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Abstract— In this paper we study a Hamiltonization procedure for me-
chanical systems with velocity-depending (nonholonomic) constraints. We
first rewrite the nonholonomic equations of motion as Euler-Lagrange
equations, with a Lagrangian that follows from rephrasing the issue in
terms of the inverse problem of Lagrangian mechanics. Second, the Leg-
endre transformation transforms the Lagrangian in the sought-for Hamil-
tonian. As an application, we compare some variational integrators for the
new Lagrangians with some known nonholonomic integrators.

Keywords— nonholonomic systems, Lagrangian and Hamiltonian for-
malism, inverse problem, geometric integration.

I. INTRODUCTION

ANY interesting mechanical systems are subject to ad-

ditional velocity-dependent (i.e. nonholonomic) con-
straints. Typical engineering problems that involve such con-
straints arise for example in robotics, where the wheels of a mo-
bile robot are often required to roll without slipping, or where
one is interested in guiding the motion of a cutting tool.

The direct motivation for our paper [2] was to be found in in-
teresting results that appeared in [3], where the authors propose
a way to quantize some of the well-known classical examples of
nonholonomic systems. On the way to quantization, the authors
propose an alternative Hamiltonian representation for those non-
holonomic systems. However, the “Hamiltonization” method
introduced in [3] can only be applied to systems for which the
solutions are already known explicitly.

Nonholonomic systems have a more natural description in the
Lagrangian framework. In [2], we explained how one can as-
sociate to the nonholonomic equations of motion a family of
systems of second-order ordinary differential equations and we
applied the conditions of the inverse problem of the calculus of
variations on those associated systems to search for the existence
of a regular Lagrangian. (The inverse problem of the calculus
of variations deals with the question of whether or not a given
system of second-order differential equations is equivalent with
the Euler-Lagrange equations of a yet to be determined regular
Lagrangian, see e.g. [12]). If such an unconstrained regular La-
grangian exists for one of the associated systems, we can always
find an associated Hamiltonian by means of the Legendre trans-
formation. Since our method only made use of the equations of
motion of the system it did not depend on the knowledge of its
explicit solutions.

A system for which no exact solutions are known can only be
integrated by means of numerical methods. In addition to the
above mentioned application to quantization, our Hamiltoniza-
tion method may also be useful from this point of view. Numer-
ical integrators that preserve the underlying geometric structure
of a system are called geometric integrators. A geometric inte-
grator of a Lagrangian system uses a discrete Lagrangian that re-
sembles as much as possible the continuous Lagrangian (see e.g.
[11]). On the other hand, the succes of a so-called nonholomic

integrator (see e.g. [4], [7]) relies not only on the choice of a
discrete Lagrangian but also on the choice of a discrete version
of the constraint manifold. It seems therefore reasonable that
if a free Lagrangian for the nonholonomic system exists, the
Lagrangian integrator may perform better than a nonholonomic
integrator with badly chosen discrete constraints.

In the next section we recall the set-up and the main results
of our paper [2]. In section III we compare some nonholonomic
and variational geometric integrators for a few of the classical
nonholonomic systems. In section IV, we indicate some ideas
on how we wish to extend the results of this paper.

II. A CLASS OF NONHOLONOMIC SYSTEMS

We will consider only a certain class of nonholonomic sys-
tems on R"”: We will assume that the configuration space of
the system is a space with codrdinates (ry,r2,5q), that the La-
grangian of the system is given by the function
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and that the nonholonomic constraints are all of the form
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The nonholonomic equations of motion follow from d‘Alembert’s
priciple (see e.g. [1]). For systems in our class they are given by
the equations
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together with the constraint equations (2). After eliminating the
Lagrange multipliers by means of the constraints, one gets

i1 =0,
iy = —N?KF 72, 3)
joc = *Aoc"’Za

where N(r1) = (L + Y, IaAé)_% is related to the invariant mea-
sure of the system and K = Y5 IgApAp;. with Ay = 0, Ap.

Some basic examples of nonholonomic systems that lie in this
class are the following ones. The classic example of a nonholo-
nomically constrained free particle has a Lagrangian and con-
straint given by

L =

(P +y*+2") and z+xy=0.
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A knife edge on a horizontal plane corresponds physically to a
blade with mass m moving in the xy plane at an angle ¢ to the
x-axis. Its Lagrangian and constraint are given by

L= %m(x2 +3)+ %W and  xsin(¢) —ycos() =0.

