Megan M. Kerr

Professor of Mathematics

(last modified 5/27/14)
Email:  mkerr [at] wellesley [dot] edu
US Mail:  Department of Mathematics 
Wellesley College 
106 Central Street 
Wellesley, MA 02481
Office:  Science Center 372 
Phone:  (781) 283-3144 
Fax:  (781) 283-3642 
Office Hours:  Click here for current hours.

Education:

Ph.D.: University of Pennsylvania, 1995.
Advisor: Wolfgang Ziller.
Thesis: Homogeneous Einstein Metrics. (dvi or ps)
B.A.: Wellesley College, 1989.
Advisors: Martin Magid, Fred Shultz.

Research Interests:

Riemannian geometry, especially the global geometry of Lie groups and homogeneous spaces. Invariant metrics with prescribed curvature constraints, such as Einstein metrics or positive curvature metrics, on homogeneous manifolds.

Teaching:

  • Fall 2014: Math 116: Calculus II; Math 349: Matrix Groups: An Intro to Lie Groups
  • Spring 2014: Math 116: Calculus II
  • Fall 2013: Math 116: Calculus II; Math 312: Differential Geometry
  • Spring 2013: Math 116: Calculus II; Math 225: Combinatorics and Graph Theory
  • Fall 2012: Math 116: Calculus II
  • Spring 2012: Math 225: Combinatorics and Graph Theory; Math 302: Elements of Analysis I
  • Fall 2011: Math 115: Calculus I; Math 312: Differential Geometry
  • Spring 2011: Math 214: Noneuclidean Geometry; Math 349: Knot Theory
  • Fall 2010: Math 206: Linear Algebra; Math 302: Elements of Analysis I
  • Fall 2009: Math 206: Linear Algebra; Math 312: Differential Geometry
  • On sabbatical in 2008-09.
  • Spring 2008: Math 115: Calculus I; Math 349: Matrix Groups: An Intro to Lie Groups
  • Fall 2007: Math 115: Calculus I
  • Spring 2007: Math 212: Differential Geometry; Math 225: Combinatorics and Graph Theory

  • Publications and Preprints:

  • ``Some New Homogeneous Einstein Metrics on Symmetric Spaces,'' Transactions of the A.M.S. 348 (1996), no. 1, pp 153-171. (pdf)
  • ``Homogeneous Einstein-Weyl Structures on Symmetric Spaces,'' Annals of Global Analysis and Geometry  15 (1997), no. 5, pp 437-445. (pdf)
  • ``New Examples of Homogeneous Einstein Metrics,'' Michigan Mathematical Journal 45 (1998), pp 115-134. (pdf)
  • ``New Homogeneous Einstein Metrics of Negative Ricci Curvature,'' with Carolyn S. Gordon, Annals of Global Analysis and Geometry  19 (2001), no. 1, pp 75-101. (pdf)
  • ``A Deformation of Quaternionic Hyperbolic Space,'' Proceedings of the A.M.S. 134  (2006),  no. 2, pp 559-569. (pdf)
  • ``Low Dimensional Homogeneous Einstein Manifolds,'' with Christoph Böhm, Transactions of the A.M.S. 358 (2006), no. 4, pp 1455-1468. (pdf)
  • ``The Geometry of Compact Homogeneous Spaces with Two Isotropy Summands,'' with Will Dickinson, Annals of Global Analysis and Geometry 34 (2008), no. 4, pp 329-350. (pdf)
  • ``The Geometry of filiform nilpotent Lie groups,'' with Tracy Payne, Rocky Mountain Journal of Mathematics 40 (2010), no. 5, pp 1587-1610. (pdf)
  • ``Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions,'' with Andreas Kollross, Geometriae Dedicata, 166 (2013), no. 1, pp. 269-287. (pdf)
  • ``Nonnegatively curved homogeneous metrics in low dimensions,'' with Andreas Kollross, Annals of Global Analysis and Geometry, 43 (2013), no. 3, pp. 273-286. (pdf)
  • ``A note on quasi-positive curvature conditions,'' with Kristopher Tapp, Differential Geometry and its Applications, 34 (2014), pp. 63-79. (pdf).
  • ``New examples of non-symmetric Einstein solvmanifolds of negative Ricci curvature,'' to appear in Annals of Global Analysis and Geometry (pdf).

  • Cool links:


    Back to Math Dept. page.

    Back to Wellesley College page.