is contractible in Γ/e1 if
and only if e1 is contractible in Γ/e2, where e1 is the edge in Γ/e2 corresponding
to e1 in Γ. Moreover, in that case (Γ/e1)/e2 is isomorphic to (Γ/e2)/e1. Therefore

(6.2) d2(Γ) =
∑

e1<e2

{ǫ(Γ, e1) · ǫ(Γ/e1, e2) + ǫ(Γ, e2) · ǫ(Γ/e2, e1)} · (Γ/e1)/e2,

where the sum runs over each pair e1, e2 of distinct contractible edges of Γ such
that e1 < e2 and the other condition above making e2 contractible in Γ/e1 holds.
It is straightforward to check that the brackets in this sum vanish. �

Theorem 6.4.7. (D̂(A), d) is a commutative differential Z-graded algebra.

Proof. This is a consequence of Proposition 6.3.2 and Lemmas 6.4.3–6.4.6.
�

6.5. The CDGA D(A) of admissible diagrams

Definition 6.5.1. A diagram is admissible if it contains no loops, no double edges,
no internal vertices of valence ≤ 2, and if each of its internal vertices is connected
to some external vertex. Otherwise a diagram is non-admissible. We denote by

N (A) the graded submodule of D̂(A) generated by the non-admissible diagrams.

An admissible diagram does not have dead ends either, because a dead end implies
the existence of an internal vertex of valence 1, or of a loop, or of a double edge.
Hence an admissible diagram consists only of simple chords and simple contractible
edges.

Lemma 6.5.2. The module of non-admissible diagrams N (A) is a differential ideal

of D̂(A).

Proof. It is easy to check that N (A) is an ideal of the algebra D̂(A).
We show that N (A) is preserved by the differential d. Let Γ be a non-admissible
diagram.
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• If Γ contains a loop or a dead end then the same is true for each term of
d(Γ) since loops and dead ends are not contracted.
• If Γ contains a double edge then each term of d(Γ) contains a double edge
or a loop (when one of the double edges is contracted).
• If Γ contains a path component with all vertices internal, then the same
is true for each term of d(Γ).
• If Γ contains an internal vertex i of valence 2 but no double edges or dead
ends, then for most of the terms of d(Γ), i is still a bivalent internal vertex,
except for the two terms obtained by contracting each of the two edges
with endpoint i. These two terms cancel each other .
• If Γ has an internal vertex of valence 1 then it has a dead end, and this
case is treated in the first bullet above.
• If Γ has an internal vertex of valence 0 then it has a connected component
with all vertices internal, and this case is treated in the third bullet above.

This proves that d(N (A)) ⊂ N (A)). �

Remark 6.5.3. The previous lemma would be wrong if in the definition of the
differential d we allowed contractions of dead ends. This is why dead ends are not
defined as contractible edges in Definition 6.1.1.

Definition 6.5.4. The Z-graded CDGA of admissible diagrams is the quotient

D(A) := D̂(A)/N (A).

We write DN (A) = D(A) when we want to emphasize the ambient dimension N .

By abuse of notation we will denote by the same symbol a diagram on A, its

equivalence class in D̂(A), and its larger equivalence class in D(A). The context
should always clear up any ambiguity. As a K-module, D(A) is generated by
admissible diagrams.

A (co)chain complex is said to be connected if it is concentrated in non-negative
degrees and is isomorphic to K in degree 0.

Proposition 6.5.5. If N ≥ 3, then DN (A) is a connected CDGA.

Proof. Let Γ = (A, I, E, s, t) be an admissible diagram different from the
unit. We think of an edge of Γ as the union of two half-edges, each with one
endpoint which is a vertex of Γ. Since Γ is not the unit and since internal vertices
are connected to some external one, there is at least one half-edge whose endpoint
is an external vertex. Since each internal vertex is of valence ≥ 3, there are at least
3 · |I| other half-edges. Therefore |E| ≥ 1

2 (1 + 3|I|). We deduce that

deg(Γ) = |E| · (N − 1)− |I| ·N

≥ 1

2
(1 + 3|I|) · (N − 1)− |I| ·N

=
N − 1

2
+ |I| · N − 3

2
> 0.

�

Remark 6.5.6. It is in fact true that DN (A) is (N−3)-connected for N ≥ 3. Indeed
if |I| = 0 then deg(Γ) = |E| · (N − 1) ≥ N − 1 and if |I| ≥ 1 then the inequalities
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in the above proof show that deg(Γ) ≥ N−1
2 + 1 · N−3

2 = N − 2. When N ≥ 4 we
can refine this argument by treating separately the cases |I| = 1 and |I| = 2 and
deducing that DN (A) is in fact (N − 2)-connected and of finite type. On the other
hand, for N = 3 it is not true that it is 1-connected as can be seen from an easy
example with 2|E| = 1+3|I|. Also DN (A) cannot be (N−1)-connected for |A| ≥ 2
since its homology is the homology of configuration spaces in RN , as we will see in
Theorem 8.1.

However, for N = 2, D2(A) is not concentrated in non-negative degrees, and is thus
not a CDGA which is suitable for modeling a rational homotopy type, even if its
cohomology is non-negatively graded (since it is the cohomology of a configuration
space).



CHAPTER 7

Cooperad structure on the spaces of (admissible)

diagrams

In this chapter we will endow the sequence of CDGAs {D(n)}n≥0 with the structure

of a cooperad. We will do this by first endowing {D̂(n)}n≥0 with the structure of
a cooperad of graded K-algebras (not differential!). We fix an ambient dimension
N ≥ 2.

The plan is as follows. First we construct in Section 7.1 the cooperad structure

maps Ψ̂ and Ψ on D̂ and D using the notion of condensation from Definition 5.6.1.
Then we prove in Section 7.2 that these are morphisms of algebras, and in Section

7.3 we show that Ψ is a chain map (this is not the case for Ψ̂.) Finally we prove in
Cection 7.4 that this defines the structure of a cooperad of CDGAs on D; this is
our main result, Theorem 7.4.3.

For the several following sections, fix a weak ordered partition ν : A → P and set
P ∗ = {0}< P , Ap = ν−1(p), and A0 = P , as in the setting 2.4.1.

7.1. Construction of the cooperad structure maps Ψ̂ν and Ψν

In this section we build maps

Ψ̂ν : D̂(A) −→ D̂(P )⊗ ⊗
p∈P
D̂(Ap) and

Ψν : D(A) −→ D(P )⊗ ⊗
p∈P
D(Ap)

which will serve as cooperad structure maps. Of course, the tensor product over
p ∈ P is taken in the order fixed on P . Since A0 = P we have

D̂(P )⊗ ⊗
p∈P
D̂(Ap) = ⊗

p∈P∗
D̂(Ap).

Let us first describe roughly the idea of Ψ̂ν . Let Γ be a diagram on A with the set
of vertices VΓ. Recall from Definition 5.6.1 that a condensation of VΓ relative to ν
is a map

λ : VΓ → P ∗

such that λ|A = ν. For each condensation λ ∈ Cond(VΓ, ν), we first construct

diagrams Γ(λ, 0) ∈ D̂(P ) and Γ(λ, p) ∈ D̂(Ap) as follows. For p ∈ P , the diagram
Γ(λ, p) on Ap is the full subgraph of Γ whose vertices are the p-locals (that is, those
in λ−1(p)). The diagram Γ(λ, 0) on P is obtained from Γ by shrinking each subgraph

Γ(λ, p) into a single external vertex p, for p ∈ P . Then Ψ̂ν(Γ) ∈ D̂(P )⊗⊗p∈P D̂(Ap)

73
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is defined to be

Ψ̂ν(Γ) =
∑

λ∈Cond(VΓ,ν)

Γ(λ) where Γ(λ) = ±Γ(λ, 0)⊗ ⊗
p∈P

Γ(λ, p).

The precise formulas are in equations (7.5) and (7.6).

Here is an example illustrating this.

Example 7.1.1. Suppose A = {1, 2, 3, 4, 5} and I = {6, 7}, so V = {1, 2, 3, 4, 5, 6, 7}.
Let Γ be as in Figure 7.1.

Γ =

3 421 5

6 7

Figure 7.1

Let P ∗ = {0, α, β} and let λ : V → P ∗ be defined by

λ(v) =





α, for v = 1, 2, 3;

β, for v = 4, 5, 7;

0, for v = 6.

Then Γ(λ, 0), Γ(λ, α), and Γ(λ, β) are given in Figure 7.2.

,Γ(λ, 0) =

α β

6

321

Γ(λ, α) =

4 5

Γ(λ, β) =

7

,

Figure 7.2

Here is another heuristic description of Γ(λ) . Picture Γ as in Figure 7.3, so that
all the p-local vertices and their connecting edges are drawn infinitesimally close to
each other, and all the global vertices and the various clusters of p-local vertices
are drawn far from each other. Then Γ(λ, 0) is the diagram Γ seen from far away,
and each Γ(λ, p) for p ∈ P is that diagram seen through a microscope centered at
the pth cluster (forgeting the edges outside of the cluster). This interpretation will
correspond, through the Kontsevich configuration space integral, to what happens
to the configurations of points in the Fulton-MacPherson operad. See the discussion
after (9.27) as to why the Kontsevich configuration space integral commutes with
the cooperadic structures.
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βα

6

1 2 3 4 5

7

Γ =

Figure 7.3

Definition 7.1.2. Let ν : A → P be a weak ordered partition, let P ∗ = {0}< P ,
let Γ be a diagram on A and assume that IΓ ∩ P = ∅.

• A condensation λ on Γ is a condensation of VΓ relative to ν as in Defini-
tion 5.6.1, that is, it is a map λ : VΓ → P ∗ such that λ|A = ν. We consider
the set Cond(Γ, ν) := Cond(VΓ, ν) of all condensations on Γ relative to ν,
and write Cond(Γ) when ν is understood.
• The extension to the edges of the condensation λ on Γ is the map

λE : EΓ −→ P ∗

defined by

λE(e) =

{
λ(sΓ(e)), if λ(sΓ(e)) = λ(tΓ(e)),
0, otherwise.

• Given a condensation λ of Γ, a vertex v (respectively an edge e) is p-local,
for p ∈ P , if λ(v) = p (respectively λE(e) = p). It is global if λ(v) = 0
(respectively λE(e) = 0).

The terminology condensation is motivated in the case of diagrams (as it was in Def-
inition 5.6.1 for configurations) by the idea explained right before Definition 7.1.2
that the diagram should be pictured as in Figure 7.3 with its vertices condensed
into clusters depending on the values of λ.

Clearly the set of condensations on Γ is in bijective correspondence with the set of
maps from IΓ to P ∗, since the value of a condensation λ on an external vertex a
is determined by λ(a) = p for a ∈ Ap, that is, λ(a) = ν(a). An edge is p-local if
and only if both of its endpoints are. Otherwise it is global. Also, a global vertex
is always internal but a global edge can be a chord.

Let Γ be a diagram on A and let λ ∈ Cond(Γ). Without loss of generality we can
assume that IΓ ∩ P = ∅ (see Remark 6.1.3). For p ∈ P ∗ we define a diagram

(7.1) Γ(λ, p) := (Ap, Ip, Ep, sp, tp)

with

• Ip = IΓ ∩ λ−1(p);

• Ep = λ−1
E (p);

• – For p ∈ P , sp and tp are the restrictions of sΓ and tΓ to Ep;
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– For p = 0, s0 = λ̂ ◦ sΓ and t0 = λ̂ ◦ tΓ where

λ̂ : VΓ −→ P ∪ I0

is defined by λ̂(v) = v if λ(v) = 0, and λ̂(v) = λ(v) otherwise.

The set of edges (respectively of internal vertices) of Γ is the disjoint union for
p ∈ P ∗ of the set of edges (respectively of internal vertices) of the diagrams Γ(λ, p).

Even if Γ is admissible, Γ(λ, p) may not be. Note also that λ̂ above is the same as
in (5.22).

The equivalence class of Γ(λ, p) in D̂(Ap) with respect to the relation ≃ of Defini-
tion 6.2.2, or even ⊗p∈P∗Γ(λ, p), is not an invariant of the equivalence class of Γ in

D̂(A). To correct this we introduce some signs. Define for I = IΓ and E = EΓ,

S(I, λ) := {(v, w) ∈ I × I : v < w and λ(v) > λ(w)}
(which was already introduced in (5.33)), and

S(E, λ) := {(e, f) ∈ E × E : e < f and λE(e) > λE(f)}.
Define the signs

σ(I, λ) := (−1)N ·|S(I,λ)| ,(7.2)

σ(E, λ) := (−1)(N−1)·|S(E,λ)| , and(7.3)

σ(Γ, λ) := σ(I, λ) · σ(E, λ)(7.4)

(The sign σ(I, λ) was already defined in (5.32).) The proof of the following is
straightforward.

Lemma 7.1.3. For a diagram Γ and a condensation λ on Γ, the element

σ(Γ, λ) · ⊗
p∈P∗

Γ(λ, p) ∈ ⊗
p∈P∗
D̂(Ap)

depends only on the equivalence class of Γ in D̂(A).

For a diagram Γ on A and a condensation λ of Γ we set

(7.5) Γ(λ) := σ(Γ, λ) · ⊗
p∈P∗

Γ(λ, p) ∈ ⊗
p∈P∗
D̂(Ap),

where σ(Γ, λ) = ±1 is from (7.4) and Γ(λ, p) is from (7.1). By Lemma 7.1.3 we get
a linear map

Ψ̂ν : D̂(A) −→ ⊗
p∈P∗
D̂(Ap)

defined on generators by

(7.6) Ψ̂ν(Γ) :=
∑

λ∈Cond(Γ,ν)

Γ(λ).

