
ISSN 1560-3547, Regular and Chaotic Dynamics, 2009, Vol. 14, No. 6, pp. 635–655. c© Pleiades Publishing, Ltd., 2009.

RESEARCH ARTICLES

A Generalization of Chaplygin’s Reducibility Theorem

O. E. Fernandez1*, T. Mestdag2**, and A.M. Bloch1***

1Department of Mathematics, University of Michigan,
530 Church Street, Ann Arbor, MI-48109, USA

2Department of Mathematical Physics and Astronomy, Ghent University,
Krijgslaan 281, S9, 9000 Gent, Belgium

Received June 2, 2009; accepted October 10, 2009

Abstract—In this paper we study Chaplygin’s Reducibility Theorem and extend its applicabil-
ity to nonholonomic systems with symmetry described by the Hamilton–Poincaré–d’Alembert
equations in arbitrary degrees of freedom. As special cases we extract the extension of the
Theorem to nonholonomic Chaplygin systems with nonabelian symmetry groups as well as
Euler–Poincaré–Suslov systems in arbitrary degrees of freedom. In the latter case, we also extend
the Hamiltonization Theorem to nonholonomic systems which do not possess an invariant
measure. Lastly, we extend previous work on conditionally variational systems using the results
above. We illustrate the results through various examples of well-known nonholonomic systems.
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INTRODUCTION

Although it is well known that nonholonomic mechanical systems are not variational [1] and thus
their mechanics cannot be expressed in terms of canonical Hamilton equations, nevertheless several
authors (dating back at least as early as S.A. Chaplygin [2, 3] and Appell [4]) have attempted to
express the mechanics of nonholonomic systems in Hamilton-like forms through several methods.
Perhaps the most well-known of these methods is Chaplygin’s own Reducibility Theorem, whose
first part states that for nonholonomic systems in two generalized coordinates (q1, q2) possessing an
invariant measure with density N(q1, q2), the equations of motion can be written in Hamiltonian
form after the time reparameterization dτ = Ndt (in this context N is known as the reducing
multiplier, or simply the multiplier). The second part of the Theorem (see [5]) says that if
a nonholonomic system can be written in Hamiltonian form after the time reparameterization
dτ = f(q)dt, then the original system has an invariant measure with density fm−1(q), where m is
the degrees of freedom and the function f is again called the reducing multiplier, or simply the
multiplier. Since both components of the theorem involve a reparameterization of a nonholonomic
system into a Hamiltonian one, one often refers to this as the Hamiltonization of a nonholonomic
system, although we shall refer to it here as the Chaplygin Hamiltonization instead1).

Chaplygin’s original motivation for such a Hamiltonization of nonholonomic systems seems to
have been rooted in his interest in the explicit integrability of nonholonomic systems. Indeed,
in [3] Chaplygin applies his method to integrate what would later become known as the Chaplygin
sleigh (see Section 4.5), and remarks that his general procedure (using the reducing multiplier) for
integrating certain two degree of freedom nonholonomic systems is “interesting from a theoretical
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1)We introduce this term because there are other ways of writing the reduced, constrained mechanics of a

nonholonomic system as a Hamiltonian system that do not involve a time reparameterization, for example as was
done in [6, 7].
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standpoint as a direct extension of the Jacobi method to simple nonholonomic systems.” Chaplygin
further applied his theorem to integrate other nonholonomic systems by quadrature [8], as did
Kharlamova later [9]. Thus, the reducing multiplier method has historically been interesting and
important from the standpoint of the integrability of nonholonomic systems (for more historical
notes on the origin of the theorem, see [10], or [11] for a more geometric viewpoint, and [12]).
This motivation led us to investigate extensions of the theorem in this work in the hope of further
expanding its applications to the integrability of nonholonomic systems. One would like a more
straightforward procedure which eliminates such guesswork.

After the introduction of Chaplygin’s theorem, subsequent research on the theorem has resulted
in, among other things, an extension to the quasicoordinate context [13], a study of the geometry
behind the theorem [11, 14, 15], discoveries of isomorphisms between nonholonomic systems
through the use of the theorem [16], an example of a system in higher dimensions Hamiltonizable
through a similar time reparameterization [17], an investigation of the necessary conditions for
Hamiltonization for abelian Chaplygin systems [18] (see Section 1.1 for a definition), Poisson
structures for rolling bodies without slipping [19, 20], and an investigation of rank two Poisson
structures in nonholonomic systems [21]. In addition, the survey paper [12] presents, among other
things, many of the known examples to which Chaplygin’s theorem is applicable. However, two
important aspects yet to be resolved are the extension of the theorem to general nonholonomic
systems with symmetry of arbitrary degrees of freedom and, since the theorem rests on the
availability of an invariant measure, we are also interested in applying a time reparameterization
to “Hamiltonize” a nonholonomic system not possessing an invariant measure, where different
dynamical effects may arise [19, 22, 23]. We note that in this case our resulting “Hamiltonization”
of a system not possessing an invariant measure should perhaps more properly be called a
“Poissonization,” since it will in general result in a degenerate Poisson bracket satisfying the Jacobi
identity (see Section 4.5 below), in addition to the continued non-existence of the invariant measure
(however, we will continue to refer to this process as “Hamiltonization,” keeping in mind this
discussion). Moreover, the theorem is commonly used in a rather guess-and-check manner, where
one considers systems with known invariant measures and then guesses at the reducing multiplier
based on the degrees of freedom.

In this paper we consider the aforementioned questions for a general nonholonomic system
with symmetry governed by the Hamilton–Poincaré–d’Alembert equations. In Section 1 we briefly
discuss the mechanics of these systems, as well as for two special cases of them (nonabelian
Chaplygin systems and Euler–Poincaré–Suslov systems), and present results in Sections 2.1, 2.2
and 2.3 which generalize the first part of Chaplygin’s Theorem to these higher dimensional systems
with symmetry, deriving the necessary conditions (independent of the existence of an invariant
measure) for Chaplygin Hamiltonization as a coupled set of first-order partial differential equations
in f . These equations eliminate the guesswork discussed above, and in the special case of Euler–
Poincaré–Suslov systems, we present results in Section 2.3 which allow Chaplygin Hamiltonization
even when the system does not posses an invariant measure. In Section 3 we use the previous results
to extend the idea of conditionally variational systems introduced in [7] and apply it to Chaplygin
Hamiltonize the entire nonholonomic system (reduced constrained equations plus the nonholonomic
constraints). Lastly, we devote Section 4 to illustrating these results and showing how special cases
of the results presented lead to some of the results found in the works cited above, and discuss
some relevant future directions in the Conclusion.

1. NONHOLONOMIC SYSTEMS WITH SYMMETRY
Consider a nonholonomic system with an n dimensional configuration manifold Q and mechanical

Lagrangian L which is subject to k linear nonholonomic constraints described by the distribution D
(moreover, we shall restrict our attention to mechanical Lagrangians for the remainder of the paper).
Suppose that we have a Lie group G which acts freely and properly on the configuration space Q,
with the Lagrangian L and constraints D invariant with respect to the induced action of G on TQ.
For simplicity, assume also that the constraints and the orbit directions span the entire tangent
space to the configuration space:

Dq + TqOrb(q) = TqQ,

sometimes known as the dimension assumption [1].
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With sufficient regularity we can use the Legendre transform to pass to the constraint phase
space M = FL(D). The quotient space M = M/G is a smooth quotient manifold with projection
map ρ : M → M, and all intrinsically defined vector fields then push down to M, allowing one to
write the equations of motion for the reduced constrained Hamiltonian mechanics using a reduced
almost-Poisson (in general) bracket on M. The resulting nonholonomic equations of motion are
known as the Hamilton–Poincaré–d’Alembert (HPD) equations and split into a coupled set of
second-order equations on the shape space M := Q/G and first-order nonholonomic momentum
equations on g∗ [1, 24], whose number equals s := dim Sq, where Sq := Dq ∩ TqOrb(q).

