
The Geometry and Integrability of the Suslov Problem

Oscar E. Fernandez∗

Department of Mathematics
Wellesley College

Wellesley, MA 02482

Anthony M. Bloch†

Department of Mathematics
University of Michigan
Ann Arbor, MI 48109

Dmitry V. Zenkov‡

Department of Mathematics
North Carolina State University

Raleigh, NC 27695

November 4, 2014

Abstract

In this paper we discuss the integrability of a nonholonomic mechanical system—a
generalized Klebsh–Tisserand case of the Suslov problem. Using the theory of Hamil-
tonization and the Poincaré–Hopf theorem we analyze the topology of the invariant
manifolds and in particular describe their genus. We contrast the results with those
for Hamiltonian systems.

Introduction

Consider a Hamiltonian system on a 2n-dimensional symplectic manifold M
with n independent smooth integrals Fi :M → R, i = 1, . . . , n. Let

Ma = {x ∈M | Fi(x) = ai}, a = (a1, . . . , an) ∈ Rn.

If the integrals are also in involution (that is, with pairwise vanishing Poisson
brackets) and the level setMa is compact, then the Liouville–Arnold Theorem
implies that each connected component of Ma is diffeomorphic to the torus
Tn [1, Chapter 10.49]. These connected components are often called Liouville
tori.

We now impose non-integrable velocity constraints on our mechanical system—
forming a nonholonomic system. Despite the fact that these systems are not
Hamiltonian [6], there are still many examples for which the associated invari-
ant sets are toroidal [8, 9, 31, 47, 48].

A number of nonholonomic systems with toroidal invariant manifolds have
the following properties:

1. They possess symmetry, leading to the natural construction of the reduced
velocity phase space. As discussed in [7], the reduced velocity phase
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space of a nonholonomic system has the structure of a fiber bundle, with
base space assumed to be a smooth manifold and denoted by Q. In
certain special cases (that are of interest here) the dimensions of Q and
the fiber coincide. In such cases, the phase space P is the dual of the
aforementioned bundle, with base Q and fiber Rn∗. For instance, we may
have P = T ∗Q or P = Q × Rn∗; the latter is the setting of interest for
this paper.

2. The vector field Xnh describing the nonholonomic dynamics can be writ-
ten as

Xnh = f(q)X, (*)

where f(q) is a nowhere vanishing smooth function on Q, Xnh ∈ X (P ),
and X is in general the Hamilton–Poisson vector field for the Hamiltonian
h of the nonholonomic system, i.e. the vector field defined by X = {·, h},
where {·, ·} is a Poisson bracket on P (see [5, 9, 12, 16, 47]). In the special
case that P = T ∗Q, this is the Poisson bracket given by the canonical
symplectic form on T ∗Q.

The function f(q) is often called the Chaplygin reducing multiplier (or sim-
ply the multiplier) after S.A. Chaplygin, who showed [10] that if a nonholo-
nomic system on an n-dimensional configuration manifold Q can be trans-
formed into a Hamiltonian system via the reparameterization of time dτ =
f(q) dt, q ∈ Q, then the original nonholonomic system has an invariant mea-
sure with density N(q) = (f(q))n−1 with respect to Ωn, where Ω is the canon-
ical symplectic form on T ∗Q [15, Thm 3.5]. For n = 2, Chaplygin also showed
that the converse is true: For a nonholonomic system with two degrees of free-
dom possessing an invariant measure with density N(q) the dynamics becomes
Hamiltonian after the reparameterization of time dτ = N(q) dt.

In the case of P = T ∗Q, nonholonomic systems with Xnh of the form
(*) are also called conformally Hamiltonian systems [9, 26], since Xnh be-
comes Hamiltonian after multiplication by 1/f . If X is complete, one can
show that Xnh is Hamiltonian in the time τ with respect to a modified Pois-
son bracket [47]. Time-invariant conformally Hamiltonian systems are also
measure- and energy-preserving [9]. Due to these properties, conformally
Hamiltonian systems are “practically indistinguishable from Hamiltonian sys-
tems” [9]. Accordingly, the integrability of conformally Hamiltonian systems
can be investigated with the Liouville–Arnold theorem. Loosely speaking, af-
ter rescaling Xnh (or equivalently reparameterizing time), the resulting system
is Hamiltonian, and its integrability can be determined with the help of the
Liouville–Arnold theorem (we present an example of this in Section 1). In
the case that Ma is two-dimensional, the following result, due to Kozlov and
based on Jacobi’s last multiplier theorem, is often used when analyzing the
integrability of a conformally Hamiltonian nonholonomic system.

Theorem (Kozlov [2, 24]). Suppose that the system

ẋ = g(x), (**)
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where x ∈ P , an m-dimensional smooth manifold, possesses an invariant mea-
sure and has m−2 first integrals F1, . . . , Fm−2. Suppose that the differentials of
the functions F1, . . . , Fm−2 are linearly independent on the associated invariant
set Ma. Then:

1. The solutions of (**) lying on Ma can be found by quadratures.

2. If Na is a compact connected component of the level set Ma and g(x) ̸= 0
on Na, then Na is a smooth manifold diffeomorphic to the two-dimensional
torus T2.

3. There exist angle variables φ1, φ2 mod 2π on Na such that the system (**)
on Na takes the form

φ̇1 =
α1

Φ(φ1, φ2)
, φ̇2 =

α2

Φ(φ1, φ2)
,

where α1, α2 are constants, |α1| + |α2| ̸= 0, and Φ is a smooth positive
2π-periodic function with respect to φ1 and φ2.

(In the first part of this theorem, integrability by quadratures “means that the
complete solution can be found by algebraic operations (including inversion of
functions) and calculating integrals of functions of one variable” [25, pg. 135].)

Aside from the aforementioned examples of nonholonomic systems that are
conformally Hamiltonian, there are also examples in which the vector field Xnh

still has the form (*) but where one or more of the assumptions characterizing
the conformally Hamiltonian setting do not hold; namely, the assumptions
that the phase space P = T ∗Q, the f in (*) has no zeros, and the X in (*)
is Hamiltonian with respect to a symplectic form on T ∗Q. This is the case,
for instance, in the examples considered in [14, 46]. In those examples f has
zeros and the phase space P is not a cotangent bundle but instead a trivial
fiber bundle P = Q × Rn (where n = dimQ) of even dimension, and X
is Hamiltonian with respect to a Poisson bracket of the form (1/f){·, ·}AP,
where the latter is an almost Poisson bracket on P .