Also the vertically rolling disk is an example in our class. The
assumption that the disk rolls without slipping over the plane
gives rise to nonholonomic constraints. Let R be the radius of
the disk. If the triple (x,y,z = R) stands for the coordinates of
its centre of mass, @ for its angle with the (x,z)-plane and 6 for
the angle of a fixed line on the disk and a vertical line, then the
nonholomic constraints are of the form

% =Rcosg® and y=Rsingh.

The Lagrangian of the disk is

1 2 2 Lo 15
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where [ = %MR2 and J = %MR2 are the moments of inertia and
M is the total mass of the disk. For the vertically rolling disk N
is a constant and K = 0.

Fig. 1. The vertically rolling disk

Finally, also the examples of the mobile robot with fixed orien-
tation and the two-wheeled carriage (see e.g. [8]) lie within our
class.

The equations of motion (3) are a mixed set of first- and
second-order differential equations. On the other hand, the
Euler-Lagrange equations
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of a regular Lagrangian L are second-order differential equations

(only) [The tilde in L will always denote that the Lagrangian is

free, and that it should not be confused with the original La-

grangian L of the nonholonomic system.]. We therefore need

a way to associate a second-order system to our nonholonomic
system. One possible choice of doing so is the system
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The above second-order system has the property that its solution
set contains, among other, also the solutions of the nonholo-
nomic dynamics (3) when restricted to the constraints. Another
choice for an ‘associated system’ with the same property is e.g.
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(no sum over ). It is clear, that there are in fact an infinite num-
ber of such associated second-order systems, but we will con-
centrate in this paper on the above two. For some other possible
choices, see [2].

Proposition 1: 1. There does not exist a regular Lagrangian
whose Euler-Lagrange equations are equivalent with the
second-order system (4) (for the classical examples cited
above).

2. The Euler-Lagrange equations of the Lagrangian
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are equivalent with the second-order system (5). If the invariant
measure density N is a constant, then also
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is a regular Lagrangian for the system (5).

Proof: 'We give here only an outline of the method we’ve
used to prove the statements. For full details, see [2]. As-
sume we are given a system of second-order ordinary differen-
tial equations

q = f'(4,9)-
The search for a regular Lagrangian is known in the literature
as ‘the inverse problem of the calculus of variations’, and has
a long history (for a recent survey on this history, see e.g. [10]
and the long list of references therein). In order for a regular
Lagrangian L(q,§) to exist we must be able to find functions
8ij(q,4), so-called multipliers, such that
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It can be shown [6], [12] that the multipliers must satisfy
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The symbol I stands for the vector field q’iaqi + fiaq-i that can

naturally be associated to the system ¢’ = f(q,q). Conversely,

if one can find functions g;; satisfying these conditions then

the equations §' = f are derivable from a regular Lagrangian.

Moreover, if a regular Lagrangian L can be found, then its Hes-
by

sian ajtaq/ is a multiplier.

The above conditions are generally referred to as the
Helmbholtz conditions. They are a mixed set of coupled alge-
braic and PDE conditions in (g;;). We will refer to the penul-
timate condition as the ‘V- condition,” and to the last one as
the ‘@-condition.” The algebraic ®-conditions are of course the
most interesting to start from. In fact, we can easily derive more
algebraic conditions (see e.g. [5]). For example, by taking a
I'-derivative of the ®-condition, and by replacing I'(g;;) every-
where by means of the V-condition, we arrive at a new algebraic
condition of the form

git(VP)s = gju(VP);,

where
(VCID)lj = F(CID’j) — Vﬁncb’}‘ — V;»”CI)jn.

This (V®)-condition will, of course, only give new informa-
tion as long as it is independent from the &®-condition (this
will not be the case, for example, if the commutator of matri-
ces [®@,V®P] vanishes). One can repeat the above process on
the (V®)-condition, and so on to obtain possibly independent
(V...V®)-conditions. A second route to additional algebraic
conditions arises from the derivatives of the d-equation in ¢-
directions. One can sum up those derived relations in such a
way that the terms in 9, g;; disappear on account of the symme-
try in all their indices. The new algebraic relation in g;; is then
of the form _ ' .
8ijRiy + 81jRi + 8k jRj; = 0,

where '
R}, =0, (Pf) — 0,5(P%).