Following [1] we will now give some of the details, however before doing so let us fix the following
index conventions. The indices a, b, c, . . . will range from 1 to k := dim(g) and correspond to the
symmetry directions, i, j, . . . will range from 1 to s (s < k is the number of momentum equations)
and correspond to the symmetry directions along the constraint space, and α, β, . . . will represent
the indices for the shape variable r ∈ M := Q/G and range from 1 to m := n − k = dim(M) (the
dimension of the shape space). Also, here and for the remainder the of the paper we shall enforce
the Einstein summation convention, unless otherwise indicated.

Begin by constructing a body fixed basis eb(g, r) = Adgeb(r) as in [1], where g ∈ G and r ∈ M ,
such that the infinitesimal generators (ei(g, r))Q of its first s elements at a point q span Sq. Assuming
G is a matrix group and ed

i is the component of ei(r) with respect to a fixed basis {ba} of the Lie
algebra g, we can then represent the constraint distribution D as

D = span{ga
ded

i ∂ga ,−ga
b Ab

α∂ga + ∂rα},
where we will denote by Ωi the body angular velocity components of the constrained vertical space.

Defining the induced coordinates (ga, rα, p̃i, p̃α) on M by

p̃i = ga
dpae

d
i = μde

d
i , p̃α = pα − μbA

b
α,

where μ ∈ g∗ and μa are its components with respect to a fixed dual basis, pa = ∂L/∂ġa and
pα = ∂L/∂ṙα, the Hamilton–Poincaré–d’Alembert equations on M are given by [1, 25]:

˙̃pi = −μaC
a
bde

b
ie

d
j

∂hM
∂p̃j

+ μaF
a
iβ

∂hM
∂p̃β

, (1.1)

ṙα =
∂hM
∂p̃α

, (1.2)

˙̃pα = −∂hM
∂rα

− μaF
a
jα

∂hM
∂p̃j

− μaBa
αβ

∂hM
∂p̃β

, (1.3)

along with the constraints

ξb = −Ab
β

∂hM
∂p̃β

+ eb
j

∂hM
∂p̃j

. (1.4)

Here hM(r,Ω, p̃) = p̃iΩi + p̃αṙα − lc is the constrained reduced Hamiltonian (where lc(r, ṙ,Ω) =
l(r, ṙ, ξ = −Aṙ + Ωe) is the constrained reduced Lagrangian), Ba

αβ are the coefficients of the
curvature of the nonholonomic connection:

Ba
αβ =

∂Aa
α

∂rβ
−

∂Aa
β

∂rα
+ Ca

bcAb
αAc

β,

where Ca
bc are the structure constants of the Lie algebra g, ξb = (g−1)baġ

a, and finally the F a
iβ are

given by

F a
iβ =

∂ea
i

∂rβ
+ Ca

bce
b
iAc

β.

Moreover, in equations (1.1)–(1.3) the quantities μa = ∂l/∂ξa should be restricted to M by
substituting in the constraints (1.4). Hereafter we shall denote any expression into which the
constraints have been substituted with a subscript c, as in (μa)c.
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Now, the equations (1.1)–(1.3) can be written with respect to an almost-Poisson (AP) bracket
{·, ·}M given by [1]

{g, k}M = {p̃i, p̃j}
∂g

∂p̃i

∂k

∂p̃j
+ {p̃i, p̃α}

(
∂g

∂p̃i

∂k

∂p̃α
− ∂g

∂p̃α

∂k

∂p̃i

)

+ {rα, p̃β}
(

∂g

∂rα

∂k

∂p̃β
− ∂g

∂p̃β

∂k

∂rα

)
+ {p̃α, p̃β}

∂g

∂p̃α

∂k

∂p̃β
, (1.5)

where

{p̃i, p̃j} = −(μa)cCa
bde

b
ie

d
j , (1.6)

{p̃i, p̃α} = (μa)cF a
iα, (1.7)

{rα, p̃β} = δα
β ,

{p̃α, p̃β} = −(μa)cBa
αβ. (1.8)

In Section 2.1 we will derive the necessary and sufficient conditions for the AP bracket (1.5)
to become a Poisson bracket after an appropriate choice of quasivelocities (see Section 2). For
the rest of Section 2 we will concentrate on achieving that same goal by considering two special
cases of the HPD equations (1.1)–(1.3): (1) where Sq = {0}, known as the purely kinematic or
nonabelian Chaplygin case, and (2) the case where Q = G, where the resulting equations represent
a generalization of the Euler–Poincaré–Suslov equations [1]. Let us now briefly give the details of
these two special cases.

1.1. Nonholonomic Chaplygin Systems

Consider the subclass of nonholonomic systems with symmetry corresponding to Sq = {0},
known as the purely kinematic case [1, 26], where the group orbits exactly complement the
constraints and suppose that Q �= G. These systems are the special case of the HPD equations
corresponding to s = 0 (i.e. dim Sq = 0, when there are no nonholonomic momentum equations)
and are also known as nonabelian Chaplygin systems [1, 27]. In the special case when Q = R

s × Sr

and G is either a torus action Tm or acts by translations R
2m, they are called abelian Chaplygin

systems and correspond to the classical exposition of Chaplygin systems [13] where there exist local
coordinates (rα, sa), α = 1, . . . , n− 2m, a = n− 2m + 1, . . . , n such that the Lagrangian L does not
depend on the sa coordinates, and where the constraints can be written as ṡa = −Aa

α(r)ṙα.
Now, from the HPD equations (1.1)–(1.3) we can extract the equations of motion for nonabelian

Chaplygin systems as follows. Since s = 0, we have that lc = l(rα, ṙα,−Aa
β ṙβ), and (assuming

sufficient regularity) hM(r, p̃) = p̃αṙα − lc . Then, equations (1.2)–(1.3) and the constraints (1.4)
reduce to:

ṙα =
∂hM
∂p̃α

, (1.9)

˙̃pα = −∂hM
∂rα

− (μa)cBa
αβ

∂hM
∂p̃β

, , (1.10)

ξa = −Aa
α(r)ṙα, (1.11)

respectively. For easy reference later on, we also define the semi-basic two-form [28] Λ on T ∗M with
components

Λαβ(r, p̃) := (μa)cBa
βα, (1.12)

so that the last term on the right hand side of (1.10) can also be expressed as Λαβ(∂hM/∂p̃β).
Moreover, the equations of motion can be written with respect to an AP bracket:

ṙα = {rα, hM}AP , ˙̃pα = {p̃α, hM}AP , (1.13)
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where the AP bracket is the special case of (1.5) when (1.6) and (1.7) vanish:

{g, k}Chap
AP (r, p̃) = {g, k}can(r, p̃) + Λαβ

∂g

∂p̃α

∂k

∂p̃β
, (1.14)

for any two functions g, k : T ∗M → R, where {g, k}can(r, p̃) is the canonical Poisson bracket,

{g, k}can(r, p̃) :=
(

∂g

∂rα

∂k

∂p̃α
− ∂g

∂rα

∂k

∂p̃α

)
.

1.2. Nonholonomic Systems on Lie Groups

Consider now another special case of the HPD equations corresponding to the setting where
the configuration space is the Lie group G, so that there is no shape space (m = dim M = 0). The
reduced Lagrangian becomes l = 1

2〈Iξ, ξ〉, where ξ = g−1ġ ∈ g as before, and I : g �→ g∗ is the inertia
tensor. Substituting in the constraints ξb = eb

jΩ
j we arrive at the reduced constrained Lagrangian

lc(Ω), and assuming sufficient regularity we can define the reduced constrained Hamiltonian
hc(Ω, p̃) = p̃iΩi − lc. From (1.1) and (1.4) the equations of motion and constraints then become:

˙̃pi = −(μa)cCa
bde

b
ie

d
j

∂hc

∂p̃j
, (1.15)

ξb = eb
j

∂hc

∂p̃j
, (1.16)

respectively. These equations are a generalization of the Euler–Poincaré–Suslov equations [1, 24].

We can also write the equations of motion (1.15) as:

˙̃pi = {p̃i, hc}EPS
AP , (1.17)

where {·, ·}EPS
AP is the AP bracket:

{g, k}EPS
AP = {p̃i, p̃j}

∂g

∂p̃i

∂k

∂p̃j
, (1.18)

for any two functions g, k : (gc)∗ → R, where gc = {ξ ∈ g|ξb = eb
jΩ

j}, and where the bracket on the
right hand side of (1.18) is computed by using the canonical bracket on T ∗G and then restricting
to gc (see [1], Section 5.8 for more details). We note in passing that this bracket is merely (1.5)
with (1.7)–(1.8) vanishing (since m = 0).

