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2.4 The Euler-Poincaré and Lie-Poisson Equations . . . . . . . . . . . . . . . . . 10
2.5 The Inverse Problem of the Calculus of Variations . . . . . . . . . . . . . . . 11

III. Nonholonomic Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Constraints in Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Constrained Mechanics and the Lagrange-d’Alembert Principle . . . . . . . . 16
3.3 The Equations of Motion for Constrained Mechanics . . . . . . . . . . . . . 16
3.4 Variational Constrained Mechanics . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Almost Poisson Structures in Nonholonomic Mechanics . . . . . . . . . . . . 20
3.6 Nonholonomic Systems with Symmetry . . . . . . . . . . . . . . . . . . . . . 21

3.6.1 Nonholonomic Chaplygin Systems . . . . . . . . . . . . . . . . . . . 22
3.6.2 Nonholonomic Systems on Lie Groups . . . . . . . . . . . . . . . . 25

3.7 Invariant Measures of Nonholonomic Systems . . . . . . . . . . . . . . . . . . 27
3.7.1 Invariant Measures for Chaplygin Systems . . . . . . . . . . . . . . 27
3.7.2 Invariant Measures of Euler-Poincaré-Suslov Systems . . . . . . . . 29
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ABSTRACT

A nonholonomic mechanical system is a pair (L,D), where L : TQ → R is a

mechanical Lagrangian and D ⊂ TQ is a distribution which is non-integrable (in the

Frobenius sense). Although such mechanical systems are manifestly not Hamiltonian

(their mechanics are described by the Lagrange-d’Alembert principle, not Hamilton’s

principle), one can nevertheless attempt to formulate the mechanics of certain classes

of nonholonomic systems as almost-Hamiltonian. In this dissertation we study vari-

ous methods of so-called Hamiltonization of nonholonomic systems and discuss their

application to optimal control and the quantization of nonholonomic systems.

We begin by constructing second-order associated systems for a class of nonholo-

nomic systems and solving the Inverse Problem of the Calculus of Variations to

derive Hamiltonians whose canonical equations, when restricted to certain invariant

submanifolds, reproduce the original nonholonomic mechanics.

We also introduce the idea of conditionally variational nonholonomic systems,

which arise from a comparison with the variational nonholonomic equations, and

show that these systems give a straightforward Hamiltonization for certain classes of

systems.

Lastly, we extend a classical theorem of S.A. Chaplygin, which allows a larger class

of nonholonomic systems to be Hamiltonized by reparameterizing time, to higher

dimensions. Moreover, in some cases we show that the requirement that the original

vii



system possess an invariant measure can be removed.

The results are then applied to show that under certain conditions the equations

of motion of nonholonomic systems can be derived by considering an associated

first-order optimal control problem, similar to the situation in holonomic systems.

Moreover, the methods are illustrated throughout by various well known examples

of nonholonomic systems. Several future directions based on the research presented

are also discussed, among them the relatively new problem of quantizing a non-

holonomically constrained system. With the advent of nanomachines we expect the

importance of subatomic motions in wheeled robots to raise interest in the classical-

quantum equations of motion governing these nonholonomic vehicles. Although there

is currently no accepted quantum mechanical treatment of nonholonomic mechanics,

we discuss the application of the results of the Hamiltonizations obtained herein to

the quantization of a well known nonholonomic mechanical system.
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CHAPTER I

Introduction

The mechanics of systems with nonintegrable constraints, also called nonholo-

nomic mechanics, has a long and at times confusing history [6, 19, 83]. Part of

the difficulty in the development of its basic structure can be traced back to in-

correct applications of Lagrange’s equations for unconstrained systems, resulting in

incorrect equations of motion for nonholonomic systems. These errors were eventu-

ally clarified by, and the resulting true equations of motion derived by, Hertz [62],