For these nonholonomic systems, since the multiplier f now has zeros,
item 2 of Kozlov’s theorem cannot tell us about the topology of Ma. In this
paper we study the problem of determining the topology of the invariant sets
for such systems. To parallel Kozlov’s theorem, we restrict our attention to
the case whenMa is two-dimensional. We discuss why the Poincaré–Hopf the-
orem is a natural tool to use, and utilize various other tools from topology and
the theory of ordinary differential equations that are useful for analyzing the
problem and that we hope will be helpful in generalizing the analysis here to
other integrable nonholonomic systems.

We illustrate our approach by studying an integrable case of the Suslov prob-
lem [24, 44], which describes the rotational dynamics of a three-dimensional
rigid body subject to the nonholonomic constraint that forces the angular ve-
locity component along a given direction in the body to vanish (we describe
this system in detail in Section 1.2). The reduced dynamics of this system take
place on the space P = S2 ×R2, where S2 is the reduced configuration space,
and the vector field Xnh still has the form (*), where X is Hamilton–Poisson
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as we will see in Section 3, but where f has zeros. As we will see, the invari-
ant sets Ma of this system are not tori; they are surfaces of genus between
zero and five. This seems to suggest that the presence of zeros of f affect the
topology of the invariant sets. In Section 2 we describe precisely how, by way
of the Poincaré–Hopf theorem. We relate our approach to that of Tatarinov
in [45, 46], who used a surgery approach to arrive at the same conclusion.

The paper is organized as follows. In Section 1 we consider nonholonomic
systems verifying (*), which we term “Chaplygin Hamiltonizable.” We then
present an example that illustrates the fact that when f has no zeros the
topology of the manifolds Ma of integrable Chaplygin Hamiltonizable systems
can be determined via the Liouville–Arnold theorem. In §1.2 we present an
overview of the Suslov problem and its integrability in the Klebsh–Tisserand
case and then review Tatarinov’s results. In Section 2 we review a generaliza-
tion of the Poincaré–Hopf Theorem that we will need in the discussion of our
approach to determining the topology ofMa when this set is a two-dimensional
compact manifold. We illustrate this approach in the following sections, begin-
ning in Section 3, where we review a generalized Klebsh–Tisserand potential
and show that the vector field of the Suslov problem with this potential can be
written as in (*), but where the underlying space is not a cotangent bundle.
Then, in Section 4 we study how the zeros of f contribute to the zeros of the
vector field Xnh, and count the indices at all zeros. Then, we prove via the
Poincaré–Hopf Theorem that, under certain additional assumptions, the total
sum of the zeros of Xnh determines the genus of the compact surfaces Ma to
be g = 1 + n, where 0 ≤ n ≤ 4 is the number of connected components of
the set of zeros of the multiplier f . The similarities and differences between
this result (Theorem 4.1 below), the Liouville–Arnold theorem, and Kozlov’s
theorem above are discussed in Section 5.

1 Integrable Chaplygin Hamiltonizable Systems

Dynamics of the form (1.1) often arises as a result of Chaplygin reduction.
Briefly, in these cases one deals with a nonholonomic system with symmetry
whose velocity space (i.e., the tangent space to the configuration manifold) at
each point is the direct sum of the tangent to the group orbit and the constraint
distribution. See [7] for details. Assuming that the system’s Lagrangian and
constraint distribution are invariant under the group action, one can then
perform the Chaplygin reduction to reduce the dynamics (see [6, 7, 12] for a
thorough exposition of Chaplygin reduction).

1.1 Hamiltonizable Systems

As mentioned in the Introduction, the nonholonomic dynamics we will study
in this paper take place not on a cotangent bundle but on a trivial fiber bundle.
The following definition describes the cases of interest to us, motivated in [9].

Definition 1.1. Let Q be an n-dimensional smooth manifold (the reduced
configuration space) and P be a smooth fiber bundle with base space Q and fiber
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Rn∗ (with n = dimQ). Denote by Xnh ∈ X (P ) the vector field describing the
nonholonomic dynamics on P and associated to the Hamiltonian h : P → R.
Further, suppose that

Xnh = f(q)Xh (1.1)

for some smooth function f on Q, where Xh = {·, h} is the Hamiltonian–
Poisson vector field defined by the Hamiltonian h and Poisson bracket {·, ·} :
F(P )×F(P ) → R on P . Then

1. If f is nowhere zero we will call the system Chaplygin Hamiltonizable.

2. If f has zeros we will call the system Chaplygin Hamiltonizable al-
most everywhere.

In both cases the function f will be called the conformal factor or multi-
plier.

In the context of this definition, the conformally Hamiltonian systems dis-
cussed in the Introduction are Chaplygin Hamiltonizable and are characterized
by P = T ∗Q, f nowhere zero, and {·, ·} the Poisson bracket associated with a
symplectic form on T ∗Q; under certain conditions a multiplier f may be found
by solving a coupled set of first-order partial differential equations (see [16] and
[35]). By contrast, as we will see in Section 3 the problem we study in this
paper is characterized by P a trivial fiber bundle, f having zeros, and {·, ·} a
Poisson bracket of the form (1/f){·, ·}AP, where the latter bracket is an almost
Poisson bracket on P . (Almost Poisson brackets on P that become Poisson
after multiplication by a nowhere zero function on P were called conformally
Poisson in [3].)

As mentioned in the Introduction, Chaplygin Hamiltonizable systems (in
the sense of the first part of Definition 1.1) always possess an invariant measure,
and in some cases their integrability can be investigated using the Liouville–
Arnold theorem. Let us illustrate this with an example (paper [9] lists many
other examples of Chaplygin Hamiltonizable systems).

Example: The Vertical Rolling Disk. Following [6], consider a vertical
disk of mass m rolling on a flat surface. Label its center of mass by (x, y) and
let θ be the angle between a fixed radius of the disk and the vertical direction
and φ be the angle measured counterclockwise from the positive x-axis to the
plane of the disk.