2. CHAPLYGIN HAMILTONIZATION

To begin the generalization of Chaplygin’s Theorem, we note that one can view Chaplygin’s
time reparameterization dτ = N(q)dt from the Introduction in a different way as follows: we
have q̇ = dq/dt = N(q)(dq/dτ) =: N(q)ω, which defines the quasivelocities ω on Q (For a recent
discussion of quasivelocities in nonholonomic mechanics see [12, 22]). Thus, instead of considering
which time reparameterization Hamiltonizes our system, we can rephrase the problem as one
of finding a particular set of quasivelocities for which the almost-Poisson bracket (1.5) satisfies
the Jacobi identity2). To that end, we need to express the AP bracket (1.5) in terms of the
quasivelocities ω, to which we now turn.

2)If this is successful, then some authors will also call the nonholonomic system conformally Hamiltonian (see
Section 3.3 in [12]).
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2.1. Chaplygin Hamiltonization of the Hamilton–Poincaré–d’Alembert Equations

Let j be the map j : (q, ωr, ωΩ) �→ (q, ṙ,Ω) and define P̃ = j∗p̃. Then locally we have Lc(r, ω) =
j∗lc(r, ṙ,Ω) = lc(r, ṙα = fωα,Ωi = fωi), P̃α = ∂Lc/∂ωrα = (∂lc/∂ṙβ)(∂ṙβ/∂ωrα) = f p̃α and simi-
larly P̃i = f p̃i. Moreover, define the quasivelocities ω through ṙ = f(r, g)ωr and Ω = f(r, g)ωΩ,
where f ∈ C1 is nonzero on its domain. Then we have the following transformation of the
bracket (1.5).

Proposition 1. Consider a nonholonomic system with symmetry governed by the HPD equa-
tions (1.1)–(1.4). Further, suppose that the matrix Gαβ := ∂2lc/∂ṙα∂ṙβ is invertible. Then the AP
bracket (1.5) becomes the bracket {·, ·}′M := (1/f)j∗{·, ·}M given by:

{G,K}′M = {P̃i, P̃j}′M
∂G

∂P̃i

∂K

∂P̃j

+ {P̃i, P̃α}′M

(
∂G

∂P̃i

∂K

∂P̃α

− ∂G

∂P̃α

∂K

∂P̃i

)

+ {rα, P̃β}′M

(
∂G

∂rα

∂K

∂P̃β

− ∂G

∂P̃β

∂K

∂rα

)
+ {P̃α, P̃β}′M

∂G

∂P̃α

∂K

∂P̃β

, (2.1)

where

f{P̃i, P̃j}′M = Âk
ijP̃k + B̂γ

ijP̃γ , (2.2)

f{P̃i, P̃β}′M = Ĉk
iβP̃k + D̂γ

iβP̃γ , (2.3)

f{P̃α, P̃β}′M = Êk
αβP̃k + F̂ γ

αβP̃γ , (2.4)

f{rα, P̃β}′M = fδα
β , (2.5)

and the components above are given in the Appendix by (5.1)–(5.10).

Proof. From the reduced Lagrangian l(r, ṙ, ξ),

l =
1
2
gαβ ṙαṙβ + gaαṙαξa +

1
2
gabξ

aξb − V (r),

we can form the constrained reduced Lagrangian lc(r, ṙ,Ω) by substituting in the constraints (1.4)
in the form ξb = −Ab

β ṙβ + eb
jΩ

j . We then have p̃α = ∂lc/∂ṙα = Gαβ ṙβ + Gi
αp̃i, where Gαβ = gαβ −

2gaαAa
β + gabAa

αAb
β, Gi

α = (gbα − gabAa
α) Γbi and we have used eb

jΩ
j = Γbip̃i, where Γai = ea

jG
ji,

with Gij the inverse of the matrix Gij = gabe
a
i e

b
j . Since Gαβ is invertible by assumption (denote its

inverse by Gαβ), this leads to ṙγ = Gγαp̃α − GγαGi
αp̃i. Thus, we have:

(μa)c =
(

∂l

∂ξa

)
c

= Maγ ṙγ + gabΓbip̃i

= Maγ

(
Gγαp̃α − GγαGi

αp̃i

)
+ gabΓbip̃i

= MaγGγαp̃α +
(
gabΓbi − MaγGγαGi

α

)
p̃i,

=⇒ j∗(μa)c =
1
f

[
MaγGγαP̃α +

(
gabΓbi − MaγGγαGi

α

)
P̃i

]
(2.6)

where we have used the definition of the P̃. Then, using the general relation

f{P̃I , P̃J}′M = f{f, p̃J}Mp̃I − f{f, p̃I}Mp̃J + f2{p̃I , p̃J}M, (2.7)

which holds for all I, J = i and I, J = α, and (1.6)–(1.7) along with (1.8) and (2.6), we get the
transformations in (2.2)–(2.4). Let us illustrate this for (2.2).

From (2.7) we have:

f{P̃i, P̃j}′M = f

[
∂f

∂gσ

∂p̃j

∂pσ
p̃i −

∂f

∂gσ

∂p̃i

∂pσ
p̃j

]
+ f2

(
−j∗(μa)cCa

bde
b
ie

d
j

)
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=
∂f

∂gσ
gσ
d

(
ed
j P̃i − ed

i P̃j

)
− f2j∗(μa)cCa

bde
b
ie

d
j

= C
k
ijP̃k +

(
fCa

bde
b
ie

d
jMaγGγαGk

α − fKk
ji

)
P̃k + B̂α

ijP̃α, (2.8)

where we’ve used (2.6) in the last line of (2.8). Indeed, this produces (2.2) and (5.1)–(5.2). The
remaining transformations (2.3)–(2.4) and equations (5.3)–(5.6) follow from similar computations.

Lastly, we compute j∗{rα, p̃β}M = f{rα, P̃β}′M as:

f{rα, P̃β}′M = {rα, f p̃β} =
∂rα

∂rγ

∂(f p̃β)
∂pγ

− ∂rα

∂pγ

∂(f p̃β)
∂rγ

= fδαβ,

which gives (2.5).

Proposition 1 gives the explicit form for the AP bracket of the HPD equations in terms of the
quasivelocities. Now, as stated at the beginning of this section, the idea is to derive the conditions
under which the multiplier f makes (1.5) into a Poisson bracket. To that end, we have the first
main result.

Theorem 1. Suppose that we have a nonholonomic system with symmetry satisfying the assump-
tions of Proposition 1 and let f(r, g) ∈ C1 be a function which is nonzero everywhere on its domain.
Then the almost-Poisson bracket (1.5) is Poisson iff f satisfies:

B̂γ
ij = 0, D̂γ

iβ = 0, F̂ γ
αβ = 0, (2.9)

Âm
il Â

l
jk + Âm

klÂ
l
ij + Âm

jl Â
l
ki, (2.10)

Ĉi
jγÊj

αβ + Ĉi
jβÊj

γα + Ĉi
jαÊj

βγ = 0, (2.11)

Âi
klÊ

l
αβ + Ĉi

lαĈ l
kβ − Ĉi

lβĈ l
kα = 0, (2.12)

Âl
ikĈ

k
jα − Ĉ l

kαÂk
ij − Âl

jkĈ
k
iα = 0. (2.13)

Moreover, the Hamiltonized equations (1.1)–(1.3) become, in this new Poisson bracket {·, ·}P
M:

ṙα = f{rα,HM}P
M, ˙̃Pα = f{P̃α,HM}P

M, ˙̃P i = f{P̃i,HM}P
M, (2.14)

where HM = j∗hM.

Proof. In order for (2.1) to become a Poisson bracket it must satisfy the Jacobi identity. We can
compute the results of this restriction, which then leads to the conditions (2.9)–(2.13) that f must
satisfy. For better readability of this paper, we have left these computations to the second section of
the Appendix. As for the second half of the Theorem, we simply note that since j∗r = r, j∗p̃ = P̃ and
j∗hM = HM, then the AP bracket representation of the equations of motion (1.1)–(1.3) becomes
j∗(rα − {rα, hM}M) = 0, which gives the first equation in (2.14) since j∗{·, ·}M = f{·, ·}P

M, and
similarly for the remaining.

