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This is a partial list of some interesting questions that arose in the past decade or so from
applications of homotopy-theoretic methods in knot and link theory. The ones I have in mind
(because those are the ones I am familiar with) are manifold calculus of functors, cosimplicial
spaces, and operad actions. (Some problems are also about configuration space integrals as
they have proven to be a useful tool in this story.) There are doubtless others that I have left
out. If you feel something should be added to this document, please let me know. It is quite
likely that the chart on the last page is incomplete, that it requires more arrows, that some
arrows shouldn’t be there, that the list of open problems is incomplete, or even that some of
the problems are incorrectly stated or have been solved. If this is the case, I’d like to hear about
it so I can make corrections.

The first list of open problems arises naturally from existing literature. Thus the numbering of
the problems correspond to the labels of the dotted arrows on the chart on the last page. The
second list is just an assortment of other problems that came to mind. Neither list is in any
particular order. Many of the problems are related (the list could probably be condensed) and
answering one question from the list is likely to answer some of the others.

1. Open problems from the chart on the last page

(1) Both Budney [7] and Salvatore [38] have shown that the framed long knots in Rn, n > 3, are
double loop spaces, but from two very different points of view. Salvatore uses McClure-Smith
cosimplicial machinery while Budney constructs an explicit action of the little discs operad
(actually, Budney’s construction works for classical knots as well). The question is if whether
those two-fold loop space structures are compatible. (Also see (4) below.)

(2) Link maps, and in particular link maps of
∐

k R in Rn, i.e. homotopy string links of k components
in Rn for any n, are studied in [31, 32] using manifold calculus. It would be extremely beneficial
to recast the Habegger-Lin [17] classification result for homotopy string links in this language.

(3) Results in [53] can be interpreted as collapse of the Vassiliev cohomology spectral sequence
(containing configuration spaces in R3) on the diagonal. The same spectral sequence is shown
to collapse rationally in [26], but now the configurations are in Rn, n > 3. Can one show that
the original spectral sequence collapses everywhere rationally? Formality of configuration spaces
still holds, so that should help.

(4) Sinha [43] showed that little discs operad acts on the space of knots modulo immersions in Rn,
n ≥ 3. The question is whether this action is compatible with Budney’s action on framed knots
[7]. Since Salvatore [38] takes Sinha’s work as input, answering (1) would also answer this in
the affirmative.

(5) Koycheff [24] constructs cohomology classes on long knots in Rn, n ≥ 3, by using a Pontryagin-
Thom construction on the same bundle considered in Bott-Taubes integration [5, 11, 54]. This
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allows for the construction of classes over Z on the spaces of knots, which is a nice improvement.
However, since Koytcheff’s construction collapses the entire boundary of the total space of the
bundle in question (spaces K[k, s;K,Rn]), it is hard to understand how his classes compare to
the Bott-Taubes ones from [5, 11]. In particular, it would be nice to know whether Koytcheff’s
classes are of finite type in the case of classical knots. A variant of his construction which might
be better suited for this comparison could come from identifying the boundaries of the various
K[k, s;K,Rn]’s, rather than collapsing them.

(6) Budney and Cohen exhibit the rational homology of the space of classical long knots as a
Poisson-Gerstenhaber algebra and give generators (they also give analogous results for mod
p homology). Similarly, the homology of long knots (modulo immersions) in Rn, n > 3, is
the Hochschild homology of the Poisson algebras operad [26]. It would be nice to explore the
connections more. In particular, [26, 25] provides nice graph complex whose homology is the
homology of knots; it might be nice to have a similar way of viewing the Budney-Cohen results.

(7) Both [51] and Kohno [21] describe integration techniques for constructing cohomology classes
on braids in Rn, n ≥ 3. In [51], Bott-Taubes integrals are used while Kohno uses Chen integrals.
It would be interesting to establish a connection between the two. The main difference is that
in [51], braids are regarded as subspaces of embedding spaces, while in [21], they are thought
of as loops of configuration spaces. One common thread they have is that they both describe
some version of finite type invariants and their generalizations.

(8) In [11], Cattaneo, Cota-Ramusino, and Longoni construct a double complex which gives rise
to cohomology classes on spaces of knots in Rn, n ≥ 3, via Bott-Taubes configuration space
integrals. The conjecture is that all cohomology classes on knot spaces arise in this way. To
show this, it would suffice to show that their complex is quasi-isomorphic to the E1 page of the
Vassiliev spectral sequence [49] (or the orthogonal spectral sequence from [3]).

(9) Related to the previous two questions, [51] gives two diagram complexes and cochain maps
to the deRham complexes of braids and links. The conjecture is that these maps are quasi-
isomorphisms (as should be the case with the corresponding map for long knots constructed in
[11]). In case of braids, this should recover or at least tie into something that’s already known
by work of Cohen-Gitler [14, 13] and Kohno [21].