The configuration space of this system is S1 × S1 × R2, with G = R2 a
symmetry group satisfying the condition for Chaplygin reduction discussed at
the beginning of this section [6, Sect. 5.6.1]. After Chaplygin reduction we
obtain the reduced configuration space Q = S1 × S1, coordinatized by (θ, φ).
The reduced Hamiltonian h : T ∗Q→ R reads

h =
1

2

(
(I +mR2)p2θ + Jp2φ

)
,

where I is the moment of inertia of the disk about the axis through the center
of and orthogonal to the disk, and J is the moment of inertia about a diameter
of the disk.
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The vector fieldXnh on T
∗Q describing the reduced nonholonomic dynamics

is

Xnh = (I +mR2)pθ
∂

∂θ
+ Jpφ

∂

∂φ
.

This vector field is of the form (1.1), with f(θ, φ) = 1 (meaning that the
dynamics is already Hamiltonian) and {·, ·} is the canonical Poisson bracket
associated with the canonical 2-form dθ ∧ dpθ + dφ∧ dpφ on T ∗Q. Thus, from
Definition 1.1 we conclude that the system is Chaplygin Hamiltonizable. In
addition, the vector field Xnh is complete and the integrals of motion F1 =
(I+mR2)p2θ and F2 = Jp2φ are independent. Since these add up to h, it follows
that Ma, given by

Ma = {(θ, φ, pθ, pφ) ∈ T ∗Q | F1 = a1, F2 = a2},

is compact. Clearly Ma
∼= T2, consistent with the conclusion of the Liouville–

Arnold theorem. We note in passing that unlike the Hamiltonian dynamics of
the reduced system, the full dynamics of the vertical rolling disk, describing
motion in all four variables (θ, φ, x, y), is not Hamiltonian.

1.2 Integrability of the Suslov Problem with a Klebsh–Tisserand
Potential

We will now introduce a classic example of a system that is Chaplygin Hamil-
tonizable almost everywhere (meaning that the system’s multiplier f has ze-
ros).

Following [45, 46], and [18, Section 6.1.1] let us first describe the Euler–
Poincaré equations. Consider a rigid body with inertia tensor

A = diag(A1, A2, A3)

rotating about the origin in R3. Denote by {e1, e2, e3} the standard orthonor-
mal frame in R3 (the “fixed spatial frame”) and by {E1,E2,E3} an orthonor-
mal frame moving with the body (the “body frame”, here the principal inertia
frame). Then the configuration of the body is specified by a rotation matrix
g ∈ SO(3) relating the moving body frame to the fixed spatial frame: Ei = gei.
The vertical unit vector e3, viewed from the body frame, is called the Poisson
vector and denoted γ. This vector determines the attitude of the body up to
rotations around a vertical line [1, Appendix 5].

Let Ω = Ω1E1 +Ω2E2 +Ω3E3 ∈ so(3) ∼= R3 be the body angular velocity of
the rigid body. Suppose further that the rigid body moves in an axisymmetric
potential field V (γ). Then the dynamics on the velocity phase space R3{γ}×
R3{Ω} is given by the Euler–Poincaré equations [18] (see also [27, 41] for the
related semidirect product approach):

AΩ̇ = (AΩ)×Ω+
∂V

∂γ
× γ, γ̇ = γ ×Ω.

In Suslov’s problem [44] we now impose the nonholonomic constraint

⟨a,Ω⟩ = 0,
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where the vector a is fixed in the body. Following [24, Section 5], let us consider
the case a = E3, so that the nonholonomic constraint is simply Ω3 = 0. Then
the equations of motion turn out to be the Euler–Poisson equations above with
Ω3 = 0 [17, 24, 44]:

A1Ω̇1 = γ2
∂V

∂γ3
− γ3

∂V

∂γ2
, A2Ω̇2 = γ3

∂V

∂γ1
− γ1

∂V

∂γ3
, (1.2a)

γ̇1 = −γ3Ω2, γ̇2 = γ3Ω1, γ̇3 = γ1Ω2 − γ2Ω1. (1.2b)

This system preserves the measure d3γ ∧ d3Ω on R3{γ} × R3{Ω}, as can
easily be verified by taking the divergence of (1.2). It is also SO(2)-invariant,
so that the reduced configuration space Q = SO(3)/SO(2) ∼= S2 [14, Lemma
1]. Thus, the velocity phase space of the system is [14]:

V = {(γ,Ω) ∈ R3{γ} × R3{Ω} | Ω3 = 0, ⟨γ,γ⟩ = 1} = S2 × R2. (1.3)

Clearly, F1 = ⟨γ,γ⟩ is an integral of motion of both the Euler–Poisson equa-
tions and the system (1.2).

The space V is of the form Q×Rn discussed in Definition 1.1, and is four-
dimensional, so we need two more integrals of motion to conclude integrability
via Kozlov’s theorem. These integrals have been well studied [11, 14]; one
integral is

F2 =
1

2
⟨AΩ,Ω⟩+ V (γ),

and several classes of potentials are known to generate the last needed integral
(see [11, 14] for more details). Among these is the Klebsh–Tisserand case,
where

V (γ) =
b

2
⟨Aγ,γ⟩, F3 =

1

2
⟨AΩ, AΩ⟩− 1

2
⟨Dγ,γ⟩, where D = bA−1 detA.

With this potential, the Suslov problem is known to be integrable by quadra-
tures, and the dynamics can be written in the form [24]

φ̇1 = λ1/Φ, φ̇2 = λ2/Φ, Φ =
(
1− c21 sin

2 φ1 − c22 sin
2 φ2

)−1/2
, (1.4)

where c1 and c2 depend on the values of the integrals F1 and F3, and (φ1, φ2)
are angle variables. If c21 + c22 < 1 then item 2 of Kozlov’s theorem guarantees
that (1.4) determines a flow on two-dimensional tori. However, for c21 + c22 ≥ 1
the vector field Xnh has zeros (as we discuss in the next paragraph), and so
the hypotheses of item 2 of Kozlov’s theorem are not met. For this reason,
the authors of [36, 37, 47] studied the flow (1.4) in the case when c21 + c22 ≥ 1
and determined the topology via the surgery approach used by Tatarinov and
alluded to in the Introduction. We will now review this approach.