Theorem 1 represents the necessary conditions under which a given nonholonomic system with
symmetry admitting a representation within the HPD framework can be Chaplygin Hamiltonized
into (2.14). It is a generalization of Chaplygin’s Theorem not only to higher dimensional
nonholonomic systems with symmetry, but also in that it does not presuppose the existence of
an invariant measure. Indeed, although the conditions (2.9)–(2.13) seem rather involved they are
no more than a coupled set of first-order partial differential equations in f which can be solved
using any of the popular mathematical software packages. Thus, contrary to the traditional usage
of Chaplygin’s Theorem found in the literature (where the reducing multiplier is typically guessed
at by knowing the system’s invariant measure and degrees of freedom), Theorem 1 does not
require the invariant measure and eliminates the guesswork. In fact, as we will show below, for
nonabelian Chaplygin systems we will recover the second part of Chaplygin’s Theorem from the
analogous f conditions in that case, showing that for these types of nonholonomic systems it is
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more advantageous to solve the corresponding f conditions instead of guessing at the multiplier
using the invariant measure density, since if a solution exists then we will get the invariant measure
density for free. Moreover, as we will also show below and have already mentioned above, one can
now also apply Chaplygin Hamiltonization to systems for which both Chaplygin’s Theorem and the
guesswork above are inapplicable: nonholonomic systems which do not possess an invariant measure
density. The Chaplygin sleigh (which we discuss in Section 4.5) is perhaps the best illustration.

Let us now turn to the Chaplygin Hamiltonization of the two special cases considered in
Sections 1.1 and 1.2 above. Indeed, consider now the special cases of the HPD equations given by
the nonabelian Chaplygin nonholonomic systems, as in Section 1.1, and the Euler–Poincaré–Suslov
case of Section 1.2, where there is no shape space. From Theorem 1, in these cases the quasivelocity
transformations read ṙα = f(r)ωrα (we shall write this simply as ṙ = f(r)ω henceforth) and
Ωi = f(g)ωΩi (we shall write this simply as Ω = f(g)ω henceforth), respectively, where f ∈ C1

is nonzero on its domain. Moreover, defining the maps jr : (q, ω) �→ (q, ṙ) and jΩ : (ω) �→ (Ω) we
have the following Corollary of Theorem 1.

Corollary 1. (1) For a nonabelian Chaplygin nonholonomic system (L,G,D) described by (1.9)–
(1.11) with almost-Poisson formulation (1.13)–(1.14) satisfying the assumptions of Proposition 1,
the necessary and sufficient conditions for Chaplygin Hamiltonization (using dτ = fdt) on j∗r M are
that f satisfy

j∗r {g, k}Chap
AP (r, p) = f{G,K}can(r, P̃), (2.15)

for all α, ν, δ = 1, . . . ,m (recall from Section 1 that m = n − k = dim(M)), and where {·, ·}can is
the canonical bracket on j∗r M .

(2) For an Euler–Poincaré–Suslov nonholonomic system described by (1.15)–(1.16) with almost-
Poisson formulation (1.17)–(1.18) satisfying the assumptions of Proposition 1, the necessary and
sufficient conditions for Chaplygin Hamiltonization (using dτ = fdt) on j∗Ω(gc)∗ are that f satisfy

j∗Ω{g, k}EPS
AP = f{G,K}j∗Ω(gc)∗

− , (2.16)

where {·, ·}j∗Ω(gc)∗

− is the (minus) Lie-Poisson bracket on j∗Ω(gc)∗.
Equivalently, in local form conditions (2.15) and (2.16) read

∂f

∂rδ
Gαν +

∂f

∂rν
Gαδ − 2

∂f

∂rα
Gδν = f

(
Kμ

αδGμν + Kμ
ανGμδ

)
, (2.17)

Sl
kmSm

ij + Sl
jmSm

ki + Sl
imSm

jk = 0, ∀i, j, k, l = 1, . . . , n − k, (2.18)

respectively, where Sl
km := −

(
K l

mk − C
l
km

)
.

Proof. (1) Let us consider the nonabelian Chaplygin case first. Since this case corresponds to
the situation in which s = dim Sq = 0, then only Greek indices survive in Theorem 1. Moreover,
using that in this case gab = gaα = 0 for all a, α and f is independent of g, we can extract the
relevant Hamiltonization conditions from (2.9)–(2.13). The only non-vacuous condition amongst
those in Theorem 1 is then F̂ γ

αβ = 0. From (5.6) this leads to the condition (2.15), and its local
form in (2.17).

(2) For the Euler–Poincaré–Suslov case, since this corresponds to the special case of the HPD
equations in which m = dim M = 0, then only the Latin indices survive in Theorem 1. Thus,
gαβ = gaα = 0 for all a, α, β, and since f is independent of r, the only non-vacuous condition
amongst those in Theorem 1 is condition (2.10). However, note that because of the fact that
m = 0, the first term in (5.1) vanishes, giving the condition (2.16), and its local form in (2.18).

For completeness, we should note that based on the results of Corollary 1 we can write the re-
duced constrained mechanics of a nonabelian Chaplygin and Euler–Poincaré–Suslov nonholonomic
system from (2.14) as

ṙα = f{rα,HM}can and ˙̃Pβ = f{P̃β ,HM}can, (2.19)
˙̃Pi = f{P̃i,HM}j∗ω(gc)∗

− , (2.20)
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respectively. The reader familiar with the usual treatment of Chaplygin’s theorem will note the
absence of the reparameterized time τ in (2.19). In fact, in the context of Chaplygin’s work, as
well as to compare directly with [16], we note that the quasi-Hamiltonian forms (2.19)–(2.20) are
the “t-time” analogues of the Hamiltonian forms stated in the classical Chaplygin Reducibility
Theorem in “τ -time,” and the two are related through ṙ = fr′, ˙̃P = f P̃ ′, where r′ = dr/dτ and
P̃ ′ = dP̃/dτ .

Now, given the more general conditions in Corollary 1 (which are valid for nonabelian Chaplygin
and Euler–Poincaré–Suslov systems in arbitrary degrees of freedom), let us proceed to extract both
parts of Chaplygin’s Reducing Multiplier Theorem as special cases.

2.2. Chaplygin’s Reducing Multiplier Theorem

We now specialize to the case when m = dim M = 2 (the two degree of freedom case) to extract
the first part of Chaplygin’s Theorem.

Corollary 2. The necessary and sufficient condition for a Chaplygin nonholonomic system
(L,G,D) in two degrees of freedom (m = 2) to be Chaplygin Hamiltonizable is that

∂K1
12

∂r1
= −∂K2

12

∂r2
, (2.21)

or equivalently that the system (1.9)–(1.10) possess a nonzero invariant measure density N(r) ∈ C1.
The multiplier is then given by f(r) = e

�
K1

12dr2
= N .

Proof. From Corollary 1, the only independent conditions in (2.15) in the two degree of freedom
case are: (

∂f

∂r2
− fK1

12

)
G11 −

(
∂f

∂r1
+ fK2

12

)
G12 = 0,

(
∂f

∂r2
− fK1

12

)
G21 −

(
∂f

∂r1
+ fK2

12

)
G22 = 0.

Since we have assumed that Gαβ is invertible, the necessary and sufficient condition for the
satisfaction of these equations is that the parenthetical terms vanish. The resulting set of equations
is soluble iff (2.21) is satisfied, in which case f is given in explicit form as in the Corollary. However,
as we showed in [7], if the constrained reduced system (1.9)–(1.10) has an invariant measure, then
its density N (for m = 2) satisfies:

K1
12 =

1
N

∂N

∂r2
, K2

12 = − 1
N

∂N

∂r1
.

One sees immediately that this satisfies (2.21), and hence f = N is a multiplier.

Moving on to the second part of Chaplygin’s Theorem, the Proposition below shows that it too
follows from the Hamiltonization condition (2.15).

Proposition 2. Suppose f satisfies the conditions of Corollary 1. Then the original system (1.9)–
(1.10) has an invariant measure with density fm−1.