Recall N (Ap) ⊂ D̂(Ap), the differential ideal of non-admissible diagrams (Defini-
tion 6.5.1 and Lemma 6.5.2). Set

(7.7) N (ν) :=
∑

p∈P∗

⊗
q∈P∗

q<p

D̂(Aq)⊗N (Ap)⊗ ⊗
q∈P∗

q>p

D̂(Aq),
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which is a differential ideal in ⊗p∈P∗D̂(Ap). Since D(Ap) = D̂(Ap)/N (Ap), we have
an isomorphism of CDGAs (Z-graded if N = 2)

(7.8)

(
⊗

p∈P∗
D̂(Ap)

)
/N (ν) ∼= ⊗

p∈P∗
D(Ap)

Lemma 7.1.4. Ψ̂ν(N (A)) ⊂ N (ν).

Proof. Let Γ be a non-admissible diagram on A and let λ ∈ Cond(Γ).

• If Γ has a loop at a vertex v, then Γ(λ, λ(v)) also has a loop.
• If Γ has double edges e1 and e2, then so does Γ(λ, λE(e1)).
• If Γ has an internal vertex v of valence ≤ 2, then the same is true for
Γ(λ, λ(v)) because the valence of v can only decrease.
• If, for some p ∈ P , Γ has an internal p-local vertex that is not connected to
any external vertex, then the same is true for Γ(λ, p). If Γ has a connected
component consisting only of internal global vertices, then the same is true
for Γ(λ, 0).

In all cases we see that if Γ is not admissible, then the same is true for Γ(λ, p) for

some p ∈ P ∗. Therefore Γ(λ) ∈ N (ν) and Ψ̂ν(N (A)) ⊂ N (ν). �

Proposition 7.1.5. Ψ̂ν defined in (7.6) induces a linear map

Ψν : D(A) −→ D(P ) ⊗ ⊗
p∈P
D(Ap).

Proof. This is an immediate consequence of the isomorphism (7.8) and
Lemma 7.1.4. �

Thus, for an admissible diagram Γ, Ψν(Γ) is obtained as the sum (7.6) in which
non-admissible terms are set to zero. Actually, there are many condensations λ
for which Γ(λ) is not admissible and therefore does not contribute to Ψν(Γ). In
particular, only admissible condensations (to be defined in Definition 7.3.3) can
contribute to the sum, and hence we can use the sum (7.11) below, which has many
fewer terms, to define Ψν(Γ).

7.2. Ψ̂ν and Ψν are morphisms of algebras

The aim of this section is to prove

Proposition 7.2.1. Ψ̂ν and Ψν are morphisms of algebras.

Proof. We first prove the statement for Ψ̂ν . Let Γ1 and Γ2 be two diagrams
on A and suppose that IΓ1 and IΓ2 , EΓ1 and EΓ2 respectively, are disjoint.

Define the function

Cond(Γ1)× Cond(Γ2) −→ Cond(Γ1 · Γ2), (λ1, λ2) 7−→ λ1 · λ2

by (λ1 · λ2)(v) = λi(v) when v ∈ VΓi for i = 1, 2. This map is well-defined because
if v ∈ VΓ1 ∩ VΓ2 then v is external and λ1(v) = λ2(v) = ν(v). Moreover, it is a
bijection whose inverse is given by λ 7→ (λ|VΓ1 , λ|VΓ2).
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Since

Γ1(λ1, p) · Γ2(λ2, p) = (Γ1 · Γ2)(λ1 · λ2, p)

it is easy to see that

⊗
p∈P∗

(Γ1 · Γ2)(λ1 · λ2, p) = η(Γ1, λ1,Γ2, λ2) ·
(
⊗

p∈P∗
Γ1(λ1, p)

)
·
(
⊗

q∈P∗
Γ2(λ2, q)

)
.

where

η(Γ1, λ1,Γ2, λ2) := (−1)s with s =
∑

p,q∈P∗

q<p

deg(Γ1(λ1, p)) · deg(Γ2(λ2, q)).

We have

Ψ̂ν(Γ1 · Γ2) =
∑

λ∈Cond(Γ1·Γ2)

σ(Γ1 · Γ2, λ) · ⊗
p∈P∗

(Γ1 · Γ2)(λ, p)

=
∑

λ1∈Cond(Γ1)

∑

λ2∈Cond(Γ2)

σ(Γ1 · Γ2, λ1 · λ2) · ⊗
p∈P∗

(Γ1 · Γ2)(λ1 · λ2, p)

=
∑

λ1∈Cond(Γ1)

∑

λ2∈Cond(Γ2)

{
σ(Γ1 · Γ2, λ1 · λ2) · η(Γ1, λ1,Γ2, λ2)(7.9)

·
(
⊗

p∈P∗
Γ1(λ1, p)

)
·
(
⊗

q∈P∗
Γ2(λ2, q)

)}

On the other hand

Ψ̂ν(Γ1) · Ψ̂ν(Γ2) =
∑

λ1∈Cond(Γ1)

∑

λ2∈Cond(Γ2)

Γ1(λ1) · Γ2(λ2)

=
∑

λ1∈Cond(Γ1)

∑

λ2∈Cond(Γ2)

{
σ(Γ1, λ1) · σ(Γ2, λ2)(7.10)

·
(
⊗

p∈P∗
Γ1(λ1, p)

)
·
(
⊗

q∈P∗
Γ2(λ2, q)

)}

It remains to check that the signs of (7.9) and (7.10) agree, which is straightforward..

For Ψν , the statement is a consequence of the definition of Ψν in Proposition 7.1.5
and of the fact that (7.8) is an isomorphism of algebras. �

7.3. Ψν is a chain map

This section is devoted to the proof of the following

Proposition 7.3.1. Ψν commutes with the differentials.

The analog for Ψ̂ν is not true, as illustrated in the following example.

Example 7.3.2. Here we will show that Ψ̂ν is not a chain map. Consider the
diagram Γ given in Figure 7.4, with the set of external vertices A = {a}. The
internal vertices {1, 2, 3, 4} have their natural order and each edge is oriented from
the lower to the higher vertex. Suppose also that N is odd, and hence the order of
edges is irrelevant. Set P = {α} and consider the unique ordered partition

ν : {a} −→ {α}.
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The boundary of Γ is given by the diagram pictured on the top right of Figure 7.4
(obtained as an alternating sum of three such diagrams).

Then Ψν(dΓ) is a sum of eight terms corresponding to the eight condensations

λ : {1, 2, 3} −→ P ∗ = {0, α}.
Using that dead ends are not contractible and diagrams with loops vanish when N
is odd (because of the relations ≃ of Definition 6.2.2), one computes that

d(Ψ̂ν(dΓ)) ∈ D̂({α})⊗ D̂({a})
consists of a single term, corresponding to the condensation λ(1) = α , λ(2) =
λ(3) = 0, and represented by the bottom picture of Figure 7.4.

3

,

a

dΓ =

21 3

a

Γ =

2
3

4

1

,

α

⊗d(Ψ̂ν(dΓ)) =

a

1

Figure 7.4. A diagram Γ for which d(Ψ̂νd(Γ)) 6= 0.

Thus

d(Ψ̂νd(Γ)) 6= 0.

On the other hand

d(dΨ̂ν(Γ)) = 0

since d2 = 0. Therefore Ψ̂ν is not a chain map.

In fact, the equality Ψ̂νd = dΨ̂ν is not really expected to hold. Indeed, if Γ is a
diagram with l internal vertices then there are l|P |+1 terms in Ψν(Γ), corresponding
to the various condensations. On the other hand, for each contractible edge e in Γ,
Ψν(Γ/e) has only (l−1)|P |+1 terms. Thus there is no clear correspondence between

the terms of the sums Ψ̂νd(Γ) and of dΨ̂ν(Γ), and hence no evidence that these two
sums should be equal.

This explains why the proof below that Ψν is a chain map is quite elaborate.
The idea is to restrict to condensations of Γ for which Γ(λ) is admissible and to
establish Lemma 7.3.8, which amounts to exhibiting a 1–1 correspondence between
condensations of Γ and of Γ/e.

Let Γ be a diagram on A.
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Definition 7.3.3. A condensation λ of Γ is admissible if for each internal vertex i
and each p ∈ P there is an equivalence

λ(i) = p ⇐⇒ i admits at least two distinct adjacent p-local vertices.

Denote by AdmCond(Γ) the set of admissible condensations on Γ.

This terminology is motivated by the following:

Lemma 7.3.4. If λ is not admissible then Γ(λ) ∈ N (ν).

Proof. Suppose that i is a p-local internal vertex for some p ∈ P , and suppose
that it does not have two adjacent p-local vertices. Then i is internal of valence
< 2 in Γ(λ, p), and hence Γ(λ, p) ∈ N (Ap).

Suppose that i is an internal vertex that is not p-local but that has two adjacent
p-local vertices for some p ∈ P . Then in Γ(λ, 0), the external vertex p is connected
by a double edge to either i (if λ(i) = 0) or to the external vertex q (if λ(i) = q ∈
P \ {p}). Thus Γ(λ, 0) ∈ N (P ). �

Lemma 7.3.4 implies that, in ⊗p∈P∗D(Ap) and for Γ admissible,

(7.11) Ψν(Γ) =
∑

λ∈AdmCond(Γ,ν)

Γ(λ).

Lemma 7.3.5. Let λ1, λ2 be two admissible condensations on Γ. If λ1 and λ2

coincide on all vertices except possibly on one, then λ1 = λ2.

Proof. Let u be a vertex of Γ such that λ1(v) = λ2(v) for v 6= u. If u is
external then the values of λi(u) are determined by ν, and hence λ1 = λ2. Suppose
that u is internal. If u has two adjacent vertices that are p-local (for both λ1 and
λ2) for some p ∈ P , then λi(u) = p by admissibility. Otherwise λi(u) = 0, again
by admissibility. �

For a condensation λ of Γ, recall the extension to vertices λE from Definition 7.1.2
and Γ(λ, p) from Equation (7.1).

Definition 7.3.6. An edge e of Γ is λ-contractible if it is contractible in Γ(λ, λE(e)).

Lemma 7.3.7. Assume that Γ is admissible and let λ be an admissible condensation.
An edge e of Γ is λ-contractible if and only if the following conditions hold:

(1) e is contractible in Γ, and
(2) λ(sΓ(e)) = λ(tΓ(e)) or min(λ(sΓ(e)), λ(tΓ(e))) = 0.

Condition (2) of the lemma is equivalent to having either both endpoints of e p-local
for some p ∈ P or some endpoint being global.

Proof. First we show that (1) and (2) are necessary conditions. If (1) does
not hold then e is a chord in Γ (because Γ is admissible). Therefore e is also a
chord in Γ(λ, λE(e)), and hence it is not λ-contractible. If (2) does not hold then e
is a chord in Γ(λ, 0) joining the external vertices λ(sΓ(e)) and λ(tΓ(e)). Therefore
e is not λ-contractible.
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Suppose now that (1) and (2) hold. We will prove that e is a contractible edge in
Γ(λ, λE(e)). Let v and w be the endpoints of e. As Γ is admissible, e is not a loop
and v 6= w. We distinguish three cases.

• Case 1: λ(v) = λ(w) = p ∈ P .
Since e is contractible, v or w is internal in Γ, and hence the same is
true in Γ(λ, p). Clearly e is neither a chord, nor a loop there. Since λ is
admissible, if v is internal, then it has an adjacent p-local vertex, distinct
from w. Therefore v also has another adjacent vertex in Γ(λ, p). The same
is true for w if it is internal. Therefore e is not a dead end in Γ(λ, p). Thus
e is λ-contractible.
• Case 2: λ(v) = λ(w) = 0.
Then e is an edge of Γ(λ, 0) joining two distinct internal vertices v and w.
In particular e is neither a chord nor a loop. Since e is not a dead end in
Γ, there exists a vertex v′ 6= w that is adjacent to v in Γ. If v′ is global
then it is also a vertex of Γ(λ, 0) and if v′ is p-local, for some p ∈ P , then
it becomes an external vertex p in Γ(λ, 0). In both cases in Γ(λ, 0), v has
an adjacent vertex distinct from w. Similarly w has an adjacent vertex in
Γ(λ, 0) distinct from v. Therefore e is not a dead end in Γ(λ, 0) and e is
λ-contractible.
• Case 3: λ(v) = 0 and λ(w) = p ∈ P (or the other way).
Then e is an edge of Γ(λ, 0) joining the internal vertex v to the external
vertex p. Since e is not a dead end in Γ, there is a vertex v′ adjacent to v
in Γ and distinct from w. Since λ is admissible, we have that λ(v′) 6= p,
and hence v′ is either global, or q-local for some q 6= p. Then, in Γ(λ, 0),
v′ either is an internal vertex or becomes the external vertex q. In both
cases it is a vertex distinct from p and adjacent to v. This proves that e
is not a dead end. Thus e is λ-contractible.

�

Let e be a contractible edge in Γ. Let v and w be the endpoints of e with v < w.
Thus VΓ/e = VΓ \ {w}. Define the function

(7.12) λ/e : VΓ/e −→ P ∗

by

(λ/e)(z) =

{
λ(z), if z 6= v or z = v is external;
max(λ(v), λ(w)), if z = v is internal.

It is clear that λ/e is a condensation of Γ/e. Notice also that if e is λ-contractible
then (λ/e)(v) = max(λ(v), λ(w)).

Assume that Γ is an admissible diagram. Consider the sets
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Ω =
{
(e, λ) : e ∈ EΓ, λ ∈ AdmCond(Γ), e λ-contractible,

(Γ/e)(λ/e) 6= 0 in ⊗
p∈P∗

D(Ap)
}
,

Ω =
{
(e, λ̄) : e ∈ EΓ, e contractible, λ̄ ∈ Cond(Γ/e),

(Γ/e)(λ̄) 6= 0 in ⊗p∈P∗ D(Ap)
}
,

and the map

ω : Ω −→ Ω

(e, λ) 7−→ (e, λ/e).