Tatarinov’s method begins by considering the c21 + c22 < 1 case of the flow
(1.4), and its associated Liouville tori in the phase space V . (Strictly speaking,
the Liouville tori are situated in the momentum phase space. Here, however,
they are viewed as submanifolds of the velocity phase space.) As described
in [37], one then defines the region of possible motions Pfh as the projection
(Ω1,Ω2, γ1, γ2) → (γ1, γ2) of these Liouville tori on the plane of independent
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coordinates (γ1, γ2), where γ
2
1+γ

2
2+γ

2
3 = 1; we note in passing that in general,

the “region of possible motions” is defined as that part of the configuration
space where the trajectories belong to (for a given energy level), and does not
require integrability (see [2]). For the Klebsh–Tisserand case, the trajectories
on V project onto curves in the γ1γ2-plane called Lissajous figures [17, 46].

These curves are bounded by rectangles we will denote by R(γ0), with
γ0 = (γ01 , γ

0
2) denoting the center of the rectangle (see Figure 1). These are the

regions of possible motions in the Klebsh–Tisserand case. However, the actual

Figure 1: Some examples of the region of possible motions R and its intersection with
∂D, the boundary of the unit disk γ2

1 + γ2
2 ≤ 1. Note that in (c) three different possible

intersections are presented.

dynamics described by (1.2) require that γ21 + γ22 ≤ 1. Therefore, the actual
motion in the γ1γ2-plane occurs on the setR(γ0)∩int(D), where int(D) denotes
the interior of the closed unit disk (Figure 1 illustrates several possibilities for
R ∩ int(D)). Then, as [37] writes:

“We first intersect the domains Pfh with the circle ∂D, remove parts
corresponding to Pfh\(Pfh ∩ ∂D) from each of the Liouville tori
projected on Pfh, and duplicate (because of the symmetry t → −t,
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γ3 → −γ3) the two-dimensional manifolds thus obtained. Thus, the
topological type of integral manifolds is determined by the shape of
the domains Pfh\∂D.”

Removing the parts corresponding to R\(R∩ int(D)) from R is tantamount
to removing the edges on and outside of D in Figure 1. If the result is not the
entire disk D, then the two-dimensional manifold obtained will be a torus with
n holes, where n is the number of edges of the rectangle R that were removed.
Gluing the two-dimensional manifolds obtained along these holes produces the
higher genus surfaces reported in [45].

2 The Topology of Ma via the Poincaré–Hopf Theorem

Before we present our alternative to the surgery method discussed in the pre-
vious section, let us first review the main tool we will use, the Poincaré–Hopf
theorem. (This theorem is a generalization of an earlier result by Poincaré [39],
who proved the two-dimensional version. The history of these developments
is discussed in the excellent book [38], particularly Chapter I.3.)

Theorem (Poincaré–Hopf [22]). Let M be a compact orientable manifold of
dimension n without boundary, and let W be a smooth vector field on M with
finitely many isolated zeros xi, i = 1, . . . ,m. Then the sum of the indices of
the vector field at these zeros equals the Euler characteristic χ(M) of M . That
is,

m∑
i=1

indxi
(W ) = χ(M). (2.1)

In [30] (see also [20, 40]) the Poincaré–Hopf theorem was extended to the
setting of compact manifolds with boundary. Specifically, let M now be a
compact manifold with boundary ∂M comprised of k components, and W a
smooth vector field on M with finitely many isolated zeros xi, i = 1, . . . ,m,
and without zeros on the boundary. Then

m∑
i=1

indxi
(W ) +

k∑
i=1

indi(∂−W ) = χ(M), (2.2)

where indi(∂−W ) is defined as follows.
For each boundary component, denote by ∂W the restriction of W |∂M to

the component field tangent to ∂M . Next, denote by ∂−M the subset of ∂M
defined by

∂−M :=
{
x ∈M | W (x) points inward (away from the boundary component)

}
.

Then ∂−W = ∂W |∂−M ; figure 3 illustrates this construction for the particular
vector fields used in the proof of our main result in Section 4. We will refer to
the quantity indi(∂−W ) as the boundary index of the i-th boundary component.

Now, in the two-dimensional case the classification theorem for closed ori-
entable surfaces says that a compact orientable surfaceM without boundary is
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determined, up to homeomorphism, by its genus g. And since the Euler char-
acteristic of such a surface χ(M) = 2−2g [23, Section 5.4], the Poincaré–Hopf
theorem allows us to determine the topology of M by counting the indices of
the zeros of a smooth vector field on M .

We can now use the preceding results to describe our approach to deter-
mining the topology of Ma. First, suppose that Ma is the invariant set of a
nonholonomic system satisfying either case of Definition 1.1. To parallel Ko-
zlov’s theorem, suppose further thatMa is two-dimensional, compact, and ori-
entable. Then, since Xnh is a vector field on Ma (we will assume it is smooth),
we may use it as the vector field W used in the Poincaré–Hopf theorem. Two
cases may arise:

1. If Ma is without boundary then we can count the indices of the isolated
zeros of Xnh and use (2.1) to evaluate the genus of Ma.

2. If Ma has boundary then we must compute the boundary indices

indi(∂−Xnh)

for each boundary component and then use (2.2) to determine the Euler
characteristic. We now know the Euler characteristic and the number k
of boundary components. To find the genus, note that from the classi-
fication theorem for closed orientable surfaces it follows that a compact
orientable surfaceM with genus g and k boundary components has Euler
characteristic χ(M) = 2 − 2g − k. Therefore, using the Euler charac-
teristic and the known number k of boundary components we can again
determine the genus g in this case.

We note that in both cases, the set of zeros of the multiplier f directly affect
the topology ofMa through the indices the zeros of f contribute to either (2.1)
or (2.2). We will see this illustrated in Section 4. Let us now return to the
Suslov problem.

3 The Quadratic Potential Suslov Problem

Let H± be the upper and lower hemispheres,

H± =

{
γ ∈ R3 | γ21 + γ22 < 1, γ3 = ±

√
1− (γ21 + γ22)

}
.