Proof. Suppose f satisfies (2.17). Multiplying by ṙδ and ṙν and adding results in:

1
f

(
∂f

∂rβ
pα − ∂f

∂rα
pβ

)
ṙβ =

(
∂l

∂ξa

)
c

Ba
αβ ṙβ.

Comparing the ṙβ coefficients yields:

Λβα =
1
f

(
∂f

∂rβ
pα − ∂f

∂rα
pβ

)
, (2.22)
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where we remind the reader of the definition of Λ from (1.12), and have used pα = ∂lc/∂ṙα (we will
drop the tildes in p here). We also note that the relationship (2.22) was also presented as a sufficient
condition for the existence of an invariant measure by [29] (see also [27]), but here is derived from
the conditions of Corollary 1. Thus, for a Chaplygin Hamiltonizable system the second term on the
right hand side of (1.10) can be written in terms of f as in (2.22).

Now, suppose Xnh = ṙα∂rα + ṗα∂pα is the nonholonomic vector field solution to the system
(1.9)–(1.11). We will show that fm−1 is an invariant measure density by showing that the vector
field fm−1Xnh has zero divergence. A straightforward calculation yields

div (fm−1Xnh) =
∂(fm−1ṙα)

∂rα
+

∂(fm−1ṗα)
∂pα

= fm−2ṙα

(
(m − 1)

∂f

∂rα
+ f

∂Λβα

∂pβ

)
, (2.23)

and a simple calculation of the last term in (2.23) using (2.22) then shows that the divergence does
indeed vanish and completes the proof.

Corollary 1 yields the necessary conditions for the Chaplygin Hamiltonization of the nonabelian
Chaplygin system (1.9)–(1.11), which locally are the first-order partial differential equations (2.17)
in r. Proposition 2 then completes the generalization by providing us with the invariant measure
density given a solution to (2.15). We should stress, however, that the converse of Proposition 2
is not true in general. That is, given an m > 2 degree of freedom nonholonomic system with an
invariant measure, its Chaplygin multiplier f may or may not coincide with the invariant measure
density (or any other smooth function of it). This is most easily seen by first assuming that the m
degree of freedom Chaplygin system has an invariant measure with density fm−1, so that the right
hand side of (2.23) vanishes. Inserting the resulting equation for ∂f/∂rα into (2.17) yields

2GδνKβ
αβ −

(
GανKβ

δβ + GαδK
β
νβ

)
= (m − 1)

(
Kμ

αδGμν + Kμ
ανGμδ

)
. (2.24)

The conditions in (2.24) are, for m > 2, conditions solely arising from the nonholonomic system
itself, as (2.24) depends only on the metric of the Lagrangian and the curvature of the connection
(for m = 2 (2.24) is vacuous, a manifestation of Corollary 2)3). Thus, if the metric and curvature of
the connection of a Chaplygin nonholonomic system interact precisely as in (2.24) then the converse
of Proposition 2 holds. However, given the rarity of such an event, we believe that the ordering of
the Hamiltonization process for nonabelian Chaplygin systems that first begins by attempting to
solve the conditions (2.17) and then extracting the invariant measure density from Proposition 2
is best4).

In another direction, it may be the case, however, that (2.17) does not have a solution. This
does not mean that the system is not Chaplygin Hamiltonizable though, since it may still possess
more symmetries which further reduce the degrees of freedom, and which allow one to seek such
a solution on the second reduced phase space. We illustrate such a situation in the next section,
making use of the classical Routhian [1] to explore the effect of additional simple symmetries in
(1.9)–(1.10) on its Chaplygin Hamiltonizability.

2.3. Momentum Conservation and Chaplygin Hamiltonization

Suppose that (2.17) has no solutions, but that the nonholonomic system possesses momentum
conservation laws that we have yet to account for. With the aid of these conservation laws, we can
apply the reduction process to further reduce the degrees of freedom of the system and re-attempt
a Hamiltonization on the second reduced space.

In order to illustrate this in a simple manner, we restrict ourselves in this section to Chaplygin
systems which we will call nonholonomic cylic. By this we mean that we have an abelian Lie group
H acting on M = Q/G by M � rα = (wα′

, vi) �→ (wα′
, vi + hi), h ∈ H, where i = 1, . . . l = dim(H)

3)Moreover, it should also be clear that for m > 2, using any smooth function F (f ; m) will also lead to conditions
similar to (2.24).

4)Nonetheless, it is impressive that some authors [5, 17, 30] have effectively found nonholonomic systems for which
(2.24) is satisfied.
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and α′ = 1, . . . ,m − l and such that Λα′i = 0 ∀i, α′ (we shall hereafter denote the nonconserved
conjugate variable indices w with a prime) and such that the action leaves the Lagrangian and
constraints invariant. Under these assumptions the vi equations in (1.10) lead to the momentum
conservation laws5) and we can thus set pi = λi = constant and perform a partial Legendre
transform in the vi variables to form, analogous to the classical Routhian [31, 32], the constrained
Routhian Rc(w, ẇ) defined by

Rc(w, ẇ) :=
[
lc(w, ẇ, v̇) − λiv̇

i
]
pi=λi

. (2.25)

Now, using the well-known fact [31] that the Euler–Lagrange expressions of the nonconserved
variables of lc are equivalent to the Euler–Lagrange expressions of the nonconserved variables of Rc,
we can write the Lagrange–d’Alembert equations for Rc as

d

dt

∂Rc

∂ẇα′ −
∂Rc

∂wα′ = −
(

∂l

∂ξa

)
c

Ba
α′β′ẇβ′

, (2.26)

along with the conservation equations ṗi = 0. Furthermore, the last term on the right hand side of
(2.26) can be rewritten in terms of the Routhian:(

∂l

∂ξa

)
c

Ba
α′β′ = MaαGαβ ∂lc

∂ṙβ
Ba

α′β′ =
[
MaαGαε′ ∂lc

∂ẇε′
+ MaαGαiλi

]
Ba

α′β′ ,

=
[(

MaαGαε′ ∂Rc

∂ẇε′

)
+ MaαG′αiλi

]
Ba

α′β′ , (2.27)

= Kε′
α′β′

∂Rc

∂ẇε′
+ Ki

α′β′λi, (2.28)

where G′αi = Gαi − Gαε′G
ij
Gjε′ , assuming the invertibility of G

ij := (∂2lc/∂vi∂vj) as well as that
of the kinetic energy matrix of lc (we also remind the reader of the definition of the Kε

αβ in (5.7)).
Moreover, we shall henceforth denote the parenthetical term in (2.27) by (FRc)′.

Then, since Rc can now be interpreted as a function on T (M/H), we can now attempt to
Hamiltonize (2.26) on this second reduced space. To that end, defining the maps j : (w,ω) �→ (w, ẇ)
and jp : (r, λi) �→ (r, pi), we have the second main result.

Theorem 2. Suppose that the nonabelian Chaplygin nonholonomic system given by (1.9)–(1.11)
is not Hamiltonizable by Corollary 1 but is nonholonomic cyclic. Further, suppose that the kinetic
energy matrix of lc and the sub-matrix G

ij := (∂2lc/∂vi∂vj) are invertible. Then if there exists a
multiplier f(w), nonzero everywhere on its domain with f(w) ∈ C1, satisfying[

ω,
∂Rc

∂ω

]∗
= 〈(FRc)′,B(ω, f∂w)〉, (2.29)

where Rc(w,ω) = j
∗
Rc and (FRc)′ = j

∗(FRc)′, the reduced system is Chaplygin Hamiltonizable on
M ′ = M/H under the choice of quasivelocity ẇ = fω. Furthermore, assuming sufficient regularity
its dynamics on T (M/H) can be written in the quasi-Hamiltonian form

ẇα′
= f{wα′

,HM ′}AP ,
˙̃ ′Pβ′ = f{P̃ ′

β′ ,HM ′}AP , (2.30)

where P̃ ′
α′ = ∂Rc/∂ωα′

and HM ′ = ωα′P̃ ′
α′ −R′

c|ω→P̃ ′ is the Hamiltonian and the almost-Poisson
bracket is defined by:

{G,K}AP (w′, P̃ ′) = {G,K}can(w′, P̃ ′) − fKi
α′β′λi

∂G

∂P̃ ′
α′

∂K

∂P̃ ′
β′

, (2.31)

5)Since the H-invariance implies that lc does not depend explicitly on the vi, these variables are cyclic and produce
momentum conservation laws in unconstrained systems. However, due to the presence of the Λαβ , cyclic variables
are not enough to produce the conservation laws, hence the introduction of the terminology “nonholonomic
cyclic.”
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where {·, ·}can is the canonical bracket on T (M/H). Moreover, the bracket automatically satisfies
the Jacobi identity for dim(M ′) = 2.