As before, this process can be continued to obtain more alge-
braic conditions. Also, any mixture of the above mentioned
two processes leads to possibly new and independent algebraic
conditions. Once we have used up all the information that we
can obtain from this infinite series of algebraic conditions, we
can start looking at the partial differential equations in the V-
conditions.

Let us now come back to the second-order systems (4) and (5)
at hand. The proof of the proposition relies on the fact that for
the first systems (4), the only matrices (g;;) that satisfy the first
few algebraic conditions must be non-singular. On the other
hand, the two Lagrangians for the system (5) follow from an
analysis of the Helmholtz conditions with carefully chosen an-
szatzes. For more details, see [2]. |

Remark that the Lagrangians are not defined for 7/ = 0, and
we will in general exclude the solutions with that property from
the further considerations in this paper. Any regular Lagrangian
system with Lagrangian L can be transformed into a Hamilto-
nian one, by making use of the Legendre transformation

oxy
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The corresponding Hamiltonian is then
I:] = piqi — I:

Similarly, the Legendre transformation maps the constraints,
viewed as a submanifold of the tangent manifold, onto a sub-
manifold in the cotangent manifold.

Proposition 2: Using the Legendre transformation, the
Hamiltonian that corresponds to the Lagrangian (6) is given by
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The corresponding constraints are

Copo = —Cqps.

If N is constant, the Hamiltonian that corresponds to the La-
grangian (7) is
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and the constraints transform into
IzNi']p(x +a(xp2 = 07

where iy = (p1+ 5N Yo Aapl/aa)/11.
In [2], [9] we explain how the above Hamiltonians can be
directly derived from Pontryagin’s Maximum principle.

III. GEOMETRIC INTEGRATORS
A. Set-up

As we explained in the introduction, there are now two ways
to compute a numeric approximation of a solution of a system
in our class: we can use either a nonholonomic integrator for
the original Lagrangian (1) and constraints (2) , or we can use a
variational integrator for one of the Lagrangians (6) and (7) we
have found in Proposition 1. Let us come to some details.

Geometric integrators are integrators that preserve the under-
lying structure of the system. In particular, variational inte-
grators are integrators that are derived from a discrete version
of Hamilton’s principle. From this discrete variational princi-
ple one obtains the so-called discrete Euler-Lagrange equations
as follows. For a mechanical system with Lagrangian L, one
needs to choose a discrete Lagrangian L;(q1,¢2) (a function on
0O x Q which resembles as close as possible the continuous La-
grangian). A solution ¢(¢) is then discretised by an array g
which are the solutions of the so-called discrete Euler-Lagrange
equations

D1 La(qx, qk+1) +D2Lg(qk—1,qx) = 0. (8

These integrators preserve the symplectic and conservative na-
ture of the algorithms. It is important to realize that a different
choice for the discrete Lagrangian may lead to a different ge-
ometric integrator. The presence of additional holonomic con-
straints (i.e. ‘integrable’ nonholonomic constraints) can be in-
cluded by introducing Lagrange’s multipliers.

On the other hand, for a nonholonomic integrator of a non-
holonomic system with Lagrangian L and constraints ®%(q)¢* =



0, we need to choose both a discrete Lagrangian L; and discrete
constraint functions ®j on Q x Q. The nonholonomic discrete
equations are then

{ DLy (G, qr+1) +D2La(qr—1,9k) = (M) a®*(qi) ©

0%(qxr, qr+1) = 0.

Usually, if Q is a vector space, one takes the discretization in
one of the following ways (for certain o and certain h):
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For the rest of the paper, we will concentrate on this discretiza-
tion procedure. There are, however, many more possibilities to
obtain a discrete Lagrangian and discrete constraints. For ex-
ample, one could take a symmetrized version of the above pro-
cedure and use discrete Lagrangians and discrete constraints of
the form

1 . 42—(q1
Li(g1,q2) = 2L<q:(1—0€)m+0€61276]= W
1 _
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Also, if the system is invariant under a symmetry group, it is
advantageous to construct the integrator in such a way that the
discrete system inherits as many as possible of those symmetry
properties, see e.g. [4].

The bottom line of the next sections is the following one. If a
free Lagrangian for the nonholonomic system exists, it seems
reasonable that the Lagrangian integrator may perform better
than a nonholonomic integrator with badly chosen discrete con-
straints. In the next sections, we will test this conjecture on a
few of the classical examples in our class: the vertically rolling
disk, the knife edge and the nonholonomic particle. It will be
convenient that for those systems an exact solution of the non-
holonomic equations (3) is readily available.