Then the decomposition of the velocity phase space V from (1.3) reads

V = V+ ∪ Γ ∪ V−,

where

V± =
{
(γ1, γ2, γ3,Ω1,Ω2) ∈ V | γ ∈ H±} , (3.1)

Γ = {(γ1, γ2, γ3,Ω1,Ω2) ∈ V | γ21 + γ22 = 1}. (3.2)

Thus, we can coordinatize V± by (γ1, γ2,Ω1,Ω2), so that V± ∼= TH±.
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Consider now the (constrained) Lagrangian l : V → R given by

l(γ,Ω) =
1

2

(
A1Ω

2
1 + A2Ω

2
2

)
− 1

2

(
B1

(
γ1 − γ01

)2
+B2

(
γ2 − γ02

)2)
, (3.3)

where Ai, Bi > 0, and the second parenthetical term represents a class of
quadratic potentials in which γ0i , where |γ0i | < 1, are arbitrary constants.
The potential considered here is a natural extension of the Klebsh–Tisserand
potential (see [14]), and hereafter we will refer to this case as the quadratic
potential Suslov problem.

The Hamiltonian associated with (3.3) is

h(γ,m) =
1

2

(
m2

1

A1

+
m2

2

A2

)
+

1

2

(
B1

(
γ1 − γ01

)2
+B2

(
γ2 − γ02

)2)
,

where mi = AiΩi are the momenta. The associated momentum phase is
P = S2 × R2, and we define P± analogously to V± in (3.1), and also denote
by Λ the subset of P defined by γ21 + γ21 = 1, in analogy with (3.2). In terms
of (γ,m), the equations (1.2) become

ṁ1 = −γ3B2

(
γ2 − γ02

)
, ṁ2 = γ3B1

(
γ1 − γ01

)
, (3.4a)

γ̇1 = −γ3
m2

A2

, γ̇2 = γ3
m1

A1

, (3.4b)

γ̇3 =
γ1m2

A2

− γ2m1

A1

. (3.4c)

As observed in [17], the subsystem (3.4a) and (3.4b) resembles the equations
of motion of a two-dimensional harmonic oscillator. This motivates the change
of coordinates

(γ1, γ2, γ3,m1,m2) 7→ (γ1, γ2, γ3,−m2,m1) =: (q1, q2, q3, p1, p2),

after which we have

h(q, p) =
1

2

(
p22
A1

+
p21
A2

+B1

(
q1 − q01

)2
+B2

(
q2 − q02

)2)
, (3.5)

and the equations of motion become

ṗ1 = −q3B1

(
q1 − q01

)
, ṗ2 = −q3B2

(
q2 − q02

)
, (3.6a)

q̇1 = q3
p1
A2

, q̇2 = q3
p2
A1

, (3.6b)

q̇3 = −q1p1
A2

− q2p2
A1

. (3.6c)

The corresponding vector field Xnh describing the flow (3.6) is

Xnh = q3

(
p1
A2

∂

∂q1
+
p2
A1

∂

∂q2
−B1(q1 − q01)

∂

∂p1
−B2(q2 − q02)

∂

∂p2

)
−
(
q1p1
A2

+
q2p2
A1

)
∂

∂q3
. (3.7)
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Now, the dynamics (3.6) can also be written as ż = {z, h}nh, where z =
(q1, q2, q3, p1, p2), and where {·, ·}nh is the almost-Poisson bracket

{f, g}nh = q3{f, g}can + q1

[
∂f

∂p1

∂g

∂q3
− ∂f

∂q3

∂g

∂p1

]
+ q2

[
∂f

∂p2

∂g

∂q3
− ∂f

∂q3

∂g

∂p2

]
,

where {·, ·}can is the canonical Poisson bracket on P±:

{f, g}can =
∂f

∂q1

∂g

∂p1
− ∂f

∂p1

∂g

∂q1
+
∂f

∂q2

∂g

∂p2
− ∂f

∂p2

∂g

∂q2
.

As can be easily verified, the bracket (1/q3){·, ·}nh (for q3 ̸= 0) is Poisson
[19]. Thus, writing

ż = q3

(
1

q3
{z, h}nh

)
,

we see that the vector field (3.7) can be written in the form (1.1), where f(q) =
q3 and X is the vector field that is Hamiltonian with respect to the Poisson
bracket (1/q3){·, ·}nh. (Equivalently, the dynamics (3.6) is Hamiltonian after
the change of time dτ = q3 dt.) But since f has zeros, in terms of Definition 1.1
the quadratic potential Suslov problem is Chaplygin Hamiltonizable almost
everywhere on P . We note, however, that along {q ∈ S2 | q3 = 0} the
quadratic Suslov problem’s constraint distribution and tangent space to the
group orbit do not span the system’s tangent space [14, Theorem 2]. Thus
the system is not Chaplygin, but instead is an example of a quasi-Chaplygin
system (see [14]).

4 Integrability of the Quadratic Potential Suslov Prob-
lem

Here we present a theorem that determines the topology of Ma under certain
assumptions. The result is based on the approach described in Section 2.

The equations (3.6) have the two independent integrals

F1(q, p) =
1

2

(
p21
A2

+B1

(
q1 − q01

)2)
, (4.1a)

F2(q, p) =
1

2

(
p22
A1

+B2

(
q2 − q02

)2)
. (4.1b)

Define now the invariant set

Ma = {(q, p) ∈ P | Fi(q, p) = ai, i = 1, 2},

where a = (a1, a2), ai > 0. It follows from (4.1) and (3.5) that Ma is two-
dimensional and compact. Let

Λa = {(q, p) ∈ Λ | Fi(q, p) = ai, i = 1, 2}

be the set of points inMa that satisfy q21+q
2
2 = 1, or equivalently q3 = 0. Note

that Λa is one-dimensional and consists of the set of zeros of f associated to
the level a.

12



Now, because a ̸= 0 and h = F1 + F2, from (3.7) it follows that the only
zeros of Xnh are those of f . We can then prove the following:

Theorem 4.1. Decompose Ma as

Ma =M+
a ∪ Λa ∪M−

a , (4.2)

where
M±

a = {(q, p) ∈ P± | Fi(q, p) = ai, i = 1, 2}.
Suppose that

max
i=1,2

{q0i + ci, ci − q0i } < 1, where ci =

√
2ai
Bi

, i = 1, 2. (4.3)

Then for Na a connected component of Ma, Na is diffeomorphic to a surface
with genus

g = 1 + n, where 0 ≤ n ≤ 4. (4.4)

The importance of assumption (4.3) will be discussed in Section 5 after we
prove the theorem.