Proof. Under the quasivelocity transformation ẇ = f(w)ω the constrained reduced equations (2.26)
become (taking into account (2.28)):

d

dt

∂Rc

∂ωα′ − f
∂Rc

∂wα′ =
(

W ε′
α′β′

∂Rc

∂ωε′
ωβ′

)
− f2Ki

α′β′λiω
β′

, (2.32)

where W ε′
α′β′ := fKε′

β′α′ − Cε′
α′β′ . Now, if f is chosen to satisfy (2.29), then the parenthetical term

in (2.32) vanishes. By defining the Hamiltonian HM ′ as in the statement of the Theorem, the
equations of motion can then be written as in (2.30) with the almost-Poisson bracket (2.31).
Lastly, a straightforward computation shows that the Jacobi identity is automatically satisfied for
dim(M ′) = 2, owing to the fact that the non-canonical part in (2.31), {Pα′ ,Pβ′}AP , is independent
of the momenta.

Theorem 2 will be used below when discussing the Chaplygin sphere (a classic example of how
the apparent failure of Hamiltonizability can be reversed in the presence of momentum conservation
laws) and the Snakeboard as well. However, let us remark here that in [16] the authors consider an
extension of the Chaplygin method to the case where gyroscopic forces are involved, analyzing
the Hamiltonization of nonholonomic systems in two degrees of freedom. In their subsequent
bracket description of the Hamiltonized mechanics there appear non-canonical parts which in this
paper manifest themselves as the second term in (2.31), resulting from the second reduction to
M/H. Indeed, we can compare the results of Theorem 2 to the exposition in [16] by first noting
that the non-canonical part of the bracket (2.31) is the many degree of freedom analogue of S

in equation (3) of [16]. This is best seen by defining Sα′β′ := −fKi
α′β′λi along with the 2-form

Ω := Sα′β′dwα′ ∧ dwβ′
. The two-form Ω is exact when dim M = 2, and in that case (or any other

case when it is exact), one can then locally write Ω = dβ, where β = Wα′(w)dwα′
, and as the

authors in [16] point out, the constrained reduced equations (2.30) can then be rewritten as

d

dt

∂RW

∂ωα′ − f
∂RW

∂wα′ = 0, (2.33)

where RW (w,ω) = Rc(w,ω) + Wα′(w)ωα′
.

As a preliminary application of the results above, we shall now use Corollary 1 to extend
prior Hamiltonization results from [7] of a class of nonholonomic systems known as conditionally
variational systems, which are nonholonomic systems that can be Hamiltonized in full subject to
the imposition of initial conditions that satisfy the constraints.

3. CONDITIONALLY VARIATIONAL SYSTEMS IN THE QUASIVELOCITY CONTEXT

In [7] we discussed the notion of a conditionally variational nonholonomic system. Briefly, these
systems have the property that the constrained Euler–Lagrange equations are Lagrangian, hence
making it possible to express the constrained dynamics in a variational manner. However, we showed
that under certain additional requirements for the original system’s Lagrangian one can construct
the “variational” Lagrangian LV whose Euler–Lagrange equations reproduce the nonholonomic
equations when the initial conditions are chosen to satisfy the constraints (as they must anyway).
Hence, such nonholonomic systems can be realized as variational systems provided the initial
conditions satisfy the constraints and that the original Lagrangian satisfies certain requirements.

In that paper we showed that such a realization was possible only in the cases when the
nonholonomic system possessed an invariant measure with constant density N(r) (the vertical
rolling disk of Section 4.1 is such a system). However, using Corollary 1 we can now extend the
results in [7] to a more general setting if we instead focus on the Chaplygin Hamiltonized system.
To that end we have the following result:
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Theorem 3. Suppose that for a given abelian Chaplygin nonholonomic system (L,G,D) with
constraints given by

φa(q, q̇) = ṡa + Aa
α(r)ṙα, a = 1, . . . , k < n,

where q = (r, s), we have found an f as in Corollary 1 above and let L(q, ω) := L(q, ṙ = fω, ṡ = fω)
and φa(q, ω) = φa(q, ṙ = fω, ṡ = fω). Then if the matrix g̃ab := (∂2L/∂ωa∂ωb) is invertible, the
nonholonomic mechanics of the original system can be derived from the (almost) Euler–Lagrange
equations

d

dt

∂LV

∂ωI
− f

∂LV

∂qI
= 0, I = 1, . . . , n, (3.1)

by using the Lagrangian LV (q, ω) defined by

LV (q, ω) = L(q, ω) − 1
f

∂L
∂ωa

φa(q, ω), (3.2)

and imposing the nonholonomic constraints initially.

Proof. The existence of an f which Hamiltonizes the system guarantees, by part (2) of Proposition 3
in [7], that the system (L(q, ω), φ(q, ω)) is conditionally variational after the reparameterization
dτ = f(r)dt. Then, the Theorem follows by Proposition 5 of [7] again.

Theorem 3 extends Chaplygin’s Theorem in a different direction. Unlike Corollary 1, it gives
one a method to Hamiltonize the entire system (similar to some of our earlier work [6]) after a time
reparameterization. Although it is impossible for a nonholonomic system to be Hamiltonian [1],
Theorem 3 begins to answer the open problem briefly discussed in [12] and elsewhere of lifting
the Hamiltonization of the reduced problem to the whole system. We illustrate this and our other
results below by applying these ideas to some common and well-known nonholonomic systems.

4. EXAMPLES

The simplest illustrations of the above results can be found in low dimensions, specifically the two
degree of freedom case. Although this is the original setting for Chaplygin’s Reducibility Theorem,
we will discuss the Chaplygin sleigh (which, due to its lack of an invariant measure, cannot be
handled by Chaplygin’s Theorem), among other things, and also take this opportunity to illustrate
Theorem 3 as well.

4.1. The Vertical Rolling Disk

Consider the nonholonomic vertical rolling disk pictured in Fig. 1 below with configuration space
Q = R

2 × S1 × S1 and parameterized by the coordinates (x, y, θ, ϕ), where (x, y) is the position of
the center of mass of the disk, θ is the angle that a point fixed on the disk makes with respect to the
vertical, and ϕ is measured from the positive x-axis. This system has Lagrangian and constraints
given by:

L =
1
2
m(ẋ2 + ẏ2) +

1
2
Iθ̇2 +

1
2
Jϕ̇2,

φ1 = ẋ − R cos ϕθ̇ = 0,

φ2 = ẏ − R sinϕθ̇ = 0, (4.1)

where m is the mass of the disk, R is its radius, and I, J are the moments of inertia about the axis
perpendicular to the plane of the disk, and about the axis in the plane of the disk, respectively.

This system has an invariant measure with constant density N , which we can take without loss
of generality to be unity. Corollary 2 applies and since f = N = const, then we can simply take
q̇ = ω so that the new quasivelocities are merely the original q̇’s. A short computation then shows
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Fig. 1. The vertically rolling disk.

that the system (4.1) satisfies Theorem 3, and the variational Lagrangian is computed through
(3.2) to be

LV (q, q̇) = −1
2
m(ẋ2 + ẏ2) +

1
2
Iθ̇2 +

1
2
Jϕ̇2 + mRθ̇(ẋ cos ϕ + ẏ sin ϕ). (4.2)

The Lagrangian (4.2) first appeared in [7], and a short computation shows that applying the
initial conditions φ1(0) = 0, φ2(0) = 0 to the Euler–Lagrange equations for LV reproduces the
nonholonomic equations for the system (4.1).

This simple example illustrates the case when Hamiltonization is automatic (i.e. f = const) and
thus the system is conditionally variational as well.