B. The vertically rolling disk

For the vertically rolling disk, we have (ri,r2,sq) =
(9,0,x,y). It is well-known that the solutions of the non-
holonomic equations with initial conditions uy = ¢(0) # 0 and

up = 0(0) are all circles with radius R(ug/ug):

0(t) = uet+6p, 0(t) = upt + o,
x(t) = (Z:) Rsin(@(1)) + xo,
70 = () reostor) +30. (12)

Let us put for convenience M = 1 and R = 1 and therefore I =
% and J = %. With that the (nonholonomic) Lagrangian and
constraints are simply

L= %(}c2 +y%) + %92 + é(i)z, X =cos@0, y=sin@h.
We will first compute the solution of the discrete nonholonomic
equations (9) with the discrete Lagrangian (10) and the discrete
constraints (11). Second, since the vertically rolling disk is one
of those examples with a constant invariant measure density N,
we can choose a Lagrangian from the second type (7). The sim-
plest choice is probably

L=1/2 (¢2+92+ (13)
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We now investigate the variational integrator of this Lagrangian,
where the discrete Lagrangian is given by (10). We will fix A
(changing it did not have a significant effect) and only concen-
trate on what happens if we keep o variable. In figure 2 we have
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Fig. 2. Vertically rolling disk with oo = 0.

plotted the situation for o = 0. For a given set of initial positions
(x0,50,600,90,01,9;) the other initial conditions were chosen in
such a way that the solution lies initially on the discrete con-
straint manifold, i.e. in such a way that

X1 ZXQ—I—COS([)()(G] —90), ¥ =y0+SiH(P()(91 —60).

Unlike the nonholonomic integrator (in grey with circle sym-
bols) the variational integrator (in black with cross symbols)
does not show a strong spiral-type solution but a circular path. It
is true, however, that the variational solution deviates from the
circle predicted by the initial conditions of the solution (12) (in
grey in figure 2). However, since any circle is determined by 3 of
its points, we can find a better match for the circle the variational
discrete solution follows by considering the outcome (x;,yx;) at
three different times and by solving the three equations

(o, —A) 4 (o, — B)? = C?

for (A, B,C). If we do so, we obtain the matching circle (in dots)
in figure 3.
It is well-known that the energy

E:— 79 —
2(x +y)+4 +8<p,



Fig. 3. Vertically rolling disk: circular path.

is conserved along the solutions (12) of the nonholonomic equa-
tions of motion. In figure 4 we investigate the performance of
the two integrators on the energy function. The discrete version
of the energy is the function we get by substituting, as usual,
1/h(qr — qx—1) for g in the function E above. The straight line
in figure 4 is the energy level predicted by the initial conditions.
It is clear that the variational integrator (with crosses) does a
better job than the nonholonomic one (with circles).
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Fig. 4. Vertically rolling disk: the energy.

By construction the nonholonomic integrator conserves the
constraints and the variational integrator does not. Indeed, in fig-
ure 6 we have plotted the constraint x — Rcos(¢)0 = 0. Positive
is that, although the variational integrator does not conserve this
constraint, it reasonably oscillates around the zero level. More-
over, there is a method to fix this problem. We can introduce a
‘modified’ variational integrator which does conserve the con-
straints. This integrator considers the constraints as a constant
along the (nonholonomic) motion. That is, it will use the varia-
tional discrete Lagrange equations (8) for the variables 6 and ¢
(for the free Lagrangian L given in (13)), but not the correspond-
ing equations for x and y. To get a full system of equations, we
supplemented this with the discrete constraints ®5(qx,gi41) =0
which can be written in terms of x| and y;. Figure 5 shows
the modified integrator for o = 0 (with box symbols). The circle
in that figure is the one we had before, i.e. the one that matches
the variational integrator. It shows that the modified integrator

has the same circular behaviour as the variational integrator, and
on top, it keeps the constraints conserved, see the box symbols
on the zero level in figure 6.

Fig. 5. Vertically rolling disk: the modified integrator.
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Fig. 6. Vertically rolling disk: the constraints.