Proof. We first parameterize M±
a and Λa as follows. Introduce the parameter-

izations

p1 =
√
2A2a1 cosφ1, p2 =

√
2A1a2 cosφ2,

qi = q0i + ci sinφi, ci =

√
2ai
Bi

, i = 1, 2, (4.5)

where the plus or minus signs refer to the choice of q3:

q3 = f(φ1, φ2) = ±
√

1−
[
(q01 + c1 sinφ1)

2
+ (q02 + c2 sinφ2)

2
]
.

(This parameterization avoids using double–valued “functions” for pi when
enforcing Fi(q, p) = ai.) Then, define the domains

T = {(φ1, φ2) ∈ T2 |
(
q01 + c1 sinφ1

)2
+
(
q02 + c2 sinφ2

)2
< 1},

S = {(φ1, φ2) ∈ T2 |
(
q01 + c1 sinφ1

)2
+
(
q02 + c2 sinφ2

)2
= 1}, (4.6)

and let ψ± : T → M±
a and ρ : S → Λa be the charts for M±

a and Λa,
respectively. The domain S, if nonempty, indicates that there are zeros of f .
Lastly, from the vector fields Xnh|M±

a
(q) define the new vector fields Y ± on T

by
Y ± =

(
ψ±)∗Xnh|M±

a
.

Explicitly, we have

Y ± = ±f(φ1, φ2)

(√
B1

A2

∂

∂φ1

+

√
B2

A1

∂

∂φ2

)
. (4.7)

Our strategy will now be to use the Poincaré–Hopf theorem to determine
χ(Ma). If S = ∅ then no additional singularities are introduced into the vector
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fields Y ± and we may use (2.1). However, if S ̸= ∅ then, as we will see, we will
need to compute the boundary index of the boundaries for M±

a that result.
Thus, we have the following two cases.
Case 1: Λa = ∅. We first note that this case is always possible given sufficiently
small c1, c2 (corresponding to particular a1, a2). In this case, S = ∅ and f(φ) ̸=
0. From (4.1) it follows that

|qi − q0i | ≤ ci ⇐⇒ q0i − ci ≤ qi ≤ q0i + ci, i = 1, 2. (4.8)

Therefore, both M+
a and M−

a are closed subsets of the compact space Ma and
hence each compact. From (4.7) we then see that Y ± has no zeros. Therefore,
by the Poincaré–Hopf theorem (2.1) the Euler characteristic of each M±

a is
zero. Thus,

χ(M±
a ) = 0 =⇒ 2− 2g = 0 =⇒ g = 1.

Thus, in this case Ma is the disjoint union of two tori.
Case 2. Λa ̸= ∅. Then, as we now show, S ̸= ∅ and has between one and four
connected components, each homeomorphic to a circle.

We first note that (4.5) implies (4.8), and from there assumption (4.3)
guarantees that |qi| < 1. Therefore, the points (q1, q2) that satisfy q

2
1 + q22 = 1

form closed arc segments of the unit circle in the q1q2-plane that do not cross
the q1 or q2 axes (if they did at some point, we would have |qi| = 1). Clearly
there are between one and four such segments. We will denote by Ci the i-th
closed arc segment. We note that it is possible that one or more of these arc
segments is just a point. However, for now we will assume that all four arc
segments have nonzero length and return to the zero-length issue later.

Now, from (4.8) the endpoints of the curve segments Ci occur at q
0
i ±ci, and

from (4.5) this occurs at the φ-coordinates of either π/2 or 3π/2. Figure 2(a)
illustrates this for the case when Ci is a curve segment in the first quadrant,
where point A corresponds to φ2 = π/2 and point B corresponds to φ1 = π/2
(Figure 2(b)). Each point A and B has one φ-component fixed, and the other is
now determined by solving (4.5) for the remaining φ. This produces two values
in the interval [0, 2π). For example, the point B in Figure 2(a) corresponds to
the two points labeled b in Figure 2(b). Therefore, the endpoints of a given Ci

are mapped to two points in the φ-coordinates.
For interior points of a given Ci, since each qi corresponds to two φ-values,

each interior point corresponds to four (φ1, φ2) coordinates. For example,
the points C,D in Figure 2(a) correspond to the points c, d in Figure 2(b),
respectively. Therefore, the set S from (4.6) can be expressed as

S =
n∪

i=1

Ci, 1 ≤ n ≤ 4, (4.9)

where the union is a disjoint one by our assumption that |qi| < 1. Figure 2(c)
shows an example of the case when S has four components (in addition to
showing the vector field Y ±).

The manifolds M±
a now have holes (the boundary of these holes is Λa).

This seems at first to make it not possible to use (2.2) (since the M±
a are no
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Figure 2: (a) A segment Ci with endpoints A,B and interior points C,D. (b) The param-
eterization (4.5) maps endpoint A to the points labeled a, and endpoint B to the points
labeled b. The interior points C,D are mapped to the four points labeled c, d, respectively.
(c) A MAPLE plot of the vector fields Y ± for q0 = (0, 0) and c1 =

√
0.6, c2 =

√
0.7. Here

S is the union of the boundary of the four closed disks absent from the plot.

longer compact), but we can easily remedy this by adding in the boundary to

form M−
a ∪ Λa =: M̃−

a and M+
a ∪ Λa =: M̃+

a , which are closed subsets of the
compact set Ma and therefore compact. Moreover, since each component of
Λa is contractible, we have

χ
(
M̃−

a

)
= χ(M−

a ) + χ(Λa) = χ(M−
a ), χ

(
M̃+

a

)
= χ(M+

a ).

Finally, from (4.2) and (4.9) we have

χ(Ma) = χ(M−
a )+χ(Λa)+χ(M

+
a ) = χ(M−

a )+χ(M
+
a ) = χ

(
M̃−

a

)
+χ

(
M̃+

a

)
.