Poincare [76] and Ferrers [42] at the turn of the 20th century. Subsequent research

by Appell [3, 4], Chaplygin [24, 25], Hamel [60] and Maggi [66], to name a few,

then resulted in several different yet equivalent forms of the equations of motion of

nonholonomic systems. The mechanics of nonholonomic systems was finally put in a

geometric context beginning with the work of [13]. However, it quickly became clear

that nonholonomic systems are not variational [6], and therefore cannot be repre-

sented by canonical Hamiltonian equations. Unfortunately, even today some authors

incorrectly claim this to be possible (see [43] for a discussion), but perhaps due in

part to these errors several authors (dating back at least as early as S.A. Chaply-

gin [24, 25]) have attempted to express the mechanics of nonholonomic systems in

Hamilton-like forms through several methods. We make no attempt here to give a

1
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complete overview of all such attempts, but instead will focus on those relevant to

this thesis (for excellent reviews, see [6, 33, 71, 83]). Moreover, let us emphasize that

the work contained in this thesis differs fundamentally from the above referenced

works in that we will study the Hamiltonization of the full nonholonomic system

(reduced mechanics plus kinematic constraints). Based on this idea, we will present

three different Hamiltonization methods in the subsequent chapters, each building

on and extending some of the aforementioned works.

Perhaps the most straightforward method one can use in attempting to “Hamil-

tonize” nonholonomic systems is to apply the so-called Helmholtz conditions [31] in

an attempt to extract a Lagrangian whose Euler-Lagrange equations reproduce the

mixed first- and second-order equations of nonholonomic systems. The search for

such a Lagrangian is called the inverse problem of the Calculus of Variations [81].

Of course, this approach will never work for as we have mentioned nonholonomic

systems are not Hamiltonian systems. Some authors [1] have nevertheless found

ways to construct second-order systems whose mechanics, when restricted to certain

invariant submanifolds, reproduce the mechanics of certain nonholonomic systems

by starting with the explicit trajectories of the system. However, we will show in

Chapter IV that we can associate certain second-order systems to the equations of

nonholonomic systems for which a solution to the inverse problem can be found

without need to solve the system explicitly. With the resulting Lagrangians, we will

then show how the nonholonomic equations arise from the restriction of the derived

Hamiltonian system to certain invariant submanifolds.

The methods of Chapter IV will have some drawbacks however, forcing us to ex-

amine other avenues for Hamiltonization. Perhaps the most logical next step is to

consider the dynamics of variational nonholonomic systems [6]. The distinction be-
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tween variational nonholonomic dynamics and nonholonomic mechanics is perhaps

best described by Hertz’s terminology, which describes the former as equations of

“shortest” curves and the latter as equations of “straightest” curves (see [22] and

references therein). Geometrically, this is because variational dynamics are equiva-

lent to optimal control problems under certain regularity conditions [6, 72], and as

such its equations of motion are geodesics of a Levi-Civita connection. The nonholo-

nomic equations of motion, on the other hand, are geodesics of a projected connection

which is in general not metrizable (hence eliminating the possibility of viewing them

as curves of minimum length). In fact, it is known that the resulting equations

of motion are independent of the method used (Lagrange-d’Alembert or variational

dynamics) if and only if the constraints are integrable [6, 22], or holonomic. As a

result, many authors have studied the similarities and differences between nonholo-

nomic mechanics and variational nonholonomic dynamics (see [7, 22, 27, 34, 48, 80])

in an effort to gain insight into the nonintegrable case. Unfortunately, some au-

thors have also caused confusion by incorrectly claiming that the two methods both

give the physical equations of motion (see [65] and references therein). However,

despite this and the works cited above, in this thesis we will study the similarities

between nonholonomic mechanics and variational nonholonomic dynamics with an

eye toward Hamiltonization. In Chapter V we introduce the notion of conditionally

variational nonholonomic systems as another avenue for Hamiltonization. These are

systems whose equations of motion can be derived from the variational nonholonomic

equations provided the nonholonomic constraints are satisfied initially (as they must

be anyway). There we show that we can use the Lagrangian associated with the

variational nonholonomic dynamics to Hamiltonize the nonholonomic system. How-

ever, we will see that this special class of nonholonomic systems is rare and seek to
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generalize the idea by appealing to Chaplygin’s Reducing Multiplier Theorem.

S.A. Chaplygin’s own Reducing Multiplier Theorem [24, 25] states that for non-

holonomic systems in two generalized coordinates (q1, q2) possessing an invariant

measure with density N(q1, q2), the equations of motion can be written in Hamilto-

nian form after the time reparameterization dτ = Ndt1, where N is known the as

reducing multiplier, or simply the multiplier. This is often referred to as the Hamil-

tonization of nonholonomic systems, although we shall refer to it here as Chaplygin

Hamiltonization instead2. Although Chaplygin’s Theorem allows for a Hamiltoniza-

tion of two degree of freedom nonholonomic systems, it is bounded by this restriction

as well as the requirement that the system possess an invariant measure. Subsequent

research on the Theorem has resulted in, among other things, an extension to the

quasicoordinate context [73], a study of the geometry behind the theorem [44, 45],

discoveries of isomorphisms between nonholonomic systems through the use of the

theorem [18], an example of a system in higher dimensions Hamiltonizable through a

similar time reparameterization [37], an investigation of the necessary conditions for

Hamiltonization for abelian Chaplygin systems [64] (see Section 3.6.1 for a definition)

and an investigation of rank two Poisson structures in nonholonomic systems [78].