(10) In analogy with the cohomology spectral sequence converging to long knots in Rn, n > 3, which
is shown to collapse rationally in [26], one has spectral sequences converging to string links and
homotopy string links [32]. In principle, the collapse of those spectral sequences should not be
too hard to show. The first page still consists of cohomology of configuration spaces, which
are formal – this is the main ingredient in [26] – although for homotopy string links they are
“partial” configuration spaces which may complicate the situation.

(11) It is shown in [50] that certain algebraic variants of multivariable Taylor towers for string links
and braids contain all finite type invariants (and that’s all they contain). It is known that such
invariants separate braids [4]. It would be nice to reprove this separation result in the context
of multivariable calculus. Similarly, if would be nice to reprove in manifold calculus setting that
finite type invariants separate homotopy string links [17], although it is not yet clear that the
Taylor multitower for those classifies finite type invariants (the main problem is that defining
Bott-Taubes integrals for homotopy string links is tricky, if not impossible; see one of the other
open problems below). In fact, more is known in the homotopy string links case: It was shown
in [17] that Milnor invariants separate those, and it would thus be useful to see Milnor invariants
in the Taylor multitower for homotopy string links.
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(12) Work in [53] and [26] is related in the sense that both papers give results about the Vassiliev
spectral sequence. Analogously, work in [35] and [3] should be related. Sakai constructs
cohomology classes for more general spaces of embedding than knots, using configuration space
integrals as in [53], while orthogonal spectral sequence in [3] is a generalization of Vassiliev’s.

(13) It was shown in [26] that the Vassiliev cohomology spectral sequence [49] converging to long
knots in Rn, n ≥ 4, collapses at E1. It was also shown in [3] that a certain spectral sequence
converging to the cohomology of Emb(M,V ), where M is a manifold and V is a vector space,
and arising from orthogonal calculus of functors, collapses rationally at E1 (with some assump-
tions on dimensions). Specializing to M = R and V = Rn, n ≥ 4, shows that this orthogonal
E1 page and Vassiliev’s E1 page are quasi-isomorphic, up to regrading. Understanding the
orthogonal spectral sequence better might shed more light on the structure of the rational co-
homology of spaces of knots (with the ultimate goal of obtaining a closed form expression for
this cohomology).

(14) Related to the previous problem, coformality of configuration spaces led the authors of [1] to
deduce the rational collapse of the homotopy spectral sequence for long knots in Rn, n ≥ 4.
The same result should be true more generally for Emb(M,V ). This would allow us to deduce
that Emb(M,V ) is a rational homotopy functor of M and not just a rational homology functor,
as was shown in [3].

(15) Are the cosimplicial spaces defined in [44] and [43] equivalent? They likely are (since they have
the same totalization), but the first and last coface maps are different.

2. Other open problems

(1) What does the Taylor tower for knots (and Taylor multitowers for various link spaces) converge
to? The conjecture is that it converges to the group completion of knots. Mostovoy’s description
of the delooping of long knots via short ropes [30] is almost certainly relevant here.

(2) Does the Taylor multitower for homotopy string links from [32] in Rn, n > 3, converge, as it
does for ordinary links? The convergence in the links case uses Goodwillie-Klein-Weiss estimates,
but there is no such a result for homotopy links.

(3) How can one define (integral) finite type invariants of knots (or links in the multivariable case) in
the Taylor tower, and not just in its algebraic variant [53]? Work of Budney, Conant, Scannell,
and Sinha [10] is the first step in this direction. Conant [15] gives further evidence that the
Taylor tower classifies finite type invariants. Adapting Koytcheff’s construction [24] to the
Taylor tower might also be useful.

(4) In theory, homology of Emb(R,Rn) (long knots in Rn), n > 3, is completely computable from
its combinatorial characterization as essentially the Hochschild homology of the Poisson operad
[26]. However, the computational complexity appears to grow exponentially and the computa-
tions have still been performed only in low degrees. What is needed is a better understanding
of the structure of the Poisson operad. Turchin has already done a lot of work in this direction
[48, 47, 46]. A way to get further might be to exploit formality and coformality at the same
time. Namely, using [26] and [1], there are rational isomorphisms between the homology of
Emb(R,Rn) and the free graded algebra on the Yang-Baxter Lie algebra [20]. Both objects
are accessible combinatorially and it would be good to examine both more closely, with an eye
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toward obtaining a closed form description of H∗(Emb(R,Rn)). There have also been some re-
cent simplifications in the first differential of the spectral sequence giving rise to the description
of homology of Emb(R,Rn) by Christine Pelatt.