4.2. The Nonholonomic Free Particle

Consider a nonholonomically constrained free particle with unit mass (more details can be found
in [1]), and Lagrangian and constraint given by

L = 1
2

(
ẋ2 + ẏ2 + ż2

)
,

φ(q, q̇) = ż + xẏ = 0. (4.3)

The system possesses an invariant measure with density N(x) = (1 + x2)−1/2, and thus by
Corollary 2 the system is Chaplygin Hamiltonizable with f(x) = (1 + x2)−1/2 and quasivelocities
defined by ω =

√
1 + x2ṙ, where r = (x, y).

To illustrate Theorem 3, note that L(q, ω) = (1/2)f2(ω2
x + ω2

y + ω2
z) and that since g̃zz = (1/2)f2,

Theorem 3 applies and we have LV given by:

LV (q, ω) =
1

2(1 + x2)
(
ω2

x + ω2
y − ω2

z − 2xωxωy

)
,

Then, computing equations (3.1) gives:

ω̇x =
xω2

x

(1 + x2)3/2
,

ω̇y = 0,
d

dt

(
f2(ωz + xωy)

)
= 0. (4.4)

Now, the last line of (4.4) reads (d/dt)(fφ(q, ω)) = 0, which gives the conservation law
f(q(t))φ(q(t), ω(t)) = f(q(0))φ(q(0), ω(0)). Thus, if the constraints are satisfied initially, then
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φ(q(0), ω(0)) = 0, and hence φ(q(t), ω(t)) = 0 for all t. Recalling that q̇ = fω, this then expresses
the conservation in time of the original constraint equation (4.3). After imposing the constraints
initially, one can then use the quasivelocity definitions to then transform ω̇ → r̈ and recover the
original nonholonomic mechanics that results from the application of the Lagrange–d’Alembert
principle to the system (4.3). Thus, although (3.1) is not Hamiltonian, as has been the theme
in this paper, it is after Chaplygin’s time reparameterization (and the imposition of initial
conditions satisfying the constraints). Thus the nonholonomic free particle, like the vertical disk, is
Hamiltonizable but since f �= const it is only conditionally variational after a reparameterization
of time.

4.3. The Chaplygin Sphere

The Chaplygin sphere is a sphere rolling without slipping on a horizontal plane (see [1, 16])
whose center of mass is at the geometric center, but the principal moments of inertia are distinct.
In Euler angles (θ, ϕ, ψ) the Lagrangian and constraints are:

L =
I1

2

(
θ̇ cos ϕ + ψ̇ sin ϕ sin θ

)2
+

I2

2

(
−θ̇ sin ϕ + ψ̇ cos ϕ sin θ

)2

+
I3

2

(
ϕ̇ + ψ̇ cos θ

)2
+

1
2

(
ẋ2 + ẏ2

)
,

φ1 = ẋ − θ̇ sin ψ + ϕ̇ cos ψ sin θ = 0,

φ2 = ẏ + θ̇ cos ψ + ϕ̇ sinψ sin θ = 0.
where Ii are the moments of inertia about the center and where we have assumed the ball to have
unit radius and mass.

Since q = (x, y, θ, ψ, ϕ) and the constraints and Lagrangian are cyclic in x, y, we can consider
this to be an abelian Chaplygin system. The system has an invariant measure whose density N(θ, ϕ)
is in general non-constant [16].

Applying Corollary 1 shows that there does not exist an f which Hamiltonizes the three degree
of freedom base dynamics given by (1.9)–(1.10) when viewed as an abelian Chaplygin system.
However, it is easily seen that ψ is a nonholonomic cyclic variable and leads to the momentum
conservation law pψ = λψ. Thus we can form the constrained Routhian as in (2.25) and further
reduce the dynamics to M ′ = S1 × S1. We can then Hamiltonize on M ′ through Theorem 2, from
which (2.29) shows that f = N(θ, ϕ). The non-canonical part of the almost-Poisson bracket (2.31)
is then computed to be

{P ′
1,P ′

2} = −λψ(I3 + 1)f3 sin θ(I1 cos2 ϕ + I2 sin2 ϕ + 1),

and by the same Theorem since dim M ′ = 2 we know that this bracket satisfies the Jacobi identity
and hence is indeed a Poisson bracket. This matches the result obtained in [16] and is an example
of a system that although is not Hamiltonizable at when viewed as a three degree of freedom
abelian Chaplygin system is in fact Hamiltonizable on the second reduced space M ′ of dimension 2.
Moreover, it also serves to illustrate the discussion at the end of Section 2.3.

4.4. The Snakeboard

Another example of Theorem 2, whose greater importance we will discuss in the Conclusion,
is the Snakeboard [1, 24]. This system is modeled as a rigid body (the board) with two sets of
independent actuated wheels, one on each end of the board. The human rider is modeled as a
momentum wheel which sits in the middle of the board and is allowed to spin about the vertical
axis, see Fig. 2.

The configuration space is Q = SE(2)×S1 ×S1 and the Lagrangian L : TQ → R and constraints
are given by:

L =
1
2

(
ẋ2 + ẏ2 + θ̇2 + ψ̇2 + 2ψ̇θ̇ + 2φ̇2

)
,

ẋ = − cot φ cos θθ̇,

ẏ = − cot φ sin θθ̇,
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Fig. 2. The Snakeboard.

where we have set the mass m, moments of inertia, and the distance r from the center of the board
to its wheels equal to unity. Here (x, y, θ) represent the position and orientation of the center of the
board, ψ the angle of the momentum wheel relative to the board and φ1 and φ2 the angles of the
back and front wheels relative to the board. Here we’ve made the simplification that φ1 = −φ2, as
in [1, 24].

As stated, we can view this system as an abelian Chaplygin nonholonomic system with three
degrees of freedom. Its equations of motion are given in [24] as:

ṗθ = −1
2

sec φ csc φ(pθ − pψ)pφ, θ̇ = tan2 φ(pθ − pψ),

ṗφ = 0, φ̇ =
1
2
pφ,

ṗψ = 0, ψ̇ =
pψ − sin2 φpθ

cos2 φ
.

Since this system satisfies the conditions of Theorem 2 we can set pψ = λψ = const. and focus
on Hamiltonizing the reduced system. Given that this reduced system has the invariant measure
N(φ) = tan φ, which is independent of ψ, by Corollary 2 f = N . The non-canonical part of the
almost-Poisson bracket (2.31) is then computed to be:

{P ′
1,P ′

2} = sec2 φλψ,

and by the same Theorem we know that this bracket satisfies the Jacobi identity (since the reduced
system has two degrees of freedom) and is thus a Poisson bracket.

4.5. The Chaplygin Sleigh

The Chaplygin Sleigh [1–3, 13, 33, 34] consists of a rigid body in the plane which is supported at
three points, two of which slide freely without friction while the third is a knife edge, a constraint
that allows no motion perpendicular to its edge. The configuration manifold Q = R

2 × S1, where
(x, y) are the coordinates of the contact point while θ is the angle the knife edge makes with the
x-axis, see Fig. 3 below. Moreover, we suppose here that the center of mass of the system C is
not on top of the knife edge (if it is, then one can show [1] that the sleigh reduces to another
nonholonomic system known as the knife edge, which possesses an invariant measure).
The Lagrangian L and constraints are given by:

L =
1
2

(
ẋ2 + ẏ2 + 2θ̇2 − 2(ẋ sin θ + ẏ cos θ)θ̇

)
,

ẏ cos θ − ẋ sin θ = 0,
where for simplicity we have set all parameters to unity. Since the Lagrangian and constraint are
left invariant on the Lie group G = SE(2) we can treat the problem within the Euler–Poincaré–
Suslov framework. Defining ξ = g−1ġ, where g = (x, y, θ), we can write the Lagrangian L in terms
of ξ as l(ξ) = ξ2

3 + (1/2)(ξ2
1 + ξ2

2) + ξ2ξ3, and the constraint as ξ2 = 0.
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Fig. 3. The Chaplygin sleigh.

With the structure constants given by C2
13 = −1 = −C1

23 and all other zero we see that f = const.
satisfies Corollary 1, which agrees with the recent result of [15].