Lemma 7.3.8. ω is a bijection.

Proof. We first show that ω is injective. Let e be a contractible edge and, for
i = 1, 2, let λi be admissible condensations of Γ such that e is λi-contractible and
(Γ/e)(λi/e) 6= 0. Assume that λ1/e = λ2/e. We will show that λ1 = λ2.

Set λ̄ = λ1/e = λ2/e. This is an admissible condensation because (Γ/e)(λ̄) 6= 0 in
⊗p∈P∗D(Ap) and because of Lemma 7.3.4. Let v and w be the endpoints of e with
v < w. Thus VΓ/e = VΓ \ {w}. We know that λi agrees with λ̄ on VΓ \ {v, w}, and
therefore we only need to show that λ1(v) = λ2(v) and λ1(w) = λ2(w). Moreover,
since each λi is admissible, by Lemma 7.3.5 it is enough to prove only one of these
two equations.

If v is external, then λ1(v) = λ2(v) is determined and hence λ1 = λ2. Suppose
that v is internal. If λ̄(v) = 0 then, since λ̄(v) = max(λi(v), λi(w)), we get λi(v) =
λi(w) = 0 for i = 1, 2, and hence λ1 = λ2. Suppose that λ̄(v) = p ∈ P . By
admissibility of λ̄, there exist two vertices x and y other than v and w that are
adjacent to v in Γ/e and with λ̄(x) = λ̄(y) = p. This implies that λi(x) = λi(y) = p
for i = 1, 2. Then in Γ, either x and y are both adjacent to v (respectively to
w), or x is adjacent to v and y is adjacent to w (or the other way around). In
the first case we get by admissibility of λi that λ1(v) = λ2(v) = p (respectively
λ1(w) = λ2(w) = p), and hence λ1 = λ2 by Lemma 7.3.5. In the second case, since
p = λ̄(v) = max(λ1(v), λ1(w)), we get that λ1(v) = p or λ1(w) = p. Let us say
that λ1(v) = p, the other case being analogous. Then w is adjacent to v and to
either x or y, and thus w is adjacent to two p-local vertices (for the condensation
λ1), and hence we also have λ1(w) = p by admissibility. The same argument shows
that λ2(v) = λ2(w) = p. This proves injectivity of ω.

To show ω is surjective, let e be a contractible edge of Γ and let λ̄ be a condensation
of Γ/e such that (Γ/e)(λ̄) 6= 0. We will construct an admissible condensation λ of Γ
such that e is λ-contractible and λ/e = λ̄. Let v and w again be the endpoints of e
with v < w. For z ∈ VΓ \ {v, w}, set λ(z) = λ̄(z). We need to define λ(v) and λ(w)
and to check that λ has the desired properties. We consider the following cases.

(1) Suppose v is external. Then λ(v) = λ̄(v) = p ∈ P is prescribed by ν.
(a) Suppose that there exists a vertex x in Γ different from v and adjacent

to w such that λ̄(x) = p. In that case, set λ(v) = λ(w) = p. Then
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λ is admissible at the vertex w because it has two p-local adjacent
vertices v and x. It is easy to check that λ is also admissible at the
other internal vertices of Γ, using the fact that λ̄ is. Moreover e is λ-
contractible by Lemma 7.3.7 since it is contractible and λ(v) = λ(w).

(b) Suppose that w is not adjacent to any p-local vertex other than v. In
that case, set λ(v) = p and λ(w) = 0. The vertex w is not adjacent in
Γ to two vertices x and y such that λ̄(x) = λ̄(y) = q ∈ P with q 6= p
because otherwise (Γ/e)(λ̄, 0) would contain a double edge joining
p and q, and hence Γ/e ∈ N (ν), contrary to our hypothesis. This
proves that λ is admissible at w and the admissibility at other vertices
is a consequence of the admissibility of λ̄. Also e is λ-contractible.

(2) Suppose that v is internal. Then w is also internal since v < w.
(a) Suppose that λ̄(v) = 0. In that case set λ(v) = λ(w) = 0. By

admissibility of λ̄, there do not exist two vertices x, y ∈ VΓ \ {v, w}
adjacent in Γ to either v or w with λ̄(x) = λ̄(y) ∈ P . It is easy to see
that λ is admissible and e is λ-contractible.

(b) Suppose that λ̄(v) = p ∈ P . By admissibility of λ̄ there exist two
distinct vertices x, y ∈ VΓ \ {v, w} adjacent in Γ to either v or w such
that λ̄(x) = λ̄(y) = p.
• If v is not adjacent to any vertices in (VΓ \ {v, w}) ∩ λ̄−1(p)

then set λ(v) = 0 and λ(w) = p.
• If w is not adjacent to any vertices in (VΓ \ {v, w}) ∩ λ̄−1(p)

then set λ(v) = p and λ(w) = 0.
• If both v and w are adjacent to some vertices in (VΓ \ {v, w})∩

λ̄−1(p) then set λ(v) = λ(w) = p.
In each case it is easy to see that λ is admissible and that e is λ-
contractible.

This proves surjectivity of ω. �

Lemma 7.3.9. If Γ is admissible, if λ is admissible, and if e is a λ-contractible edge
of Γ, then, for p ∈ P ∗, we have in D(Ap):

(Γ/e)(λ/e, p) =

{
Γ(λ, p)/e, if p = λE(e);
Γ(λ, p), otherwise.

Proof. Let v and w be the endpoints of e with v < w. Then VΓ/e = VΓ \ {w}
and EΓ/e = EΓ \ {e}. It is easy to see that the equations to prove are equivalent to

{
λ/e = λ|(VΓ \ {w})

(λ/e)E = λE |(EΓ \ {e})

Since e is λ-contractible, by Lemma 7.3.7, λ(v) = λ(w) or min(λ(v), λ(w)) = 0.
If λ(v) < λ(w) then λ(v) = 0 which implies that v is internal, and the same for
w because v < w, in which case we can transpose the order of v and w to get
an equivalent diagram (up to sign) in which the roles of v and w are exchanged.
Therefore, without loss of generality we can always assume that λ(v) ≥ λ(w). This
implies that (λ/e)(v) = λ(v). Also for z 6= v, w we have (λ/e)(z) = λ(z). Thus
λ/e = λ|VΓ \ {w}.
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It remains to prove that (λ/e)E = λE |(EΓ \ {e}). Let f 6= e be an edge of Γ. If w
is not an endpoint of f , then, since λ/e = λ|VΓ \ {w}, (λ/e)E(f) = λE(f). Suppose
that w is an endpoint of f . If λ(w) = λ(v) then (λ/e)E(f) = λE(f). Otherwise
λ(w) = 0 and λ(v) = p ∈ P , and hence f is global in Γ. As Γ is admissible and
f 6= e, the other endpoint of f is not v. Since λ is admissible and since w is not
r-local but is adjacent to the p-local vertex v, we get that the other endpoint of f is
not p-local. This implies that f is global in Γ/e, and hence (λ/e)E(f) = λE(f) = 0.
This proves that (λ/e)E = λE |(EΓ \ {e}). �

Proof of Proposition 7.3.1. Let Γ be an admissible diagram on A. For
p ∈ P ∗ and for a condensation λ of Γ, define the sign

η(Γ, λ, p) := (−1)s with s =
∑

q∈P∗

q<p

deg(Γ(λ, q)).

We have

d(Ψν(Γ))
(7.11)
= d


 ∑

λ∈AdmCond(Γ)

Γ(λ)




=
∑

λ∈AdmCond(Γ)

∑

p∈P∗

σ(Γ, λ) · η(Γ, λ, p)·(7.13)

· ⊗
q<p

Γ(λ, q)⊗ d (Γ(λ, p))⊗ ⊗
q>p

Γ(λ, q)

=
∑

λ∈AdmCond(Γ)

∑

p∈P∗

∑

e∈Econtr
Γ(λ,p)

σ(Γ, λ) · η(Γ, λ, p) · ǫ(Γ(λ, p), e)·

· ⊗
q<p

Γ(λ, q)⊗ Γ(λ, p)/e⊗ ⊗
q>p

Γ(λ, q)

Lemma 7.3.9
=

∑

(e,λ)∈Ω

σ(Γ, λ) · η(Γ, λ, λE(e)) · ǫ(Γ(λ, λE(e)), e)·(7.14)

·
(
⊗

p∈P∗
(Γ/e)(λ/e, p)

)
.(7.15)

On the other hand,

Ψν(d(Γ)) = Ψν


 ∑

e∈Econtr
Γ

ǫ(Γ, e) · Γ/e




=
∑

(e,λ̄)∈Ω

ǫ(Γ, e) · σ(Γ/e, λ̄) ·
(
⊗

p∈P∗
(Γ/e)(λ̄, p)

)

Lemma 7.3.8
=

∑

(e,λ)∈Ω

ǫ(Γ, e) · σ(Γ/e, λ/e) ·
(
⊗

p∈P∗
(Γ/e)(λ/e, p)

)
(7.16)

It remains to check that the signs of (7.15) and (7.16) agree, which is straighforward.
�
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7.4. Proof that the cooperad structure is well-defined

We show in this section that {Ψ̂ν} and {Ψν} endow D̂ and D with the cooperadic
structure (the former in the category of vector spaces and the latter in the category
of chain complexes), when ν runs over all weak ordered partitions.

First let us show the associativity of the structure maps. Suppose given a weak
ordered partition ν : A → P as before. Suppose moreover that A is itself linearly
ordered, that ν is increasing, and that P ∗ ∩ A = ∅. Let ξ : B → A be an ordered
weak partition of a finite set B. Set Ba = ξ−1(a) for a ∈ A. Also set A∗ = {0}<A.

We then have a natural bijection

∐
a∈A

Ba
∼= ∐

p∈P
∐

a∈Ap

Ba.

For p ∈ P , the partition ξ restricts to a weak ordered partition

ξp : ∐
a∈Ap

Ba −→ Ap.

The associativity of Ψ̂ amounts to the following lemma whose proof is straightfor-
ward.

Lemma 7.4.1. The following diagram is commutative:
(7.17)

D̂
(
∐

p∈P

(
∐

a∈Ap

Ba

))

Ψ̂ν◦ξ

��

D̂
(
∐

a∈A
Ba

)

Ψ̂ξ

��
D̂(P )⊗ ⊗

p∈P
D̂
(
∐

a∈Ap

Ba

)

id⊗ ⊗
p∈P

Ψ̂ξp

��

D̂(A) ⊗ ⊗
a∈A
D̂(Ba)

Ψ̂ν⊗id

��

D̂(P )⊗ ⊗
p∈P

(
D̂(Ap)⊗ ⊗

a∈Ap

D̂(Ba)

)
∼=

τ
//
(
D̂(P )⊗ ⊗

p∈P
D̂(Ap)

)
⊗ ⊗

a∈A
D̂(Ba)

The horizontal bottom isomorphism τ is the obvious reordering of factors (with the
usual Koszul sign).

We next define an action of the group Perm(A) of permutation of the finite set A on
diagrams on A. Given a permutation σ ∈ Perm(A) and a diagram Γ = (A,E, I, s, t),
we define a new diagram

σ · Γ = (A,E, I, σ ◦ s, σ ◦ t)
where the bijection σ : A

∼=−→ A is extended to all vertices by σ(i) = i for i ∈ I.
The following is immediate.

Proposition 7.4.2. There is an induced action of (Z-graded) CDGA of Perm(A)

on D̂(A) and D(A).

To define the counits of the cooperad structure, consider the CDGA maps

η̂ : D̂(1) −→ K and η : D(1) −→ K
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defined by η̂(1) = 1 and η̂(Γ) = 0 for a diagram other than the unit, and similarly
for η.

Theorem 7.4.3. The structure maps Ψ̂ν and Ψν , for all weak ordered partitions ν,
the symmetric action, and the counits η̂ and η described above define:

• the structure of a cooperad of Z-graded K-algebras on D̂, and
• the structure of a cooperad of CDGAs on D (Z-graded if N = 2).

Proof. The associativity of the structure maps Ψ̂ required for a cooperad
structure is exactly Lemma 7.4.1. We have the corresponding associativity for Ψ

since, by Proposition 7.1.5, that structure map is induced by Ψ̂. It is easy to check
that η̂ and η are counits. The equivariance is also easy to check. �

Note that the cooperad structures developed here are related to cooperad strucures
on the category of sets (as developed in [29]).



CHAPTER 8

Equivalence of the cooperads D and H∗(C[•])

We show in this chapter that the CDGA cooperad D of admissible diagrams is
weakly equivalent to the cohomology algebra of the Fulton-MacPherson cooperad
H∗(C[•];K) for any commutative ring with unit K and ambient dimension N ≥ 2.

Fix a finite set A. We first recall the computation of the algebra H∗(C[A];K) due

to F. Cohen [10]. Denote by [vol] ∈ HN−1(SN−1;K) the orientation class of the
sphere. For a, b which are distinct in A, recall the map θab : C[A] → SN−1 from
(5.6) which gives the direction between two points of the configuration, and set

(8.1) gab := θ∗ab([vol]) ∈ HN−1(C[A];K).

Then as graded algebras we have

H∗(C[A];K) =
∧ ({gab : a, b ∈ A, a 6= b})

(3-term relation ; (gab)2 ; gab − (−1)Ngba)

where ∧({gab}) is the free commutative graded K-algebra generated by the gab’s,
and the 3-term relation is

gabgbc + gbcgca + gcagab

for all distinct a, b, c ∈ A. Here we follow the standard conventions in rational
homotopy theory and denote by ∧Z the free commutative graded algebra generated
by a graded vector space Z. This is thus the tensor product of the symmetric algebra
on Zeven and the exterior algebra on Zodd.