Therefore, the topology of Ma is completely determined by the topologies of

M̃±
a . Moreover, since the genus g of the surfaces Ma is found from the Euler
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characteristics of the M̃±
a :

2− 2g = χ(Ma) =⇒ g = 1− 1

2

[
χ
(
M̃−

a

)
+ χ

(
M̃+

a

)]
,

we can now apply the extended Poincaré–Hopf theorem (2.2) to the manifolds
M±

a ∪ Λa to find g.
The setup for the calculation of the vector fields ∂−Y

±|M̃± is illustrated in
Figure 3. First, restrict Y ±|M̃± to the boundary ofM±

a , illustrated by the circle
in Figure 3(a). Then project onto the tangent vector field to form ∂Y ±|M̃± , see
Figure 3(b); the two black dots illustrate where this new vector field vanishes.
Finally, restrict to the subset of the boundary component where Y ±|M̃± points
inward, see Figure 3(c).

Figure 3: (a)–(c): An illustration of the construction of ∂−Y
±|

M̃± .

Now, to calculate the boundary index ind(∂−Y
±|M̃±), we first note that

∂−Y
±|M̃± is now a vector field on a one-dimension lower manifold, in this case

the arc segment from a to b in Figure 3(c); this is homeomorphic to the closed
interval [a, b]. Now, for a smooth vector field Z on a closed interval [A,B] with
no zeros at the boundary points, (2.2) gives [21, pg. 136]

ind[A,B](Z) = χ([A,B])− ind(∂−Z)

= 1− (number of points on the boundary where Z points inside).
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From this it follows that

ind[a,b] ∂−Y
±|M̃± = 1− 2 = −1.

To complete the proof, suppose that S has n components (recall we have
already shown that 1 ≤ n ≤ 4 in the present case of S ̸= ∅). Then, since the
zeros of (4.7) are only those arising from f , we have

g = 1− 1

2

[(
ind(Y −|M̃±) + ind(∂−Y

−|M̃±)
)
+
(
ind(Y +|M̃±) + ind(∂−Y

+|M̃±)
)]

= 1− 1

2
[(0− n) + (0− n)]

= 1 + n. (4.10)

We note that in the particular case when n = 0 (so that Λa = ∅), this verifies
our earlier conclusion. Therefore, we have established formula (4.4) for 0 ≤
n ≤ 4.

Let us now return to the possibility that some of the sets Ci are isolated

points. Let k be the number of such sets, where 0 ≤ k ≤ 4. Then each of M̃+
a

and M̃−
a has k isolated singularities and 4 − k boundary components. Since

each isolated singularity has index zero (Y −|M̃± has zero circulation about
these points), then

g = 1− 1

2

[(
ind(Y −|M̃±) + ind(∂−Y

−|M̃±)
)
+
(
ind(Y +|M̃±) + ind(∂−Y

+|M̃±)
)]

= 1− 1

2
[(0− (4− k)) + (0− (4− k))]

= 1 + (4− k) = 1 + n, (4.11)

where n = 4−k is again the number of boundary components. This completes
the proof of Theorem 4.1.

5 Conclusions and Remarks

We begin with a technical remark about assumption (4.3) in Theorem 4.1.
More specifically, assumption (4.3) is not satisfied when either (i) S has a
component that crosses either the q1 or q2 axes, or (ii) S = ∂D (i.e., f has
zeros at all points of the unit circle). In both cases the manifolds M±

a are no
longer compact (they are cylinders in the first case and unions of open disks
in the second). In these cases the Poincaré–Hopf theorems discussed here
do not apply. We note that there exist generalizations of the Poincaré–Hopf
theorem to the setting of non-compact manifolds [28], but such investigations
are outside the scope of this paper; our aim was to parallel the exposition of
Kozlov’s theorem (where compactness is assumed) for the case where f has
zeros.

With assumption (4.3) in place, our approach to determining the topology
of the components of the invariant manifolds, discussed in Section 2, relied
on the Poincaré–Hopf theorem. In the proof of Theorem 4.1 we determine
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the topology of Ma by setting out to calculate its Euler characteristic χ(Ma),
a topological invariant [29] that completely classifies compact orientable 2-
manifolds according to their genus. We then use the Poincaré–Hopf theorem
to relate χ(Ma) to the zeros of Xnh. Clearly, for a nonholonomic system
verifying either part of Definition 1.1 these zeros include those introduced by
the multiplier f (if any). Thus we use the information given to us by the zeros
of the multiplier to determine the topology of the invariant manifolds. As we
showed in (4.10) and (4.11), this amounts to applying a counting argument to
the boundary indices of the vector field Xnh restricted to the invariant sets.

For the quadratic Suslov problem considered in Theorem 4.1, since the
only zeros of Xnh on Ma are those of f , we conclude that for this system the
topology of Ma is completely determined by the contribution of the zeros of f
to the sums on the left hand side of (2.1) or (2.2). This is perhaps the best
illustration of how our approach is different from that of Tatarinov (discussed
in Section 1.2).

Theorem 4.1 also connects the study of invariant manifolds for nonholo-
nomic systems with the vast and well-developed research on the Poincaré–Hopf
theorem. As such, although this paper has focused on the quadratic potential
Suslov problem, we hope that we have illustrated how the Poincaré–Hopf the-
orem and its focus on the zeros of vector fields might be helpful in studying
the topology of the invariant sets of integrals of an integrable nonholonomic
system.
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coordinates (γ1, γ2), where γ21 +γ22 +γ23 = 1; we note in passing that in general,
the “region of possible motions” is defined as that part of the configuration
space where the trajectories belong to (for a given energy level), and does not
require integrability (see [2]). For the Klebsh–Tisserand case, the trajectories
on V project onto curves in the γ1γ2-plane called Lissajous figures [17, 46].

These curves are bounded by rectangles we will denote by R(γ0), with
γ0 = (γ01 , γ

0
2) denoting the center of the rectangle (see Figure 1). These are the

regions of possible motions in the Klebsh–Tisserand case. However, the actual

γ0

(a)

γ0

(b) (c)

Figure 1: Some examples of the region of possible motions R and its intersection with
∂D, the boundary of the unit disk γ21 + γ22 ≤ 1. Note that in (c) three different possible
intersections are presented.

dynamics described by (1.2) require that γ21 + γ22 ≤ 1. Therefore, the actual
motion in the γ1γ2-plane occurs on the setR(γ0)∩int(D), where int(D) denotes
the interior of the closed unit disk (Figure 1 illustrates several possibilities for
R ∩ int(D)). Then, as [37] writes:

“We first intersect the domains Pfh with the circle ∂D, remove parts
corresponding to Pfh\(Pfh ∩ ∂D) from each of the Liouville tori
projected on Pfh, and duplicate (because of the symmetry t → −t,
γ3 → −γ3) the two-dimensional manifolds thus obtained. Thus, the
topological type of integral manifolds is determined by the shape of
the domains Pfh\∂D.”