However, two important aspects yet to be resolved are the extension of the theorem

to general nonholonomic systems with symmetry of arbitrary degrees of freedom,

and the extension to nonholonomic systems not possessing an invariant measure.

In Chapter VI we consider the aforementioned questions for two special cases of the

Hamilton-Poincaré-d’Alembert equations3 and present results in Sections 6.1 and 6.2

1The second part of his Theorem states that if a nonholonomic system can be transformed into Hamiltonian form
after the time reparameterization dτ = fdt, then the original system has an invariant measure with density fm−1,
where m is the number of degrees of freedom.

2We introduce this term because we wish to differentiate it from the other forms of Hamiltonization discussed in
this thesis.

3These are the governing equations for nonholonomic systems with symmetry satisfying the dimension assumption,
see Section 3.6.
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which generalize Chaplygin’s theorem to higher dimensional nonholonomic systems

with symmetry, focusing mainly on extending the work of [64] to the necessary con-

ditions for Chaplygin Hamiltonization for nonabelian Chaplygin systems, as well to

nonholonomic systems on Lie groups. For the latter type of systems, we present re-

sults which allow Chaplygin Hamiltonization even when the system does not posses

an invariant measure. Furthermore, in Section 6.2 we extend the idea of condition-

ally variational systems introduced in [38] and apply it to Chaplygin Hamiltonize the

entire nonholonomic system (reduced constrained equations plus the nonholonomic

constraints).

We begin in Chapter II with a brief review of the relevant Hamiltonian mechan-

ics, generalizing to nonholonomic mechanics in Chapter III. After discussing Hamil-

tonization by associated second-order systems in Chapter IV, we proceed to compare

the variational nonholonomic and Lagrange-d’Alembert equations in Chapter V and

introduce the class of systems known as conditionally variational nonholonomic sys-

tems. We generalize Chaplygin’s theorem in Chapter VI and finally apply the results

of the thesis to recover the correspondence between the Pontryagin maximum prin-

ciple and constrained mechanics in Chapter VII. There we also illustrate the various

results by examining some well-known nonholonomic systems. In Chapter VIII we

conclude with a discussion of future research directions which make use of the results

of this thesis to address the quantization of nonholonomic systems, to further the

development of a Hamilton-Jacobi theory for them and to perhaps construct more

efficient numerical schemes for integrating the equations of motion of nonholonomic

systems.



CHAPTER II

Hamiltonian Mechanics

In this chapter we summarize some basic concepts in the geometric mechanics

of unconstrained Hamiltonian systems, assuming familiarity with basic differential

geometry [47, 67]. We begin with the traditional variational formulation of mechan-

ical system in terms of Hamilton’s Principle on the Lagrangian side. Through the

Legendre transform we then summarize the geometric structure behind the Hamilto-

nian side and then discuss the related Poisson structure. We then add in symmetry

and introduce the Euler-Poincare and Lie-Poisson equations. Finally, we give a brief

summary of the inverse problem of the calculus of variations in preparation for its

use in Chapter IV.

Our exposition here is largely based on that found in [6, 77] and we wish to

remark that the Einstein summation convention is enforced throughout this thesis

unless otherwise noted. In addition, we will restrict our attention throughout the

thesis to finite dimensional systems.

2.1 Unconstrained Mechanics and Hamilton’s Principle

Let Q be a manifold, with TQ its tangent bundle. Denote by qi the coordinates on

Q and by (qi, q̇i) the induced coordinates on TQ. Define the mechanical Lagrangian

L : TQ → R given by L = T − V , where K(v) = 1
2
〈v, v〉 is the kinetic energy

6
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associated with a given Riemannian metric and where V : Q → R is the potential

energy. The trajectories of an unconstrained mechanical system are then given by

Hamilton’s Principle, which states that among the set of possible motions q(t) of our

mechanical system in any time interval [a, b], the actual trajectories are such that1

(2.1) δ

∫ b

a

L(q(t), q̇(t)) dt = 0.