This system is of critical importance in the study of Hamiltonization since unlike Proposition 2,
the Chaplygin sleigh shows that just because a system is Hamiltonizable does not imply that it
possesses an invariant measure. Indeed, although it is well-known the Chaplygin sleigh does not
possess an invariant measure [1, 15], as we’ve seen above this system is nonetheless Hamiltonizable.
Thus, unlike for the nonabelian Chaplygin case, the Hamiltonizability of Euler–Poincaré–Suslov
systems does not automatically imply that the system possesses an invariant measure, and thus
Chaplygin’s Reducibility Theorem becomes inapplicable (due to the non-existence of an invariant
measure)6). However, thanks to the results of Corollary 1, we may still be able to Hamiltonize, or,
more properly, “Poissonize” (which would be the better term here since there isn’t an invariant
measure, as discussed in the Introduction).

4.6. A Mathematical Example

Consider the following mathematical example due to Iliyev [18]. The Lagrangian and constraints
are given by:

L =
1
2

(
(q̇1)2 + (q̇2)2 + (q̇3)2 + (q̇4)2 + (q̇5)2

)
,

q̇4 = q̇2 tan(q1),

q̇5 = q̇3 tan(q1).

This is a nonholonomic system with three degrees of freedom (m = 3), and thus Chaplygin’s
Theorem is inapplicable. Within our framework, it can most easily be treated as an abelian
Chaplygin system. Solving the conditions in (2.17) in MAPLE yields f = cos(q1). Moreover, as a
check of Proposition 2, one can show that the system’s invariant measure density is N = cos2(q1),
which indeed is equal to fm−1, as the Proposition suggests.

5. CONCLUSION AND FUTURE DIRECTIONS

Chaplygin’s Reducing Multiplier Theorem has long allowed an interesting investigation of some
nonholonomic systems in terms of the quasi-periodic orbits that result from the consideration
of the time reparameterization dτ = fdt and the Hamiltonian-like structure it produces. Perhaps
because of this, and its success in studying nonholonomic systems using methods from unconstrained
mechanics, it has attracted much attention in the recent decades as interest in nonholonomic
systems has grown. However, as we have mentioned, the use of Chaplygin’s results, and much of
the subsequent research that has followed it, has been confined to systems possessing an invariant

6)However, it is interesting to note that Chaplygin did apply his reducing multiplier method to the Chaplygin sleigh
in [3], but only after introducing “quasicoordinates.”
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measure and, typically, also in two degrees of freedom. In addition, and partly due to these confines,
Hamiltonizability of nonholonomic systems with symmetry in arbitrary dimensions has remained
untouched (with the only results [17] and [35] known to the authors arising by construction).

The present work addresses these two main aspects of Chaplygin’s work, extending the results
to nonholonomic systems in arbitrary degrees of freedom not necessarily possessing an invariant
measure (a central assumption of the research on Chaplygin’s work to date). As such, this latter
result alone represents a possibly new direction for the study of the integrability of nonholonomic
systems, with a Hamilton–Jacobi theory based on it now possible (it would be interesting to develop
this and compare it to the Hamilton–Jacobi theory of nonholonomic systems recently presented
in [36]. In fact, as we have mentioned, Chaplygin’s Theorem was used in conjunction with the
Hamilton–Jacobi method implicitly in [3, 13], albeit in “quasicoordinates.”). The local conditions
(2.9)–(2.13), or their special cases (2.17) and (2.18), also enable the search for Hamiltonizable
nonholonomic systems to be converted into the search for solutions to certain partial differential
equations, a task which can be considerably simplified by making use of any of today’s mathematical
software packages and which eliminates the guesswork involved in current uses of Chaplygin’s
Theorem.

We should also point out the interesting role that symmetry plays in Chaplygin Hamiltonization.
For example, considering the Chaplygin sleigh as an abelian Chaplygin system it is immediately
seen to be impossible to Chaplygin Hamiltonize (the equations (2.17) have no solution), yet as we
showed in Section 4.5 it is Chaplygin Hamiltonizable when considered as an Euler–Poincaré–Suslov
system. This suggests to us that the choice of symmetry group affects the Hamiltonizability of the
system in question. We expect to pursue these issues in future research.

Finally, we note that the multi-dimensional Veselova system and multi-dimensional Chaplygin
sphere have recently been Hamiltonized in [17] and [35], respectively. However, the methods and
conditions for Hamiltonization presented here are inapplicable to those Hamiltonizations due to
the particular Hamiltonization methods used by the authors.

In the former, the authors constructed redundant coordinates and showed that the solutions
of the multi-dimensional Veselova system can be mapped isomorphically into the solutions of an
associated different Hamiltonian system known as the Neumann system. Within the framework
of the methods presented here and in our previous research [6], this would be equivalent to the
statement that after an appropriate time reparameterization, applying the inverse problem of the
calculus of variations to the resulting system would yield the Neumann Lagrangian as a solution.

In the latter case, the author Hamiltonizes the multi-dimensional Chaplygin sphere by con-
structing redundant coordinates and effecting a time-reparameterization. It is then shown that
the reduced mechanics of the higher dimensional nonholonomic Chaplygin sphere emerge as
the restriction to the invariant submanifolds of the Hamiltonian system resulting from the time
reparameterization. In our previous research [6] we called these type of systems associated second-
order systems. However, the main difference between our work there and the construction in [35]
is that we constructed associated second-order systems for the original nonholonomic system (not
the time reparameterized one).

Given the above discussion, we therefore expect that the aforementioned multi-dimensional
Hamiltonizations can be realized as special cases of a synthesis of the general (yet mostly disjoint)
methods presented here and in earlier work [6] (see also [37]).

APPENDIX

The Components of the Quasivelocity AP Bracket

The components of (2.2)–(2.4) are given by:

Âk
ij = fCa

bde
b
ie

d
jMaγGγαGk

α −
(
fKk

ji − C
k
ij

)
, (5.1)

B̂α
ij = −fCa

cde
c
ie

d
jMaγGγα, (5.2)

Ĉk
iα = δk

i

(
∂f

∂rα
− ∂f

∂gσ
gσ
d Ad

α

)
+ fF a

iα

(
gabΓbk − MaγGγβGk

β

)
, (5.3)
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D̂β
iα = fF a

iαMaγGγβ − ∂f

∂gσ
gσ
d ed

i δ
β
α, (5.4)

Êk
αβ = fBb

αβ

(
MbγGγεGk

ε − gbdΓdk
)

, (5.5)

F̂ γ
αβ =

∂f

∂gσ
gσ
b

(
Ab

αδγ
β −Ab

βδγ
α

)
+

(
fKγ

βα − Cγ
αβ

)
, (5.6)

where

Kγ
βα = MbεG

εγBb
βα, (5.7)

Kk
ji = gabC

a
cde

c
ie

d
jΓ

bk, (5.8)

Cγ
αβ = δγ

β

∂f

∂rα
− δγ

α

∂f

∂rβ
, (5.9)

C
k
ij =

∂f

∂gσ
gσ
d

(
ed
j δ

k
i − ed

i δ
k
j

)
, (5.10)

with Maα = gaα − gabAb
α.

Calculation of the Jacobi Identity for the Quasivelocity AP Bracket

Here we illustrate the calculation of the Jacobi identity for the bracket (2.1). Since it is well-
known [1] that the Jacobi identity is satisfied iff it is satisfied for the component functions, we
need only calculate it for all combinations of x = (rγ ,Pi,Pα), i.e. we require {xI , {xJ , xK}′

M
}′

M
+

cyclic = 0 for all I, J,K = (a, i, α).

As an example, consider x = (rγ ,Pα,Pβ). Then we have:

{rγ , {Pα,Pβ}′M}′
M

+ cylic = 0,

=⇒ {rγ , 1
f F̂ ε

αβPε}′M = 0,

=⇒ 1
f2 δγ

ε F̂ ε
αβ = 0,

which gives the third equation in (2.9). Similarly, considering x = (rγ ,Pi,Pβ) gives:

{rγ , {Pi,Pβ}′M}′
M

+ cylic = 0,

=⇒ {rγ , 1
f D̂ε

iβPε}′M = 0,

=⇒ 1
f2 δγ

ε D̂ε
iβ = 0,

which gives the second equation in (2.9). Similar computations lead to the remaining conditions
in (2.9).
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