For a, b distinct in A, denote by

(8.2) Γ〈a, b〉
the diagram on A with no internal vertices and whose only edge is a chord from a
to b. This is an admissible cocycle of degree N − 1.

We endow the cohomology algebra with a zero differential to make it a CDGA.

Theorem 8.1. For N ≥ 2, there is a quasi-isomorphism of CDGAs (Z-graded if
N = 2)

I : D(A) ≃−→ (H∗(C[A];K), 0)

characterized by
{
I(Γ〈a, b〉) = gab, for a, b distinct in A;

I(Γ) = 0, for a diagram Γ with internal vertices.

Moreover I is a weak equivalence of cooperads.

87
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The rest of the chapter is devoted to the proof of this theorem.

Consider the submodule D(0)(A) of D(A) generated by admissible diagrams without
internal vertices. Then

D(0)(A) =
∧ ({Γ〈a, b〉 : a, b ∈ A, a 6= b})

((Γ〈a, b〉)2 ; Γ〈a, b〉 − (−1)NΓ〈b, a〉) .

Therefore we have a surjective algebra map

I0 : D(0)(A) −→ H∗(C[A];K)

defined by I0(Γ〈a, b〉) = gab.

Lemma 8.2.

I0(D(0)(A) ∩ d(D(A))) = 0.

Proof. It is enough to prove that I0(dΓ) = 0 when Γ is an admissible diagram
consisting of one internal vertex i and n edges connecting it to the external vertices
a1, . . . , an. In that case,

I0(dΓ) =

n∑

k=1

(−1)kga1ak
ga2ak

. . . gak−1ak
gakak+1

. . . gakan .

The right side vanishes as can be seen using an easy induction on n ≥ 3 and the
3-term relation

ga1ak
ga2ak

= ga1a2(ga2ak
− ga1ak

).

from (1.3) (which corresponds to the case n = 3).

When K = R, an alternative non-computational proof is possible: The Kontsevich
configuration space integral

I : D(n)→ ΩPA(C[n])

(to be defined in Chapter 9) commutes with the differential (Proposition 9.4.1),
and hence

I0(dΓ) = [I(dΓ)] = [dI(Γ)] = 0

in H(ΩPA(C[n])) ∼= H∗(C[n];R). �

This lemma implies that we can define the CDGA morphism I by

(8.3) I(Γ) =

{
I0(Γ), if Γ has no internal vertices;

0, otherwise.

It is straightforward to check that this induces a morphism of cooperads.

Since I induces a surjection in homology, in order to prove that it is a quasi-
isomorphism we only need to establish the following

Lemma 8.3. The graded K-modules H∗(D(A)) and H∗(C[A];K) are isomorphic.

The proof of this lemma will take up the rest of this chapter.

A diagram Γ on A induces a partition of A into its path-connected components,
and we denote this partition by νΓ. In other words, two external vertices a and b
belong to the same element C ∈ νΓ (see Definition 2.3.1 for definitions regarding
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partitions) if and only if they are connected by a path of unoriented edges in Γ.
For a partition ν of A, denote by

D(A)〈ν〉
the submodule of D(A) generated by admissible diagrams Γ whose partition of
connected components is ν. It is clear that D(A)〈ν〉 is a subcomplex of D(A). In
the particular case of the indiscrete partition ν = {A}, we get the subcomplex of
connected admissible diagrams

D
˜
(A) := D(A)〈{A}〉.

We have an isomorphism of complexes

(8.4) D(A) ∼= ⊕
ν
⊗

C∈ν
D
˜
(C)

where the sum runs over all partitions ν of the set A.

The Poincaré series of the homology of the configuration space C[A] is given by
[10]

(8.5) (1 + t)(1 + 2t) . . . (1 + (|A| − 1)t)

with t of degree N − 1. In particular the top degree Betti number is

(8.6) dimH(N−1)(|A|−1)(C(A);K) = (|A| − 1)!

In view of the isomorphism (8.4) and formulas (8.5) and (8.6), Lemma 8.3 will be
a direct consequence of the following

Lemma 8.4. For A non-empty,

dimHi(D
˜
(A)) =

{
(|A| − 1)!, if i = (N − 1) · (|A| − 1),
0, otherwise.

Before proving this lemma, we introduce further submodules. Fix an element a ∈ A
and consider the following submodules of D

˜
(A):

• U0 is the submodule generated by connected admissible diagrams with a
of valence 1 and such that the only edge with endpoint a is contractible;
• U1 is the submodule generated by connected admissible diagrams with a
of valence ≥ 2;
• D
˜
′(A) is the submodule generated by all connected admissible diagrams

that are neither in U0 nor in U1.

It is clear that D
˜
′(A) is a subcomplex of D

˜
(A).

Lemma 8.5. The inclusion

D
˜
′(A) →֒ D

˜
(A)

is a quasi-isomorphism.

Proof. Consider the quotient complex U := D
˜
(A)/D

˜
′(A). We need to show

that U is acyclic.

Identify U in the obvious way with the graded K-module U0⊕U1, and define an in-
creasing filtration on U where elements of filtration ≤ p are the linear combinations
of diagrams in U0 with less than p edges and diagrams in U1 with less than p − 1



90 8. EQUIVALENCE OF THE COOPERADS D AND H∗(C[•])

edges. The differential preserves the filtration. Consider the spectral sequence asso-
ciated to this filtration and which converges to the homology of U . The differential
at the 0th page

d0 : U0 −→ U1
consists of contracting the only edge with endpoint a. It is an isomorphism because
there is an inverse given by “blowing up” the vertex a of a diagram Γ ∈ U1 into
a contractible edge (a, a′) as in Figure 8.1. Therefore the page E1 of the spectral
sequence is trivial and hence U is acyclic. �

 

3 42a=1

5

a′

3 42a=1

5

Figure 8.1. Example of blowing up vertex a = 1 into a con-
tractible edge (a, a′).

We are now ready for the

Proof of Lemma 8.4. The proof is by induction on the cardinality of A.

If A is a singleton then D
˜
′(A) = K · 1, where 1 is the unit diagram with a single

external vertex and no internal vertices or edges. Lemma 8.4 is then a consequence
of Lemma 8.5.

Let A be of cardinality k ≥ 2 and suppose that the lemma has been proved for
< k external vertices. Fix a ∈ A. Any diagram in D

˜
′(A) has exactly one edge with

endpoint a and it is a chord. We have an isomorphism of complexes

D
˜
′(A) ∼= ⊕

b∈A\{a}
Γ〈a, b〉 · D

˜
(A \ {a}).

Using Lemma 8.5 we conclude that

dimHi(D
˜
(A)) = (|A| − 1) · dimHi−(N−1)(D

˜
(A \ {a}))

and deduce the desired conclusion using the induction hypothesis. �

We now finish the

Proof of Lemma 8.3. An elementary computation by induction on |A| using
isomorphism (8.4) and Lemma 8.4 shows that the Poincaré series of H∗(D(A)) is
exactly (8.5), and this is also the Poincaré series of H∗(C[A]). �

This finishes the proof of Theorem 8.1.



CHAPTER 9

The Kontsevich configuration space integrals

In the previous chapter we built a quasi-isomorphism

I: D(n) ≃−→ H∗(C[n])

of cooperads. The goal of this section is to construct a CDGA morphism

I: D(n) −→ ΩPA(C[n])

which will turn out to be a quasi-isomorphism as well as “almost” a morphism of
cooperads (see Proposition 9.5.1 below for the precise meaning of this.) In this
entire chapter the ground ring is the field of real numbers K = R. We also fix
an integer N ≥ 2 which is the dimension of the euclidean space RN on which we
consider the configuration spaces C[n], as well as the underlying dimension of the
space of admissible diagrams D = DN .

We will throughout use many constructions related to semi-algebraic forms that we
quickly reviewed in Chapter 4 and which are fully developed in [19].

The plan of this chapter is as follows.

9.1: We construct a linear map

Î : D̂(n) −→ ΩPA(C[n]).

9.2: We prove that Î is a map of algebras.

9.3: We show that Î induces the desired map I on D(n) by showing that it
vanishes on non-admissible diagrams.

9.4: We prove that Î, and hence I, commutes with the differentials.

9.5: We prove that Î and I are almost morphisms of cooperads.

Before reading on, the reader might want to look at the last part of the introduction
where some intuition about the integrals defined in this chapter is given.

9.1. Construction of the Kontsevich configuration space integral Î

Fix a finite set A. We construct a linear map

Î : D̂(A) −→ ΩPA(C[A])

as follows.

Let Γ be a diagram on A. Let vol be the standard normalized volume form on the
sphere SN−1 ⊂ RN defined as

(9.1) vol = κN ·
N∑

i=1

(−1)iti dt1 ∧ · · · ∧ d̂ti ∧ · · · ∧ dtN

91
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where t1, . . . , tN are the standard coordinates in RN , d̂ti means dti is omitted, and
κN ∈ R is a normalizing constant such that

ˆ

SN−1

vol = 1.

Since all the functions in (9.1) are polynomials, and are hence semi-algebraic, vol ∈
ΩN−1

min (SN−1) is what was called in Chapter 4 a minimal form. More generally, for
any linearly ordered finite set E, consider the product of spheres

(SN−1)E =
∏

e∈E

SN−1,

and denote by volE the top volume form in that product, that is,

(9.2) volE := ×e∈E vole ∈ Ωmin((S
N−1)E)

where the products are taken in the order of E and vole is the standard normalized
volume form on the eth factor.

For v and w two distinct vertices in VΓ, recall from (5.6) the map

θv,w : C[VΓ] −→ SN−1

which associates to a configuration x the direction from x(v) to x(w). By conven-
tion, when v = w, we set θv,v to be the constant map to a fixed basepoint of the
sphere. For an edge e of Γ we set θe = θsΓ(e),tΓ(e) and we define

θΓ := (θe)e∈EΓ
: C[VΓ] −→ (SN−1)EΓ .

Recall the definition of a minimal form from Equation (4.3). We then have such a
form

(9.3) θ∗Γ(volEΓ) ∈ Ωmin(C[VΓ])

which is of degree l = |EΓ| · (N − 1).

By Theorem 5.3.2, the canonical projection

(9.4) πΓ : C[VΓ] −→ C[A]

is an oriented SA bundle. When |A| ≥ 2, the fiber of πΓ is of dimension N · |IΓ|
and integration along the fiber [19, Definition 8.3] gives a pushforward map

(9.5) (πΓ)∗ : Ω
l
min(C[VΓ]) −→ Ω

l−N ·|IΓ|
PA (C[A]).

When |A| ≥ 2, define Î(Γ) as the pushfoward

(9.6) Î(Γ) := (πΓ)∗(θ
∗
Γ(volEΓ)) ∈ ΩPA(C[A]).

For example when Γ is the diagram from Figure 1.2 in the Introduction, Î(Γ) cor-
responds to formula (1.8).

If A is empty or a singleton we just set

(9.7) Î(Γ) :=

{
1, if Γ is the unit diagram;

0, otherwise.

The reason we treat the case |A| ≤ 1 separately is that the dimension of the
fiber of πΓ is then smaller than expected when there are internal vertices (see
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Theorem 5.3.2). Therefore we should in those cases consider the pushforward πΓ∗

of (9.5) to be 0. Formula (9.7) is a clean way to do this.

Lemma 9.1.1. For any finite set A, formulas (9.6) and (9.7) induce a degree 0
linear map

Î : D̂(A) −→ ΩPA(C[A]).

Proof. This is clear for |A| ≤ 1. Suppose that |A| ≥ 2. It is easy to check
that (9.6) is compatible with the equivalence relation ≃ of Definition 6.2.2 (it is the

compatibility with Î which is the motivation for the definition of ≃). We extend it

by linearity. It is clear that Î is of degree 0 (recall Definition 6.2.3 of the degree of
a diagram). �

9.2. Î is a morphism of algebras

In this section we prove

Proposition 9.2.1. Î is a morphism of algebras.

Proof. If |A| ≤ 1 then the proposition is obvious. Suppose now that |A| ≥ 2.
Let Γ1 and Γ2 be two diagrams on A and suppose, without loss of generality, that
they have disjoint sets of internal vertices and of edges. Notice that VΓ1·Γ2 =
VΓ1 ∪A VΓ2 and consider the pullback

(9.8) Csing[VΓ1 , VΓ2 ]

q1

��

q2 //

pullback

C[VΓ2 ]

π2

��
C[VΓ1 ]

π1 // C[A]

which defines a singular configuration space as in Section 5.5.

Set π′ = πi ◦ qi : Csing[VΓ1 , VΓ2 ]→ C[A]. Consider the canonical projections

π : C[VΓ1·Γ2 ] −→ C[A]

and

ρi : C[VΓ1·Γ2 ] −→ C[VΓi ]

for i = 1, 2, and the induced map to the pullback

ρ : C[VΓ1·Γ2 ] −→ Csing[VΓ1 , VΓ2 ].

By the second part of Lemma 5.5.2, π and π′ are oriented SA bundles and ρ induces
a map of degree ±1 between their fibers. It is easy to check that it is actually of
degree +1 because it preserves their orientations (which depend, when N is odd, on
the linear order of IΓ1 < IΓ2). Therefore by [19, Proposition 8.10], for any minimal
form µ ∈ Ωmin(P ), we have

(9.9) π′
∗(µ) = π∗(ρ

∗(µ)).
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We have then

Î(Γ1 · Γ2) = π∗(θ
∗
Γ1·Γ2

(volEΓ1<EΓ2
))

= π∗(ρ
∗(q∗1θ

∗
Γ1
(volEΓ1

) ∧ q∗2θ
∗
Γ2
(volEΓ2

)))

Equation (9.9)
= π′

∗

(
q∗1θ

∗
Γ1
(volEΓ1

) ∧ q∗2θ
∗
Γ2
(volEΓ2

)
)

[19, Proposition 8.15]
= π1∗(θ

∗
Γ1
(volEΓ1

)) ∧ π2∗(θ
∗
Γ2
(volEΓ2

))

= Î(Γ1) · Î(Γ2).