(5) Because the authors of [26] could not prove directly that the Kontsevich operad K•n was formal,
the category of fanic diagrams was introduced and the proofs in [26, 1] became quite involved.
However, it seems that if one were working with Emb(S1,Rn), i.e. usual (based) knots rather
than long ones, the proofs would have been much simpler. Namely, spaces Fn(k) which con-
stitute the Kontsevich operad do form a cosimplicial space F•n if the requirement that two of
the configuration points lie at ±∞ (which arises from punching holes in long knots; this is the
first step in applying manifold calculus to knots) is dropped. To relate this to Emb(S1,Rn),
it would be necessary to revisit Sinha’s construction of K•n from [44] and prove that the par-
tial totalizations of F•n are equivalent to the stages of the manifold calculus Taylor tower for
Emb(S1,Rn). This seems well within reach.

(6) Budney shows that the classical long knots are a free little discs object over the prime long knots.
If would be nice to establish an analog of this freeness result for knots in Rn, n > 3. Bringing
in Budney’s work into the picture might also shed some light on the geometric interpretation
of the generators of H∗(Emb(R,Rn)).

(7) If one is to construct all (integral) finite type invariants using the Taylor tower for Emb(R,R3)
and its various models (and not its algebraic variant), an important step might be to show
that the map π0(Emb(R,R3))→ π0(Tr Emb(R,R3)), where Tr is the rth stage of the Taylor
tower, is a surjection for all r. This is precisely what is predicted by the convergence theorem
of Goodwillie and Weiss [16]. Munson and I showed that this holds for small r via an unusual
application of the Isotopy Extension Theorem to the cubical diagrams defining the stages Tr (the
main trick was explained to us by Goodwillie). The hope is that these methods will generalize
to all stages, but the problem seems to be quite difficult.

(8) It is known that Bott-Taubes configuration space integrals represent a universal finite type
invariant of knots [45, 54] as well as links and braids [51]. It would be nice to show the same
result for homotopy string links. The problem is that homotopy string links are usually defined
as subspaces of the spaces of immersions, and not embeddings, in which case certain spaces
built out of compactified configuration spaces which are central to the theory aren’t necessarily
manifolds with corners. Thus one cannot define Bott-Taubes integration for homotopy string
links in the same way as for knots and links. One possible avenue of approach in resolving this
issue would be to show that the resulting configuration spaces are semi-algebraic bundles over
the space of homotopy string links and then do the integration in this setting, as described in
[18]. But it’s not clear that this would work either since homotopy string links can be given
non-polynomially.

(9) Related to the previous item, it can be shown [50] that finite type invariants of homotopy
string links do live in the (algebraic version of) the Taylor multitower [33]. Because of lack
of Bott-Taubes integration, there could be more invariants in the multitower than the finite
type ones. If Bott-Taubes integration cannot be extended to this context, is there some other
way to show that the Taylor multitower only contains finite type invariants of homotopy string
links? Further, exactly which of those are Milnor invariants (it is known that Milnor invariants
of homotopy string links are finite type [4]) and how can they be identified?
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(10) Even though Bott-Taubes configuration space integrals are mostly a technical tool from the
point of view of homotopy theory, they are interesting in their own right because they repre-
sent a bridge between classical knot theory and physics (Chern-Simons theory is the birthplace
of configuration space integrals) on one side and homotopy theory of embedding spaces on
the other. In particular, the question of the vanishing of anomalous faces remains unsolved.
Namely, it is now known whether Bott-Taubes integrals vanish when restricted to the face of
a compactified configuration space characterized by all points coming together. D. Thurston’s
computations in low degrees suggest that this is so. Resolving this issue would also give a
better relationship between Bott-Taubes and Kontsevich integration [22] (these are both ways
of constructing a universal finite type knot invariant).

(11) Manifold calculus of functors might have an interesting connection to Khovanov homology [19].
To start, there is an easy observation that cubical diagrams involving similar things are central
both to calculus and to Khovanov homology. More evidence comes from results of Przytycki
[34] who relates Khovanov homology to Hochschild homology of links, and the latter (in some
form) abounds in applications of manifold calculus to knot theory.

(12) Looking at [8, 35, 3], it seems that a lot of ideas in knot theory which come from calcu-
lus of functors, Bott-Taubes integration, and other places can be adapted to work for more
general embedding spaces Emb(Rj ,Rn). It would be nice to have a “punching-holes” or a
(multi)cosimplicial model for this situation.

(13) Some results about Emb(Rj ,Rn) (modulo immersions) that use manifold calculus already exist.
In [2], Arone and Turchin show that this space is equivalent to the space of truncated “weak”
module maps from little j-cubes to little n-cubes and hence, if n ≥ j + 3 (so that the Taylor
tower converges), Emb(Rj ,Rn) is the space of all such module maps. Turchin has further
conjectured that Emb(Rj ,Rn) is (j + 1)-fold loop space of the space of derived morphisms
between j-cubes and n-cubes. The conjecture was verified by Turchin and Lambrechts for
j = 1.