Finally, figure 7 shows the effect of changing the parameter
a.. The results for the variational integrator (in black with cross
symbols) remain accurate and more or less unchanged. For the
nonholonomic integrator (in grey with circle symbols) the ef-
fect of changing o is that the inward spiral becomes an outward
spiral. At some point (here o0 = 1/2) the variational and non-
holonomic integrator have the same accuracy.
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Fig. 7. Vertically rolling disk with oo = 1/3,1/2, 1, repectively.

C. The knife edge

As was the case with the vertically rolling disk, also the so-
lutions of the knife edge form a circular path in the (x,y)-plane.



Continuing the analogue with the previous example, the non-
holonomic integration (in grey with circle symbols) results in a
spiral, while the variational integration (in black with crosses)
follows more closely the circular path, see figure 8.
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Fig. 8. The knife edge with o =0

D. The nonholonomic particle

The function
[l V12 ()}2+Z2)
2 2 X xx
is a free Lagrangian for the nonholonomic particle. In each of
the figures 9 and 10 the dashed black curve represents the exact
solution, the thick black the variational solution and the thick
grey the nonholonomic solution. The figures show that both the
variational method and the nonholonomic one do not give very
accurate solutions. However, changing the parameter o does
not seem to affect the variational solution as much as it does
the nonholonomic one. Indeed, the variational solution remains
more or less of the same accuracy for the different oi-values. On
the other hand, the nonholonomic solution can be made more
or less accurate by changing o. It seems that the best accuracy
is reached somewhere in the neighbourhood of o = 1/3, but
how could one have guessed this beforehand? Remark also that
this value is not same as the the best choice we had found for
the nonholonomic integrator of the vertically rolling disk (where
o= 1/2 gave the best accuracy).

E. Preliminary conclusion

In each of the discussed examples the variational integra-
tor (with one of the Lagrangians (6) and (7) of proposition 1)
seemed to give better results than the known nonholonomic in-
tegrators. Unlike the outcome for the nonholonomic integra-
tor, the results for the variational integrator seemed to be inde-
pendent of or, at least, stable under changing the parameter o.
Needless to say, the results above are, of course, very partial
and are they are only intended to motivate further investigation
on this topic. For example, we need to check if more involved
discretization procedures, such as the ones mentioned at the end
of section IIIA demonstrate the same behaviour as the one we
have encountered so far.

0o

000

Fig. 9. The nonholonomic particle: xy-, xz- and yz-solution with
a=0.

IV. FURTHER SYSTEMS

The class of nonholonomic systems treated above is very re-
stricted. The reason is, of course, that the search for a solution
of the inverse problem of the calculus of variations (in the proof
of proposition 1) is too hard and too technical to be treated in
the full generality of a nonholonomic systems with an arbitrary
given Lagrangian and arbitrary given constraints. Also, since
there are infinitely many possible choices for the associated sys-
tems, it is not clear from the outset which one of them will be
variational, if any.

For these reasons, future extensions of the obtained results
will strongly depend on well-chosen particular new examples.
For example, we could try to find a free Lagrangian for a non-
holonomic system with a potential of the form V (r;). Typical
examples of such systems are the mobile robot with a fixed ori-
entation

L=1m(? +y%) + 116* + 379% — 10sinv,
X=RcosOy, y=RsinOV,

(an example that also appears in the paper [4]) or the knife edge
on an inclined plane, where

1 1 .
L:Em(szryz)JrEJ(Dermgxsinoc, xsin¢ = ycos 0.

In more general terms, such systems have a Lagrangian of the
form

1
L= (hit+hi3+1s%) =V (n)

and a constraint of the form

§= —A(rl)f‘z,



Fig. 10. The nonholonomic particle: xy-solution with o =
0,1/5,1/3,1/2,2/3,4/5, respectively.

and we can we can consider associated second-order equations,
in a way that is analogous to the way we arrived at the second
system (5) before: They are now of the form

fl:Ov

iy =T (r)rin+t(ri,r), (14)

§= F3(r1)flj—|—t3(r1,r2).

Remark that compared to the equations (5), the presence of the
extra potential brings the terms #;(r;,r2) into the picture. A first
result is the following.

Proposition 3: There does not exists a regular Lagrangian
for the second order systems (14).

Proof:  As before, the proof follows from a careful anal-
ysis of the algebraic conditions which can be derived from the
Helmbholtz conditions. |

For systems with more than one constraint, the result is still
open. Remark that the proposition does not exclude the exis-
tence of an other variational ‘associated’ system.
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