�

9.3. Vanishing of Î on non-admissible diagrams

Recall from Definition 6.5.1 the ideal N (A) of non-admissible diagrams. In this
section we prove

Proposition 9.3.1. Î(N (A)) = 0.

Remark 9.3.2. The ideal N (A) is not the entire kernel of Î since for example
there are admissible diagrams of arbitrarily high degrees but Ω∗

PA(C[A]) is bounded
above.

Since D(A) = D̂(A)/N (A), we deduce the following

Corollary 9.3.3. Î induces a map of algebras

I : D(A) −→ ΩPA(C[A]).

Definition 9.3.4. The maps

Î : D̂(A) −→ ΩPA(C[A]) and I : D(A) −→ ΩPA(C[A]).

are called the Kontsevich configuration space integrals.

The proof of Proposition 9.3.1 consists of Lemmas 9.3.5–9.3.9.

Lemma 9.3.5. Î vanishes on diagrams with loops.

Proof. If |A| ≤ 1 the lemma is obvious. Suppose that |A| ≥ 2 and let Γ
be a diagram with a loop. One of the components of the map θΓ to the product
(SN−1)EΓ is a constant map. Therefore θΓ factors through a space of dimension
< (N − 1) · |EΓ|. By [19, Proposition 5.24] we deduce that the pullback of the

maximal degree form volEΓ by θΓ is zero, and hence the same is true for Î(Γ). �

Lemma 9.3.6. Î vanishes on diagrams with double edges.

Proof. If |A| ≤ 1 the lemma is obvious. Suppose that |A| ≥ 2 and let Γ be a
diagram with double edges. The two components of the map θΓ corresponding to
the double edges factor through the diagonal map

∆: SN−1 −→ SN−1 × SN−1.

Therefore θΓ factors through a space of dimension < (N − 1) · |EΓ|. The conclusion
is the same as in the proof of Lemma 9.3.5. �
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Lemma 9.3.7. Î vanishes on diagrams containing an internal vertex not connected
to any external vertices.

Proof. The lemma is trivial if |A| ≤ 1. Assume that |A| ≥ 2. Let Γ be a
diagram as in the statement. We have a factorization Γ = Γ1 · Γ2 where Γ1 is
a diagram with at least one internal vertex and such that all edges are between

internal vertices. Since Î is a morphism of algebras, it is enough to prove that

Î(Γ1) = 0. So without loss of generality we assume that Γ = Γ1.

The canonical projection πΓ factors as

C[VΓ]
ρ−→ C[IΓ]× C[A]

q−→ C[A]

where ρ is induced by the canonical projections on each factors, and q is the pro-
jection on the second factor. Since we have assumed that the edges of Γ are only
between internal vertices, there is a factorization θΓ = θ′ ◦ ρ for some map

θ′ : C[IΓ]× C[A] −→ (SN−1)EΓ .

Since Γ contains at least one internal vertex, Proposition 5.1.2 implies that

dim(C[IΓ]) ≤ N · |IΓ| −N.

Therefore for x ∈ C[A] we have

dim(q−1(x)) < N · |IΓ| = dim(π−1
Γ (x)))

and [19, Proposition 8.14] implies that

Î(Γ) = πΓ∗(θΓ(volEΓ)) = πΓ∗(ρ
∗(θ′∗(volEΓ))) = 0.

�

Lemma 9.3.8. Î vanishes on diagrams containing a univalent internal vertex.

Proof. If |A| ≤ 1, lemma is trivial. Suppose that |A| ≥ 2. Let Γ be a diagram
with an internal vertex i of valence 1 and let v be the only vertex adjacent to i.
Then VΓ has at least three vertices. Consider the projection

ρ : C[VΓ] −→ C[{i, v}]× C[VΓ \ {i}]
induced by the canonical projections on each factor. Since (i, v) is the only edge
with endpoint i we have a factorization θΓ = θ′ ◦ ρ for some map

θ′ : C[{i, v}]× C[VΓ \ {i}] −→ (SN−1)EΓ .

Since i is internal we get a map

q : C[{i, v}]× C[VΓ \ {i}] −→ C[A]

obtained as the projection on the second factor followed by the canonical projection,
and πΓ = q ◦ ρ. For x ∈ C[A],

dim(q−1(x)) < dim(π−1
Γ (x)).

Then [19, Proposition 8.14] implies that

Î(Γ) = πΓ∗(θΓ(volEΓ)) = πΓ∗(ρ
∗θ′∗(volEΓ)) = 0.

�

Lemma 9.3.9. Î vanishes on diagrams containing a bivalent internal vertex.
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Proof. Lemma is trivial when |A| ≤ 1. Assume that |A| ≥ 2. We will use
Kontsevich’s trick from [20, Lemma 2.1]. Let Γ be a diagram with an internal
vertex i of valence 2 and let v and w be its adjacent vertices. The key idea will
be to consider the automorphism of C[VΓ] which replaces the point labeled by i by
a point symmetric to it with respect to the barycenter of the points labeled by v

and w, and to use this symmetry to show that Î(Γ) is equal to its negative. For
concreteness, suppose that the two edges at i are oriented as (v, i) and (w, i), and
ordered by (v, i) < (w, i) as the last two edges of the ordered set EΓ.

To give the idea of the proof suppose first that the diagram consists only of these
three vertices and two edges, with v and w external. Set θ = (θv,i, θw,i), which in
this special case is exactly θΓ, and set π = πΓ.

Consider the continuous involution

χ : C[{v, w, i}] ∼=−→ C[{v, w, i}]

defined on C({v, w, i}) by

χ(y) = (y(v) , y(w) , y(v) + y(w)− y(i))

where y(v)+y(w)−y(i) is the point symmetric to y(i) with respect to the barycenter
y(v) and y(w). This is a semi-algebraic automorphism of degree (−1)N .

Let

A : SN−1 −→ SN−1

be the antipodal map and let

(9.10) τ : SN−1 × SN−1 −→ SN−1 × SN−1

be the interchange of factors which is of degree (−1)N−1. By construction of χ, the
following diagram commutes

(9.11) C[{v, w, i}]
χ

��

θ // SN−1 × SN−1

τ◦(A×A)

��
C[{v, w, i}] θ // SN−1 × SN−1

By symmetry of vol, we have A∗(vol) = ± vol, so

(τ ◦ (A×A))∗(vol× vol) = (−1)N−1(vol× vol)

and hence

(9.12) χ∗θ∗(volEΓ) = (−1)N−1θ∗(volEΓ).

On the other hand the restriction of χ to each fiber π−1(x), x ∈ C[A], is an SA
homeomorphism of degree (−1)N . By [19, Proposition 8.10],

(9.13) π∗(χ
∗(θ∗(volEΓ))) = (−1)Nπ∗(θ

∗(volEΓ)).

We deduce that
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Î(Γ) = π∗(θ
∗ volEΓ)

Equation (9.13)
= (−1)Nπ∗(χ

∗θ∗ volEΓ)

Equation (9.12)
= (−1)N−1(−1)Nπ∗(θ

∗ volEΓ)

= −Î(Γ),
and hence Î(Γ) = 0.

For the case of a general diagram, consider the fiber product

(9.14) P

��

//

pullback

C[{v, w, i}]
π1

��
C[VΓ \ {i}] π2

// C[{v, w}]

where π1 and π2 are the canonical projections. Since π1◦χ = π1, the automorphism
χ of C[{v, w, i}] can be mixed with the identity map on on C[VΓ \ {i}] to give an
automorphism of P that we also denote by χ. The canonical projections

C[VΓ] −→ C[VΓ \ {i}] and C[VΓ] −→ C[{v, w, i}]
induce a map ρ : C[VΓ] → P . We have a factorization πΓ = π ◦ ρ for some map
π : P → C[A] which is an oriented SA bundle.

Since the only edges with endpoint i are (v, i) and (w, i), there is a factorization
θΓ = θ ◦ ρ for some map

θ : P −→
(
SN−1

)EΓ\{(v,i),(w,i)} × SN−1 × SN−1.

For each x ∈ C[A] the restriction of ρ to the interior of π−1
Γ (x) is an oriented home-

omorphism onto a dense image in the fiber π−1(x). By naturality of integration
along the fiber [19, Proposition 8.10],

(9.15) πΓ∗(θ
∗
Γ(volEΓ)) = π∗(θ

∗(volEΓ)).

As for the Diagram (9.11), we have θ◦χ = (id×τ ◦(A×A))◦θ. The rest of the proof
is the same as in the special case treated above, starting with Equation (9.12). �

Proof of Proposition 9.3.1. A non admissible diagram satisfies the hy-
pothesis of one of Lemmas 9.3.5–9.3.9. �

9.4. Î and I are chain maps

This section is devoted to the proof of the following.

Proposition 9.4.1. The Kontsevich configuration space integrals commute with
the differential, that is,

Î d = d Î and I d = d I.

Let A be a finite set and let Γ be a diagram on A. We will prove that Î(d(Γ)) =

d(̂I(Γ)), which by Corollary 9.3.3 implies the analogous result for I. If |A| ≤ 1
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then this is obvious. Also if Γ is non-admissible, then by Proposition 9.3.1 and
Lemma 6.5.2 we have

d(̂I(Γ)) = 0 = Î(d(Γ)).

So now we assume that |A| ≥ 2 and that Γ is admissible.

From now on we will drop Γ from the notation when it appears as an index, so
Γ = (A, I, E, s, t), V := VΓ, π := πΓ, etc. Also, to easily define orientations of
certain configuration spaces we assume that A is equipped with an arbitrary linear
order and that V = A < I.

On one side, by definition of d(Γ) in (6.1),

(9.16) Î(d(Γ)) =
∑

e∈Econtr

ǫ(Γ, e) · Î(Γ/e).

To develop the other side d(̂I(Γ)), we will need the results from Sections 5.4 and
5.7 on the decomposition of the fiberwise boundary of C[V ] into faces which are
the images of operadic maps ΦW defined in (5.11), mainly Propositions 5.4.1 and
5.7.1. Recall from (5.37) the fiberwise boundary of π,

π∂ : C∂ [V ] −→ C[A].

Since Î(Γ) = π∗(θ
∗(volE)) and θ∗(volE) is a cocycle, the fiberwise Stokes formula

of [19, Proposition 8.12] implies that

(9.17) d(̂I(Γ)) = (−1)deg(Γ) · π∂
∗

(
(θ∗ volE)|C∂ [V ]

)
,

where (θ∗ volE)|C∂ [V ] denotes the restriction of the form θ∗ volE to that subspace.
Set

µ := (θ∗ volE)|C∂ [V ] ∈ Ω∗
min(C

∂ [V ]).

Using the decomposition of the fiberwise boundary of C[V ] from Proposition 5.7.1
and Proposition 5.4.1 (ii)-(iii), we get, by additivity of integration along the fiber
[19, Proposition 8.11],

(9.18) π∂
∗ (µ) =

∑

W∈BF(V,A)

(π∂ | imΦW )∗(µ)

with the notation from Sections 5.4 and 5.7. Recall in particular that BF(V,A) is
the indexing set of some faces of the fiberwise boundary and consist of some subsets
W ⊂ V .

The core of the proof of Proposition 9.4.1 consists of computing the terms of the
sum in (9.18). We will prove that they all vanish except when W is the pair of
endpoints of a contractible edge e of Γ, and in that case

(π∂ | imΦW )∗(µ) = ±Î(Γ/e),
which are exactly the terms of Î(d(Γ)) in (9.16).

Let W ∈ BF(V,A), that is: W ( V , |W | ≥ 2, and either A ⊂ W or |W ∩ A| ≤ 1
(see (5.38)). Consider the projection to the quotient set

q : V −→ V/W.

The composite

(9.19) (V \W ) ∪ {min(W )} →֒ V
q−→ V/W
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is a bijection and we use it to transport the linear order of V to V/W .

In order to compute (π∂ | imΦW )∗(µ) in (9.21) below, we first associate to Γ and
W two diagrams: Γ′ which is the full subgraph of Γ with set of vertices W , and Γ
which is the quotient of Γ by the subgraph Γ′. More precisely, Γ′ := (A′, I ′, E′, s′, t′)
where

• A′ := A ∩W ;
• I ′ := I ∩W ;
• E′ := E ∩ s−1(W ) ∩ t−1(W );
• s′ = s|E′ and t′ = t|E′,

and Γ := (A, I, E, s, t) with

• A := q(A)
• I := (V/W ) \ q(A);
• E := E \ E′;
• s = q ◦ (s|E) and t = q ◦ (t|E).

Hence VΓ′ = W and VΓ = V/W .

Set θ := θΓ and θ′ := θΓ′ . Set also the minimal forms µ = θ
∗
(volE) and µ′ =

θ′∗(volE′). The following diagram is commutative

(9.20) (SN−1)E × (SN−1)E
′ τW∼= // (SN−1)E

C[V/W ]× C[W ]

θ×θ′

OO

ΦW //

π∂◦ΦW ((PP
PP

PP
PP

PP
PP

PP
C∂ [V ]

π∂

��

�

� // C[V ]

θ

OO

π
yyttt

tt
tt
tt
t

C[A]

Here τW is the obvious reordering of factors which is a homeomorphism since E =
E ∐ E′.