(14) Any sort of manifold calculus for Emb(R2,R4) is likely to connect to work of Schneiderman
and Teichner [41, 40].

(15) If one studies Emb(Σ,Rn), where Σ is a surface with some genus and some number of punctures,
then the spaces in the Taylor tower would always be homotopy equivalent to wedges of circles.
Maps between them in the (sub)cubical diagrams defining the stages of the Taylor tower would
“double” circles, just like in the case of knots these maps “double” points. The doubling in
case of knots was made precise via a cosimplicial model consisting of compactified configuration
spaces. In case of Emb(Σ,Rn), one would need to define some kind of a compactification of
configurations of circles in Rn. If this is doable, then a cosimplicial model for the Taylor tower
for Emb(Σ,Rn) would almost immediately follow. As was pointed out to me by Ben Cooper,
this has the potential of connecting in interesting ways to BDiff(Σ) and Kontsevich’s associative
graph complex. In fact, the Taylor tower might give some kind of a filtration of BDiff(Σ) by
graph complexity.
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In the literature chart on the next page,

A // B means results from A are used in B.

A oo // B means results from A and B should be related.



Figure 1. Literature on recent developments in knot and link theory using homotopy-theoretic methods such as manifold calculus, cosimplicial
spaces and associated spectral sequences, and action of the little discs operad.
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of spaces of long knots, Math. Res. Lett. 15 (2008), no. 1, 1–14.

2. Greg Arone and Victor Turchin, On the rational homotopy type of high dimensional analogues of spaces of
long knots, in preparation.
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32. Brian A. Munson and Ismar Volić, Cosimplicial models for spaces of links, submitted.
33. , Multivariable manifold calculus of functors, submitted.
34. Jozef Przytycki, When the theories meet: Khovanov homology as hochschild homology of links, arXiv:

math.GT/0509334.
35. Keiichi Sakai, Configuration space integrals for embedding spaces and the Haefliger invariant, arXiv:

0811.3726.



OPEN PROBLEMS 9

36. , Nontrivalent graph cocycle and cohomology of the long knot space, Algebr. Geom. Topol. 8 (2008),
no. 3, 1499–1522.

37. , Poisson structures on the homology of the space of knots, Groups, homotopy and configuration
spaces, Geom. Topol. Monogr., vol. 13, Geom. Topol. Publ., Coventry, 2008, pp. 463–482.

38. Paolo Salvatore, Knots, operads, and double loop spaces, Int. Math. Res. Not. (2006), Art. ID 13628, 22.
MR MR2276349 (2007j:57012)

39. Kevin P. Scannell and Dev P. Sinha, A one-dimensional embedding complex, J. Pure Appl. Algebra 170
(2002), no. 1, 93–107.

40. Rob Schneiderman and Peter Teichner, Higher order intersection numbers of 2-spheres in 4-manifolds, Algebr.
Geom. Topol. 1 (2001), 1–29 (electronic).

41. , Whitney towers and the Kontsevich integral, Proceedings of the Casson Fest, Geom. Topol. Monogr.,
vol. 7, Geom. Topol. Publ., Coventry, 2004, pp. 101–134 (electronic).

42. Dev P. Sinha, Manifold-theoretic compactifications of configuration spaces, Selecta Math. (N.S.) 10 (2004),
no. 3, 391–428.

43. , Operads and knot spaces, J. Amer. Math. Soc. 19 (2006), no. 2, 461–486 (electronic).
44. , The topology of spaces of knots: cosimplicial models, Amer. J. Math. 131 (2009), no. 4, 945–980.
45. Dylan Thurston, Integral expressions for the Vassiliev knot invariants, arXiv:math.AT/0701350.
46. V. Tourtchine, On the other side of the bialgebra of chord diagrams, J. Knot Theory Ramifications 16 (2007),

no. 5, 575–629.
47. Victor Tourtchine, What is one-term relation for higher homology of long knots, Mosc. Math. J. 6 (2006),

no. 1, 169–194, 223.
48. V. Tourtchine (Turchin), On the homology of the spaces of long knots, Advances in topological quantum field

theory, NATO Sci. Ser. II Math. Phys. Chem., vol. 179, Kluwer Acad. Publ., Dordrecht, 2004, pp. 23–52.
49. V. A. Vassiliev, Cohomology of knot spaces, Theory of singularities and its applications, Adv. Soviet Math.,

vol. 1, Amer. Math. Soc., Providence, RI, 1990, pp. 23–69.
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