Removing the parts corresponding to R\(R∩ int(D)) from R is tantamount
to removing the edges on and outside of D in Figure 1. If the result is not the
entire disk D, then the two-dimensional manifold obtained will be a torus with
n holes, where n is the number of edges of the rectangle R that were removed.
Gluing the two-dimensional manifolds obtained along these holes produces the
higher genus surfaces reported in [45].

2 The Topology of Ma via the Poincaré–Hopf Theorem

Before we present our alternative to the surgery method discussed in the pre-
vious section, let us first review the main tool we will use, the Poincaré–Hopf
theorem. (This theorem is a generalization of an earlier result by Poincaré [39],
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Case 2. Λa 6= ∅. Then, as we now show, S 6= ∅ and has between one and four
connected components, each homeomorphic to a circle.

We first note that (4.5) implies (4.8), and from there assumption (4.3)
guarantees that |qi| < 1. Therefore, the points (q1, q2) that satisfy q21 + q22 = 1
form closed arc segments of the unit circle in the q1q2-plane that do not cross
the q1 or q2 axes (if they did at some point, we would have |qi| = 1). Clearly
there are between one and four such segments. We will denote by Ci the i-th
closed arc segment. We note that it is possible that one or more of these arc
segments is just a point. However, for now we will assume that all four arc
segments have nonzero length and return to the zero-length issue later.

Now, from (4.8) the endpoints of the curve segments Ci occur at q0i ±ci, and
from (4.5) this occurs at the ϕ-coordinates of either π/2 or 3π/2. Figure 2(a)
illustrates this for the case when Ci is a curve segment in the first quadrant,
where point A corresponds to ϕ2 = π/2 and point B corresponds to ϕ1 = π/2
(Figure 2(b)). Each point A and B has one ϕ-component fixed, and the other is
now determined by solving (4.5) for the remaining ϕ. This produces two values
in the interval [0, 2π). For example, the point B in Figure 2(a) corresponds to
the two points labeled b in Figure 2(b). Therefore, the endpoints of a given Ci
are mapped to two points in the ϕ-coordinates.

For interior points of a given Ci, since each qi corresponds to two ϕ-values,
each interior point corresponds to four (ϕ1, ϕ2) coordinates. For example,
the points C,D in Figure 2(a) correspond to the points c, d in Figure 2(b),
respectively. Therefore, the set S from (4.6) can be expressed as

S =
n⋃
i=1

Ci, 1 ≤ n ≤ 4, (4.9)

where the union is a disjoint one by our assumption that |qi| < 1. Figure 2(c)
shows an example of the case when S has four components (in addition to
showing the vector field Y ±).

A

B

C

D

q1

q2

c1

c2

(a)

b

b

aa

d

d

d

d

c

c

c

c

ϕ1

ϕ2

π
2

π
2

(b)

j2

j1 ϕ1

ϕ2

(c)

Figure 2: (a) A segment Ci with endpoints A,B and interior points C,D. (b) The param-
eterization (4.5) maps endpoint A to the points labeled a, and endpoint B to the points
labeled b. The interior points C,D are mapped to the four points labeled c, d, respectively.
(c) A MAPLE plot of the vector fields Y ± for q0 = (0, 0) and c1 =

√
0.6, c2 =

√
0.7. Here

S is the union of the boundary of the four closed disks absent from the plot.
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The manifolds M±
a now have holes (the boundary of these holes is Λa).

This seems at first to make it not possible to use (2.2) (since the M±
a are no

longer compact), but we can easily remedy this by adding in the boundary to

form M−
a ∪ Λa =: M̃−

a and M+
a ∪ Λa =: M̃+

a , which are closed subsets of the
compact set Ma and therefore compact. Moreover, since each component of
Λa is contractible, we have

χ
(
M̃−

a

)
= χ(M−

a ) + χ(Λa) = χ(M−
a ), χ

(
M̃+

a

)
= χ(M+

a ).

Finally, from (4.2) and (4.9) we have

χ(Ma) = χ(M−
a ) +χ(Λa) +χ(M+

a ) = χ(M−
a ) +χ(M+

a ) = χ
(
M̃−

a

)
+χ

(
M̃+

a

)
.

Therefore, the topology of Ma is completely determined by the topologies of

M̃±
a . Moreover, since the genus g of the surfaces Ma is found from the Euler

characteristics of the M̃±
a :

2− 2g = χ(Ma) =⇒ g = 1− 1

2

[
χ
(
M̃−

a

)
+ χ

(
M̃+

a

)]
,

we can now apply the extended Poincaré–Hopf theorem (2.2) to the manifolds
M±

a ∪ Λa to find g.
The setup for the calculation of the vector fields ∂−Y

±|M̃± is illustrated in
Figure 3. First, restrict Y ±|M̃± to the boundary of M±

a , illustrated by the circle
in Figure 3(a). Then project onto the tangent vector field to form ∂Y ±|M̃± , see
Figure 3(b); the two black dots illustrate where this new vector field vanishes.
Finally, restrict to the subset of the boundary component where Y ±|M̃± points
inward, see Figure 3(c).

(a) (b)

a

b

(c)

Figure 3: (a)–(c): An illustration of the construction of ∂−Y
±|
M̃± .

Now, to calculate the boundary index ind(∂−Y
±|M̃±), we first note that

∂−Y
±|M̃± is now a vector field on a one-dimension lower manifold, in this case

the arc segment from a to b in Figure 3(c); this is homeomorphic to the closed
interval [a, b]. Now, for a smooth vector field Z on a closed interval [A,B] with
no zeros at the boundary points, (2.2) gives [21, pg. 136]

ind[A,B](Z) = χ([A,B])− ind(∂−Z)

= 1− (number of points on the boundary where Z points inside).
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