Since W ∈ BF(V,A), there are two cases:

(1) A ⊂W . Then we have a canonical projection

π′ : C[W ] −→ C[A],

and π∂ ◦ ΦW = π′ ◦ proj2 where proj2 : C[V/W ] × C[W ] → C[W ] is the
projection on the second factor.

(2) |W ∩A| ≤ 1. Then the composite

A →֒ V
q−→ V/W

is injective, and we have an associated canonical projection

π : C[V/W ] −→ C[A].

Further, π∂ ◦ ΦW = π ◦ proj1 where proj1 is the projection on the first
factor.
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In both cases, π∂ ◦ ΦW is the composition of two oriented SA bundles, and hence
is itself an oriented SA bundle [19, Proposition 8.5].

The linear orders on V/W and W give C[V/W ] × C[W ] a natural orientation, as
well as to the fibers of π∂ ◦ ΦW . Define the sign

sign(ΦW ) = ±1
according to whether

ΦW : C[V/W ]× C[W ] −→ C∂ [V ],

which is a homeomorphism onto its image of codimension 0, preserves or reverses
orientation. Then ΦW induces the same change of orientation between the fibers
over any x ∈ C[A]. Define also sign(τW ) = ±1 by

τ∗W (volE) = sign(τW ) · (volE × volE′).

The Diagram (9.20) and [19, Proposition 8.10] imply that

(9.21) (π∂ | imΦW )∗(µ) = sign(ΦW ) · sign(τW ) ·
(
(π∂ ◦ ΦW )∗(µ× µ′)

)
.

Our computation of (π∂ | imΦW )∗(µ) goes through the following lemma, in which
we use the notation 〈ω, JMK〉 to denote the evaluation on a compact oriented semi-
algebraic manifold M of a PA form ω ∈ ΩPA(M) (see equations (4.1) and (4.4));
in other words

〈ω, JMK〉 =
ˆ

M

ω.

Lemma 9.4.2.

(9.22) (π∂ ◦ ΦW )∗(µ× µ′) =

{
π∗(µ) · 〈µ′ , JC[W ]K〉, if |W ∩ A| ≤ 1;

±π′
∗(µ

′) · 〈µ , JC[V/W ]K〉, if A ⊂W.

Proof. If |W ∩A| ≤ 1 then π∂ ◦ ΦW = π ◦ proj1 and the desired formula is a
consequence of the double pushforward formula of [19, Proposition 8.13].

If A ⊂W then π∂ ◦ΦW = π′ ◦proj2 and the desired formula is again a consequence
of the double pushforward formula, with an extra sign because of the interchange
of factors in C[V/W ]× C[V ] to apply the double pushforward formula. �

Our next task is to show that in the right hand side of (9.22), the expressions

〈µ , JC[V/W ]K〉 and 〈µ′ , JC[W ]K〉
vanish, except when W is the pair of endpoints of a contractible edge. This is
the content of Lemmas 9.4.5–9.4.7. To prove them we first establish the following
general vanishing lemma.

Lemma 9.4.3. Let Γ0 be a diagram with at least 3 vertices. Then

(9.23) 〈θ∗Γ0
(volEΓ0

) , JC[VΓ0 ]K〉 = 0.

Proof. In this proof we drop Γ0 from the notation when it appears as an
index, so here V := VΓ0 , E := EΓ0 , and θ := θΓ0 . By hypothesis, |V | ≥ 3.

We can assume that

(9.24) deg θ∗(volE) = dimC[V ]
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because otherwise the left side of (9.23) vanishes for degree reasons.

If Γ0 has an isolated vertex v then θ factors through C[V \ {v}]. Since
dimC[V \ {v}] < dimC[V ],

the left side of (9.23) again vanishes for degree reasons.

If Γ0 has a univalent vertex and |V | ≥ 3 then the left side of (9.23) vanishes by the
same argument as in the main part of the proof of Lemma 9.3.8 (where the relevant
hypothesis is that there are at least three vertices).

If Γ0 has a bivalent vertex then the vanishing follows by the same argument as in
Lemma 9.3.9.

Finally, suppose that all the vertices of Γ0 are at least trivalent.

If N = 2 then |E| ≥ 3 and the statement is exactly that of [22, Lemma 6.4].

Suppose that N ≥ 3. Since all the vertices are at least trivalent, |E| ≥ 3
2 |V |.

Therefore

deg(θ∗(volE)) = (N − 1) · |E| ≥ 3(N − 1)

2
|V |

= N · |V |+ N − 3

2
· |V |

≥ N · |V | > dimC[V ]

which contradicts Equation (9.24). �

Remark 9.4.4. The above proof is essentially the one given in [9, Appendix A.3].
However, the context is different in that situation since the configuration space inte-
grals produce differential forms on the spaces of knots rather then on configuration
spaces, as is the case here.

Lemma 9.4.5. If A ⊂W , then 〈µ , JC[V/W ]K〉 = 0.

Proof. If |V/W | ≥ 3 then we apply Lemma 9.4.3 to Γ0 = Γ.

Otherwise |V/W | = 2 and V = W ∪ {v} for some internal vertex v of Γ. Since Γ
is admissible, v is at least trivalent and its adjacent vertices are in W . Therefore
Γ has double edges (even triple) and the conclusion is the same as in the proof of
Lemma 9.3.6. �

Lemma 9.4.6. If |W | ≥ 3 or if W is a pair of non-adjacent vertices of Γ, then

〈µ′ , JC[W ]K〉 = 0.

Proof. If |W | ≥ 3, apply Lemma 9.4.3 to Γ0 = Γ′.

If W is a pair of non adjacent vertices, then Γ′ has no edges and hence µ′ = 1 ∈
Ω0

min(C[W ]). As N > 1, deg(µ′) = 0 < dimC[W ] and the statement follows. �

We are finally left with the case when W is a pair of adjacent vertices of Γ and
|W ∩A| ≤ 1. Then the edge e connecting these two vertices is contractible because
at most one of the endpoints is external and it is not a loop nor a dead end since
Γ is admissible. Moreover in that case we have

Γ = Γ/e and π∗(µ) = Î(Γ/e).
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(The order of internal vertices in Γ is the same as for Γ/e because the ordering
(9.19) is compatible with that of IΓ/e from Definition 6.4.1.) Define the sign

(9.25) η(e) =

{
+1, if N is even or s(e) < t(e)

−1, otherwise.

Lemma 9.4.7. If W is a pair of vertices connected by a contractible edge e of Γ
then

〈µ′ , JC[W ]K〉 = η(e).

Proof. Γ′ consists of a single edge and we have a homeomorphism

θ′ = θs(e),t(e) : C[{s(e), t(e)}] −→ SN−1

which preserves or reverses orientation according to the sign η(e). Thus

〈µ′ , JC[W ]K〉 = η(e) ·
ˆ

SN−1

vol = η(e).

�

Also set Φe = ΦW and τe = τW in that case.

Collecting (9.17), (9.18), (9.21), Lemma 9.4.2, and Lemmas 9.4.5–9.4.7, we get

(9.26) d(̂I(Γ)) =
∑

e∈Econtr

(−1)deg(Γ) · sign(Φe) · sign(τe) · η(e) · Î(Γ/e).

Comparing this to the formula (9.16) for Î(d(Γ)), it remains to compare the signs
of the terms in (9.26) and (9.16). Let e be a contractible edge of Γ.

Lemma 9.4.8. sign(τe) = (−1)(N−1)·(pos(e:E)+|E|).

Proof. If e is the last edge in the order of E then τe is the identity map, and
hence sign(τe) = +1 which is the expected value since pos(e : E) = |E|.
When one transposes e with a consecutive edge in the linear order of E then both
sign(τe) and (−1)(N−1)·(pos(e:E)+|E|) change by a factor of (−1)N−1. This proves
the lemma in full generality. �

Lemma 9.4.9. sign(Φe) = (−1)N ·(pos(max(s(e),t(e)):I)+|I|).

Proof. Suppose first that t(e) is the last and s(e) the second to the last vertex
in the linear order of A < I. Then it is easy to see that

Φe : C[V \ {t(e)}]× C[{s(e), t(e)}] −→ ∂ C[V ]

is orientation-preserving, and hence

sign(Φe) = +1 = (−1)N ·(|I|+|I|)

as expected.
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Consider now a permutation σ of the set of vertices and its induced action on the
following diagram

C[V \ {max(s(e), t(e))}]× C[{s(e), t(e)}]
Φ{s(e),t(e)} //

σ×σ

��

∂ C[V ]

σ

��
C[V \ {max(σ(s(e)), σ(t(e)))}] × C[{σ(s(e)), σ(t(e))}]

Φσ(s(e)),σ(t(e))}// ∂ C[V ].

Inspecting the changes of signs through this diagram, it is straighforward to check
that the formula is true in general. �

By Lemmas 9.4.8–9.4.9 we get that the expressions at (9.26) and (9.16) are equal.

This finishes the proof of Proposition 9.4.1 showing that Î and I are chain maps.

9.5. Î and I are almost morphisms of cooperads

Ideally, Î and I would be morphisms of cooperads. However, as explained in Chapter
3, this is not true since ΩPA(C[•]) is not a cooperad because ΩPA is not comonoidal.
However, these maps are almost morphisms of cooperads in the following sense.

Proposition 9.5.1. The Kontsevich configuration space integrals Î and I are com-

patible with the cooperad structures on D̂ and D as well as with the structure induced
on ΩPA(C[•]) by the operad structure on C[•]. Namely, we have

(1) Given a weak ordered partition ν : A→ P , set P ∗ = {0}<P , Ap = ν−1(p),
and A0 = P as in the setting 2.4.1. Recall the (co)operad structure maps

Φν :
∏

p∈P∗

C[Ap] −→ C[A] ,

Ψ̂ν : D̂(A) −→ ⊗
p∈P∗
D̂(Ap).

Then the following diagram is commutative:

D̂(A) Î //

Ψ̂ν

��

ΩPA(C[A])

Φ∗
ν=ΩPA(Φν)

��
ΩPA(

∏
p∈P∗ C[Ap])

⊗p∈P∗D̂(Ap)
⊗p∈P∗ Î

// ⊗p∈P∗ΩPA(C[Ap])

≃ ×

OO

Here the right vertical quasi-isomorphism × is the standard Kunneth quasi-
isomorphism on forms;

(2) Î is equivariant with respect to the action of the permutations of A;

(3) Î commutes with the counits η̂ : D̂(1)→ R and ΩPA(C[1])
∼=−→ R.

(1)–(3) are also true when we replace Î by I, D̂ by D, Ψ̂ν by Ψν , and η̂ by η.
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The rest of the section is devoted to the proof of this proposition. Statements (2)
and (3) are easy, as is (1) when |A| ≤ 1, and that the statements pertaining to I

follow from those pertaining to Î.

We now focus on the proof of (1) for a given weak ordered partition ν : A→ P such
that |A| ≥ 2. Let Γ be a diagram on A. We need to prove that

(9.27) (×p∈P∗ Î)(Ψ̂ν(Γ)) = Φ∗
ν (̂I(Γ)).

To understand why this formula holds, remember the discussion of condensations of
configurations starting soon after (5.16) and ending at Definition 5.6.1. Morally, the

right hand side of the formula is the restriction of the form Î(Γ) to the part of the
boundary of C[A] consisting of ν-condensed configurations (assuming that ν is non-
degenerate.) When performing integration along the fiber of πΓ over a ν-condensed
configuration x ∈ C[A], the points of the configuration y ∈ π−1

Γ (x) ⊂ C[V ] labeled
by internal vertices can be differently condensed with respect to the various clusters
of points in x, and this corresponds exactly to the different condensations λ relative

to ν. Thus the integral Φ∗
ν (̂I(Γ)) is obtained by summing over various subdomains

C[V, λ] ⊂ C[V ] indexed by condensations, and the cooperad structure map Ψ̂ν that
appears on the left side of (9.27) is precisely the sum over these condensations.

We now proceed with the details. To simplify notation, we will drop Γ from the
notation when it appears as an index, so I := IΓ, π := πΓ, E := EΓ, θ = θΓ, etc.
Also for a given condensation λ of V relative to ν and for p ∈ P ∗ we will replace
the index Γ(λ, p) by p, as in Vp := VΓ(λ,p), θp := θΓ(λ,p), etc.

The proof of Equation (9.27) relies on the decomposition of the pullback of the
operad structure map Φν along the canonical projection π that we have investigated
in Section 5.6. We will use the notation and results from that section. Thus
consider the pullback C[V, ν] of Φν along π from Diagram (5.15). Recall from
Proposition 5.6.2 that we have a decomposition

C[V, ν] = ∪C[V, λ]
where λ runs over all (essential) condensations λ of ν, and that this decomposition
is “almost” a partition (Proposition 5.6.6). Fix such a condensation λ and consider
the following diagram, where the bottom left triangle is Diagram (5.31), the right
bottom pullback is Diagram (5.15), and τλ is the obvious interchange of factors:

(9.28)
∏

p∈P∗(SN−1)Ep
∼=

τλ // (SN−1)E

∏
p∈P∗ C[Vp]

×p∈P∗θp

OO

ρλ //

πλ=×p∈P∗πp ((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

C[V, λ]

(5.31) (5.30)

�

� //

π′
λ

��

C[V, ν]
Φ′

ν //

π′
νxxqqq

qq
qq
qq
qq

pullback (5.15)

C[V ]

θ

OO

π

��∏
p∈P∗ C[Ap]

Φν

// C[A].

The top rectangle in this diagram is also commutative. Indeed by Proposition 5.6.5
(iii), Φ′

ν ◦ ρλ = Φ′
λ and this can be identified with an operadic map (see (5.24)

and (5.23)). From this it follows easily that the rectangle commutes. It is exactly

in the commutativity of that rectangle that the compatibility between Φν and Ψ̂ν
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appears. Recall also from Proposition 5.6.5 that πλ and π′
λ are oriented SA bundles

and that ρλ induces a map of degree σ(I, λ) = ±1 between the fibers.

The idea of the proof of Equation (9.27) is to use this diagram to relate the left
side of (9.27), which is the sum over all condensations λ of

×p∈P∗ Î(Γ(λ, p)) = ×p∈P∗πp∗(θ
∗
p volEp),

to the right side of (9.27), which is the pullback through Φ∗
ν of

Î(Γ) = π∗(θ
∗(volE)).

To make this precise, recall the sign

σ(E, λ) = ±1
defined in (7.3) just before Lemma 7.1.3.

Lemma 9.5.2. τ∗λ(volE) = σ(E, λ) ·
(
×p∈P∗ volEp

)
.

Proof. Switching two factors of SN−1 is a map of degree (−1)N−1. The fac-
tors of

∏
p∈P∗(SN−1)Ep are ordered as <p∈P∗Ep and the number of transpositions

needed to reorder this set as E is the cardinality of S(E, λ). �

Recall from Definition 5.6.1 the notion of an essential condensation, which is a
condensation λ such that, for each p ∈ P ∗, Ip = ∅ (that is, IΓ ∩ λ−1(p) = ∅) when
|Ap| ≤ 2, and let

EssCond(Γ) = EssCond(VΓ, ν)

be the set of essential condensations of the diagram Γ.

Lemma 9.5.3. Let λ be a condensation of Γ.

(i) If λ is essential, then for each p ∈ P ∗

Î(Γ(λ, p)) = πp∗(θ
∗
p(volEp)).

(ii) If λ is not essential, then
(
×p∈P∗ Î

)
(Γ(λ)) = 0.

Proof. Suppose that λ is essential. Then for each p ∈ P ∗, either |Ap| ≥ 2,

in which case Î(Γ(λ, p)) is given by the pushforward (9.6) as expected, or Ip = ∅
in which case formulas (9.7) and (9.6) agree because πp is the identity map and
C[Ap] = ∗.
If λ is not essential then for some p ∈ P ∗ we have |Ap| ≤ 1 and Ip 6= ∅, in which

case Î(Γ(λ, p)) = 0 by (9.7). �

We can now prove the commutativity of the diagram in Proposition 9.5.1, part (1),
which amounts to showing Equation (9.27). By inspection of Diagram (9.28) we
have the following sequence of equalities. The justification for each equality is given
at the end of the string.



106 9. THE KONTSEVICH CONFIGURATION SPACE INTEGRALS

Φ∗
ν (̂I(Γ))

(i)
= Φ∗

ν(π∗(θ
∗(volE)))

(ii)
= π′

ν∗(Φ
′∗
ν (θ

∗ volE))
(iii)
=

∑

λ∈EssCond(Γ)

π′
λ∗((Φ

′
ν |C[V, λ])∗θ∗(volE))

(iv)
=

∑

λ∈EssCond(Γ)

σ(I, λ) · πλ∗(ρ
∗
λ(Φ

′
ν |C[V, λ])∗θ∗(volE))

(v)
=

∑

λ∈EssCond(Γ)

σ(I, λ) · πλ∗ ((×p∈P∗θp)
∗(τ∗λ(volE))

(vi)
=

∑

λ∈EssCond(Γ)

σ(I, λ) · σ(E, λ) · πλ∗

(
(×p∈P∗θp)

∗(×p∈P∗ volEp)
)

(vii)
=

∑

λ∈EssCond(Γ)

σ(Γ, λ) · ×p∈P∗

(
Î(Γ(λ, p))

)

(viii)
=

∑

λ∈Cond(Γ)

(×p∈P∗ Î)(Γ(λ))

(ix)
=

(
×p∈P∗ Î

)
(Ψ̂ν(Γ)).

The justifications are

(i): by definition of Î;
(ii): by pullback formula of the pushforward [19, Proposition 8.9];
(iii): by Propositions 5.6.2 and 5.6.6, and additivity of the pushforward

[19, Proposition 8.11];
(iv): by Proposition 5.6.5 (ii) and naturality of the pushforward

[19, Proposition 8.10];
(v): by commutativity of (9.28);
(vi): by Lemma 9.5.2;
(vii): by definition of σ(Γ, λ) in (7.4), definition of πλ in (5.29),

and Lemma 9.5.3 (i);
(viii): by definition of Γ(λ) in (7.5) and Lemma 9.5.3(ii);

(ix): by definition of Ψ̂ν in (7.6).

This finishes the proof of Proposition 9.5.1, showing that Î and I are almost mor-
phisms of cooperads.



CHAPTER 10

Proofs of the formality theorems

In this chapter we prove all the formality theorems given in the Introduction. Here
K is the field of real numbers R.

For (non-relative) formality, the case of ambient dimension N = 1 is trivial because
the little intervals operad is weakly equivalent to the associative operad which is
clearly formal. Assume that N ≥ 2. Let us show first that

I : D(A) −→ ΩPA(C[A])

is a weak equivalence. It is a CDGA map by Corollary 9.3.3 and Proposition 9.4.1.
The map induced in cohomology is surjective because, for a, b distinct in A, the
single-chord diagrams Γ〈a, b〉 defined in (8.2) are sent to θ∗ab(vol) which correpond
clearly to the generators gab of the cohomology algebra of the configuration space
(see Chapter 8). Since by Theorem 8.1 H(D(A)) ∼= H∗(C[A])), we deduce that I is
a quasi-isomorphism.

As reviewed in Chapter 4, by [19, Theorem 7.1] ΩPA and APL(u(−);R) are weakly
equivalent symmetric monoidal contravariant functors where

(10.1) u : CompactSemiAlg −→ Top

is the forgetful functor which is symmetric strongly monoidal. In view of Defini-
tion 3.1, all of this combined with Theorem 8.1 and Proposition 9.5.1 implies that,
for N ≥ 3, H(C[•];R) is a CDGA model for the operad C[•], and hence the same
is true for the little N -disks operad. This establishes Theorem 1.2, that is, the
formality of the little balls operad over R in the sense of Definitions 3.1 and 3.2.

When N = 2, the above argument does not prove the formality because D2 is only a
cooperad of Z-graded CDGAs (see end of Remark 6.5.6) and is therefore not suitable
for modeling rational (or real) homotopy theory. However, we do have a zig-zag of
quasi-isomorphisms of Z-graded CDGA (almost) cooperads between H∗(C2[•];R)
and Ω∗

PA(C2[•]). Moreover, if we replace the zeroth term of the little disks operad
(corresponding to operations in arity 0) by the empty space and replace D(0) by 0,
then it is possible to truncate the cooperad D by an acyclic operadic ideal to make
it a connected CDGA and recover formality. However, we will not pursue this here.

We now deduce the stable formality of the operad, which is the formality in the
category of operads of chain complexes. We assume N ≥ 2. Recall from [19,
Definition 3.1] the chain complex of semi-algebraic chains

C∗ : SemiAlg −→ ChZ,

107
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which is monoidal. We define the R-dual of a graded real vector space or of a graded
Z-module V as

(10.2) V ∨ := Hom(V,R),

and denote the dual of a linear map f : V → W by f∨ : W∨ → V ∨. There is a
natural pairing

〈−,−〉 : ΩPA(X)⊗ C(X) −→ R(10.3)

ω ⊗ γ 7−→ 〈ω, γ〉

and, by [19, Proposition 7.3], the evaluation map

ev : C∗(X)⊗ R
≃−→ (ΩPA(X))

∨

γ 7−→ 〈−, γ〉

is a monoidal symmetric weak equivalence when X is a compact semi-algebraic set.

Fix a weak ordered partition ν : A → P and set P ∗ = {0} < P , Ap = ν−1(p), and
A0 = P as in the setting 2.4.1. Consider the following diagram (in which we write
⊗P∗ for ⊗p∈P∗)

⊗
P∗

C∗(C[Ap])⊗ R
⊗P∗ev

≃
//

× ≃

��

⊗
P∗

(ΩPA(C[Ap]))
∨

≃

��

⊗P∗ (I∨)

≃
// ⊗
P∗

(D(Ap))
∨

≃

��(
⊗
P∗

ΩPA(C[Ap])

)∨
(⊗P∗ I)∨

≃
//
(
⊗
P∗
D(Ap)

)∨

(Ψν)
∨

��

C∗

(
∏

p∈P∗

C[Ap]

)
⊗ R

ev

≃
//

C∗(Φν)

��

(
ΩPA((

∏
p∈P∗

C[Ap])

)∨

≃ (×)∨

OO

(ΩPA(Φν))
∨

��
C∗(C[A])⊗ R

ev

≃
// (ΩPA((C[A]))

∨ I∨

≃
// (D(A))∨

This diagram is commutative by [19, Proposition 7.3] and Proposition 9.5.1.

Note that D∨, as the dual of the cooperad of Z-graded differential vector spaces D,
is an operad. The above diagram implies that the operad C∗(C[•]) ⊗ R is weakly
equivalent to D∨. By Theorem 8.1, the latter is weakly equivalent to H∗(C[•])⊗R.
By [19, Proposition 7.2], the symmetric monoidal functors of semi-algebraic chains
C∗ and of singular chains S∗ are weakly equivalent. This proves Theorem 1.1, the
stable formality of the little N -disks operad which says that the chains and the
homology of the little balls operad are quasi-isomorphic.

We now arrive to the proof of the relative formality. Let 1 ≤ m < N be integers.
Suppose given a linear isometry

ǫ : Rm −→ RN .
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For an integer d ≥ 1 and a finite set A, denote by Cd[A] the Fulton-MacPherson
space of configurations in Rd. Define the map

Cǫ[A] : Cm[A] −→ CN [A]

which sends a configuration in Rm to its image under ǫ in RN . Clearly this map
induces a morphism of operads and is equivalent to the morphism induced by ǫ
between the little balls operads.

Define the morphism between CDGAs of admissible diagrams in dimensions N and
m

Dǫ : DN (A) −→ Dm(A)

by, for a diagram Γ in DN (A),

Dǫ(Γ) =

{
1, if Γ is the unit diagram;

0, otherwise.

The case m = 1, however, is special. We set

D1(A) := H∗(C1[A]) ∼= R[Perm(A)],

hence D1 is the associative cooperad. The unit 1 ∈ D1(A) is the constant cohomol-
ogy class 1 ∈ H0(C[A]), and Dǫ is defined in the same way as above.

Lemma 10.1. Dǫ is a morphism of CDGA cooperads and it is weakly equivalent to

H∗(Cǫ[•]) : H∗(CN [•]) −→ H∗(Cm[•]).

Proof. It is clear that Dǫ is a morphism of CDGA cooperads. Since m < N ,
H∗(Cǫ;R) is the trivial map, that is, it is zero in positive degrees and maps the unit
of the cohomology algebra to the unit. The same is true for Dǫ. This, combined
with Theorem 8.1 (which is tautological for m = 1) implies the result. �

We now want to prove that Dǫ is weakly equivalent to ΩPA(Cǫ). For this we will use
the Kontsevich configuration space integral that we extend in ambient dimension
m = 1 as the linear map

I = I1 : D1(A) = H∗(C1[A]) −→ Ω∗
PA(C1[A])

that sends a (degree 0) cohomology class to the corresponding locally constant
function on C1[A]. It is clearly a weak equivalence of “almost” cooperads as in
Proposition 9.5.1.

We need the following

Lemma 10.2. Assume that m ≥ 1 and N ≥ 2m + 1. Then the following diagram
commutes:

(10.4) DN (A)
IN

≃
//

Dǫ

��

ΩPA(CN [A])

ΩPA(Cǫ)

��
Dm(A)

Im

≃
// ΩPA(Cm[A]).
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Proof. The case A = ∅ is clear. Assume that |A| ≥ 1. Let Γ be an admissible
diagram in DN (A). We have to show that

(10.5) ΩPA(Cǫ) (IN (Γ)) = Im (Dǫ(Γ)) ,

where the right hand side is zero except when Γ is the unit diagram. For the unit
diagram this is clear, so assume that Γ is not a unit and let us show that the left
hand side of (10.5) vanishes. Denote Γ’s set of edges by E and by I its set of internal
vertices. Suppose first that moreover each external vertex of Γ is an endpoint of
some edge. Since internal vertices are at least trivalent, this implies that

|E| ≥ 1

2
(|A|+ 3 · |I|).

Since N ≥ 2m+ 1 ≥ 3, we deduce that

deg(Γ) = (N − 1) · |E| −N · |I|

≥ N − 1

2
(|A|+ 3 · |I|)−N · |I|

=
N − 3

2
· |I|+ N − 1

2
· |A|

≥ |A| ·m
> dim(Cm[A]),

and hence the left hand side of Equation (10.5) vanishes for degree reasons.

Consider now a general admissible non-unit diagram Γ on A and let B ⊂ A be
the set of external vertices that are the endpoints of some edge of Γ. We have an
obvious associated map

ι : DN (B) −→ DN (A)

Γ′ 7−→ ι(Γ′)

defined by adding to a diagram Γ′ in DN (B) isolated external vertices labeled by
A \B. Thus Γ is the image under ι of some diagram Γ′ ∈ DN (B). The map ι can
easily be described in terms of cooperadic operations analogously to the operadic
description before Definition 5.3.1 of the canonical projection

π : C[A] −→ C[B].

The following diagram commutes

DN (B)
IN

≃
//

ι

��

ΩPA(CN [B])

ΩPA(π)

��
DN (A)

IN

≃
// ΩPA(CN [A]).

Since each external vertex of Γ′ is the endpoint of an edge, we get by the discussion
above that

ΩPA(Cǫ)IN (Γ′) = ImDǫ(Γ
′).

The commutativity of the last diagram and naturality imply then that Equa-
tion (10.5) holds for Γ = ι(Γ′). This proves the lemma. �

Finally we prove the last statement of the Introduction:
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Proof of Theorem 1.4. The last two lemmas clearly imply formality of the
morphism Cǫ, and hence the same for the corresponding map between operads of
little balls (when m 6= 2).

The stable formality of the morphism of operads Cǫ[•] is deduced from the unstable
formality above exactly as in the absolute case. �





Index of notation

For the convenience of the reader, we include a short index of the most important
notation. Each entry is followed by a short description and a reference to where
the notation is defined in the paper.

Names and latin letters

A, AΓ . . . . . . . . . . . . . . . . . . . . . . . . set of external vertices in a configuration space or in
a diagram; Chapter 5, Definition 6.1.1 (see also Ap, I ,
V )

Ap . . . . . . . . . . . . . . . . . . . . . . . . . . . Ap = ν−1(p); Setting 2.4.1
A0 . . . . . . . . . . . . . . . . . . . . . . . . . . . alternative notation for the codomain P of a weak par-

tition ν : A → P ; Setting 2.4.1
AdmCond(Γ) . . . . . . . . . . . . . . . . . set of admissible condensations on a diagram Γ; Defi-

nition 7.3.3
APL . . . . . . . . . . . . . . . . . . . . . . . . . . Sullivan functor of polynomial forms; Chapter 3
BN (n), BN (•), B . . . . . . . . . . . . . little N-disk operad; Chapter 1
barycenter(x) . . . . . . . . . . . . . . . . . barycenter of a configuration in RN ; (5.3)
BF(V ) . . . . . . . . . . . . . . . . . . . . . . . indexing set of the boundary faces of C[V ]; (5.12)
BF(V,A) . . . . . . . . . . . . . . . . . . . . . indexing set of the boundary faces of the fiberwise

boundary C∂ [V ]; (5.38)
C∗(X), Ck(X) . . . . . . . . . . . . . . . . semi-algebraic chains on a semi-algebraic setX; Chap-

ter 4
C(A), C(n) . . . . . . . . . . . . . . . . . . . space of normalized configurations, identified with

Inj10(A,RN ); (5.2), (5.5)
C[A], C[V ], C[•] . . . . . . . . . . . . . . Fulton-MacPherson compactification of configuration

spaces and corresponding operad; Chapter 5, Defini-
tion 5.1.1

C[V, ν] . . . . . . . . . . . . . . . . . . . . . . . . set of ν-condensed configurations; (5.15)

C∂ [V ] . . . . . . . . . . . . . . . . . . . . . . . . fiberwise boundary of π : C[V ] → C[A]; (5.37)
CDGA, CDGAK . . . . . . . . . . . . . . category of (N-graded) commutative differential

graded algebras over the field K; beginning of Chapter
3

ChK . . . . . . . . . . . . . . . . . . . . . . . . . . category of chain complexes with coefficients in K

Csing(V1, V2) . . . . . . . . . . . . . . . . . . singular configuration space; (5.13)
Cond(V, ν), Cond(V ) . . . . . . . . . set of condensations on V relative to a weak partition

ν : A → P ; Definition 5.6.1
Cond(Γ, ν), Cond(Γ) . . . . . . . . . . set of condensations on VΓ relative to a weak partition

ν : A → P ; Definition 7.1.2
d . . . . . . . . . . . . . . . . . . . . . . . . . . . . . differential of a diagram; (6.1)
D(n), DN (n), D(A), D(•) . . . . spaces and cooperad of admissible diagrams; Defini-

tion 6.5.4

D̂(n), D̂N (n), D̂(A), D̂(•) . . . . spaces and cooperad of diagrams; Definition 6.2.2
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deg(Γ) . . . . . . . . . . . . . . . . . . . . . . . . degree of a diagram; Definition 6.2.3
EΓ . . . . . . . . . . . . . . . . . . . . . . . . . . . ordered set of edges of a diagram Γ; Definition 6.1.1
Econtr

Γ . . . . . . . . . . . . . . . . . . . . . . . . set of contractible edges of a diagram; Definition 6.1.1
EssCond(V ), EssCond(V, ν) . . set of essential condensations; Definition 5.6.1
gab . . . . . . . . . . . . . . . . . . . . . . . . . . . standard generator of the cohomology algebra of C[A];

(8.1).

I, Î . . . . . . . . . . . . . . . . . . . . . . . . . . . Kontsevich configuration space integrals; Chapter 9,
(9.6), (9.7), Corollary 9.3.3

I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . quasi-isomorphism between D(A) and H∗(C[A]); The-
orem 8.1, (8.3)

I , IΓ . . . . . . . . . . . . . . . . . . . . . . . . . set of vertices on a configuration space or ordered sets
of internal vertices of a diagram; beginning of Section
5.3, Definition 6.1.1 (see also A and V )

Ip . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of p-local internal vertices (or global if p = 0),
Ip = I ∩ λ−1(p); (5.19), after (7.1) (see also Ap, Vp)

I0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of global internal vertices, I0 = λ−1(0); (5.19),
after (7.1) (see also A0, V0)

Inj(A,RN) . . . . . . . . . . . . . . . . . . . . space of injections of A into RN ; (5.1)
Inj10(A,RN ) . . . . . . . . . . . . . . . . . . . space of injections of A into RN with barycenter at

the origin and radius 1, identified with C(A); (5.5)
K . . . . . . . . . . . . . . . . . . . . . . . . . . . . ground unital ring (often K = R); Chapter 2
N . . . . . . . . . . . . . . . . . . . . . . . . . . . . fixed positive integer giving the ambient dimension

of the little disks operad or the configuration space;
Chapter 2

N (A) . . . . . . . . . . . . . . . . . . . . . . . . . ideal of non-admissible diagrams on A; Definition 6.5.1
N (ν) . . . . . . . . . . . . . . . . . . . . . . . . . ideal of non-admissible diagrams associated to a weak

partition ν; (7.7)
P . . . . . . . . . . . . . . . . . . . . . . . . . . . . codomain of a weak (ordered) partition; Defini-

tion 2.3.1, Setting 2.4.1
P ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . extended codomain P ∗ := {0}<P of a partition; Set-

ting 2.4.1
Perm(A) . . . . . . . . . . . . . . . . . . . . . set of permutations of a set A; Chapter 2
pos, pos(x : L) . . . . . . . . . . . . . . . . position function; Section 2.2
radius(x) . . . . . . . . . . . . . . . . . . . . . radius of a configuration; (5.4)
sΓ(e) . . . . . . . . . . . . . . . . . . . . . . . . . source of an edge; Definition 6.1.1
SN−1 . . . . . . . . . . . . . . . . . . . . . . . . . unit sphere in RN ; (5.6)
S(I, λ), S(E, λ) . . . . . . . . . . . . . . . sets used to define signs σ(I, λ), σ(E,λ); (5.33), pre-

ceeding (7.2)
S∗(−;K); S∗ . . . . . . . . . . . . . . . . . . functor of singular chains with coefficients in K

SemiAlg, CompactSemiAlg . . . category of (compact) semi-algebraic sets; Definition
4.1

tΓ(e) . . . . . . . . . . . . . . . . . . . . . . . . . target of an edge; Definition 6.1.1
Top . . . . . . . . . . . . . . . . . . . . . . . . . . category of topological spaces
u . . . . . . . . . . . . . . . . . . . . . . . . . . . . . forgetful functor CompactSemiAlg → Top; Chapter 4,

(10.1)
V , VΓ . . . . . . . . . . . . . . . . . . . . . . . . set of vertices of a configuration or a diagram, V =

A ∐ I , VΓ = AΓ ∐ IΓ; Definition 6.1.1
Vp . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of p-local internal vertices (or global if p = 0),

Vp = Ap ∪ Ip; (5.19), after (7.1) (see also Ap, Ip)
V0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . set of global internal vertices, V0 = λ−1(0)∪P ; (5.19),

after (7.1) (see also A0, I0)
vol . . . . . . . . . . . . . . . . . . . . . . . . . . . symmetric volume form on the unit sphere; (9.1)
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volE . . . . . . . . . . . . . . . . . . . . . . . . . . volume form on a product of a family of spheres in-
dexed by E; (9.2)

Greek letters

Γ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . a diagram, or an isomorphism class of diagram, or an
equivalence class of diagram; Definition 6.1.1

Γ〈a, b〉 . . . . . . . . . . . . . . . . . . . . . . . . a diagram consisting of a single chord joining the ex-
ternal vertices a and b; (8.2)

Γ(λ), Γ(λ, p) . . . . . . . . . . . . . . . . . . used to define the cooperadic structure on diagrams;
(7.1), (7.5)

δa,b,c . . . . . . . . . . . . . . . . . . . . . . . . . relative distance between three points of a configura-
tion; (5.7)

ǫ(Γ, e) . . . . . . . . . . . . . . . . . . . . . . . . sign associated to the contraction of an edge e in a
diagram; preceeding (6.1)

θa,b, θab . . . . . . . . . . . . . . . . . . . . . . map C[A] → SN−1 giving the direction between two
points of a configuration; (5.6)

θe . . . . . . . . . . . . . . . . . . . . . . . . . . . . θ-function associated to an edge e, θe = θsΓ(e),tΓ(e);
before (9.3)

θΓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . product of maps θe indexed by the edges e of Γ; (9.3)
κ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Kunneth quasi-isomorphism; (3.2), (3.4)
λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . condensation λ : V → P ∗; Definition 5.6.1
λE . . . . . . . . . . . . . . . . . . . . . . . . . . . extension of the condensation λ to edges; Defini-

tion 7.1.2, following (7.1)

λ̂ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . condensation associated to λ; (5.22), below (7.1)
ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . weak partition A → P ; Definition 2.3.1, Setting 2.4.1
π . . . . . . . . . . . . . . . . . . . . . . . . . . . . . canonical projection C[V ] → C[A] for A ⊂ V ; (5.10),

Definition 5.3.1

π∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . pushforward or integration along the fiber Ωk+∗

min (E) →
Ω∗

PA(B); (4.9)
πΓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . canonical projection C[VΓ] → C[AΓ]; (9.4).
(πΓ)∗ . . . . . . . . . . . . . . . . . . . . . . . . . pushforward along the canonical projection πΓ; (9.5)

π∂ : E∂ → B . . . . . . . . . . . . . . . . . . fiberwise boundary of an SA bundle π; (4.8)
σ(I, λ), σ(E,λ), σ(Γ, λ) . . . . . . . signs; (5.32), (7.2), (7.3), (7.4)
Φν . . . . . . . . . . . . . . . . . . . . . . . . . . . operadic structure map in C[•] associated to a weak

partition ν; (5.9)
ΦV

W = ΦW . . . . . . . . . . . . . . . . . . . . operadic structure map corresponding to a circle op-
eration C[V/W ]×C[W ] → C[V ] for W ⊂ V ; (5.11)

Ψν . . . . . . . . . . . . . . . . . . . . . . . . . . . cooperadic structure map on D(•) associated to a
weak partition ν; Section 7.1, Proposition 7.1.5

Ψ̂ν . . . . . . . . . . . . . . . . . . . . . . . . . . . cooperadic structure map on D̂(•) associated to a
weak partition ν; Section 7.1, (7.6)

Ωmin . . . . . . . . . . . . . . . . . . . . . . . . . functor of minimal forms on semi-algebraic sets; (4.3),
(4.9)

ΩPA . . . . . . . . . . . . . . . . . . . . . . . . . . functor of PA forms on semi-algebraic sets; (4.6), The-
orem 4.2, (4.9)

Other symbols

x(a) ≃ x(b) rel x(c) . . . . . . . . . . . . proximity relation in C[A]; (5.8)
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Γ ≃ ±Γ′ . . . . . . . . . . . . . . . . . . . . . . equivalence relation of diagrams; Definition 6.2.2
JMK, g∗(JMK), Jπ−1(b)K . . . . . . . semi-algebraic chain represented by a compact semi-

algebraic manifold M , its image by a semi-algebraic
map g, or semi-algebraic chain represented by a fiber
of an oriented SA bundle; (4.1), (4.7)

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . set {1, . . . , n}; Section 2.1
f |A . . . . . . . . . . . . . . . . . . . . . . . . . . . restriction of a function to a subdomain; Section 2.1
L1 < L2, <p∈PLp . . . . . . . . . . . . . ordered sum; Section 2.2
〈−,−〉 . . . . . . . . . . . . . . . . . . . . . . . . evaluation of a form; (4.4), (10.3)
Y X . . . . . . . . . . . . . . . . . . . . . . . . . . . set of functions from X to Y ; Section 2.1
|A| . . . . . . . . . . . . . . . . . . . . . . . . . . . cardinality of a set A; Section 2.1

E . . . . . . . . . . . . . . . . . . . . . . . . . . . . closure of a subset E in a topological space
∐ . . . . . . . . . . . . . . . . . . . . . . . . . . . . disjoint union of sets
V/W . . . . . . . . . . . . . . . . . . . . . . . . . quotient of a set V by a subset W ⊂ V ; Section 5.4
Γ/e . . . . . . . . . . . . . . . . . . . . . . . . . . . contraction of an edge in a diagram; Definition 6.4.1
λ/e . . . . . . . . . . . . . . . . . . . . . . . . . . . condensation induced on a contracted diagram; (7.12).
V ∨, f∨ . . . . . . . . . . . . . . . . . . . . . . . linear dual of a vector space or of a linear map; (10.2)
‖x‖ . . . . . . . . . . . . . . . . . . . . . . . . . . . Euclidean norm of x ∈ RN

∧Z . . . . . . . . . . . . . . . . . . . . . . . . . . . free commutative graded algebra generated by the
graded vector space Z; after (8.1)
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