We say that a mechanical system (unconstrained or constrained) is variational if its

equations of motion can be derived from Hamilton’s principle.

Basic results in the calculus of variations (see [6]) show that the condition (2.1)

is equivalent to the requirement that q(t) satisfies the Euler-Lagrange equations:

(2.2)
d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0.

Now, if we define the fiber derivative FL : TQ → T ∗Q in coordinates by the

map (qi, q̇j) 7→ (qi, pj), where pj = ∂L/∂q̇j is called the momentum conjugate to

qj, then assuming that L is hyperregular2 we can define the Hamiltonian H by

H(q, p) = piq̇
i − L. The coordinates (qi, pi) on the cotangent bundle T ∗Q are called

the canonical cotangent coordinates and the change of data from L on TQ to H on

T ∗Q is called the Legendre transform.

As we shall see below, the Hamiltonian H is related to the total energy of the

mechanical sytem, and since the cotangent space T ∗Q carries a natural symplectic

structure, we will summarize the rich geometry of Hamiltonian mechanics below and

present the analogue of (2.2), the Hamiltonian equations of motion.

1For a detailed discussion of the variations of a curve see [6].
2A Lagrangian L is hyperregular if FL is a diffeomorphism.
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2.2 Hamiltonian Mechanics and Symplectic Geometry

We begin our discussion by recalling some basic definitions in symplectic geometry

[77]. A symplectic form on a smooth manifold M is a nondegenerate closed 2-form

ω on M and a symplectic manifold is a pair (M,ω) with M a smooth manifold and

ω a symplectic form on it. If (M1, ω1) and (M2, ω2) are symplectic manifolds then a

C∞ mapping h : M1 →M2 is called symplectic if h∗ω2 = ω1. Using this, we can now

define a Hamiltonian system in general.

Definition II.1. [77] Let (M,ω) be a symplectic manifold and3 H ∈ C∞(M,R) a

smooth real valued function on M . The vector field XH determined by the condition

(2.3) iXHω = dH

is called the Hamiltonian vector field with energy function H. We call (M,ω,H) a

Hamiltonian mechanical system.

Let us now take the case when M = T ∗Q. In this case there is a unique 1-form θ

on T ∗Q such that in any choice of canonical cotangent coordinates, θ = pidq
i. Using

this we can then define the canonical 2-form ω by ω = −dθ = dqi ∧ dpi. It is then

clear that (T ∗Q,ω) is a symplectic manifold. A simple computation then shows that

(q(t), p(t)) is an integral curve of XH iff Hamilton’s equations hold:

(2.4) q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

Moreover, (2.2) and (2.4) are equivalent via the Legendre transform.

Embedded in the definition of Hamiltonian systems above are the following two

facts.
3Hereafter, C∞(X,R) is the set of infinitely differentiable real-valued functions on the space X.
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Proposition II.2. [77] (Conservation of Energy) Let (M,ω,H) be a Hamiltonian

mechanical system and let c(t) be an integral curve for XH . Then H(c(t)) is a

constant in t. Moreover, if φt is the flow of XH then H ◦ φt = H for each t.

Proposition II.3. [77] (Volume Preservation) Let (M,ω,H) be a Hamiltonian me-

chanical system and let φt be the flow of XH . Then for each t, φ∗tω = ω, that is, φt

is symplectic and volume preserving.

These two facts are hallmarks of Hamiltonian systems. Nonholonomic systems, on

the other hand, conserve energy yet do not in general preserve volume (see Chapter

III). Moreover, we will see in Chapters V and VI that nonholonomic systems which

do preserve volume are in a quantifiable sense closer to Hamiltonian systems than

their volume changing counterparts. We will exploit this in those chapters in order

to create and extend Hamiltonization methods.

Now, more general mechanical systems can be defined by using the notion of

Poisson structures, to which we now turn.

2.3 Poisson Structures in Hamiltonian Mechanics

Let P be a manifold and consider the bracket operation denoted by

(2.5) {·, ·} : C∞(P,R)× C∞(P,R)→ C∞(P,R).

The pair (P, {·, ·}) is called a Poisson manifold and {·, ·} a Poisson bracket if [6]

{·, ·} is (i) bilinear, (ii) anticommutative, (iii) satisfies Leibniz’s rule, and (iv) satisfies

Jacobi’s identity : {{f, g}, h}+{{g, h}, f}+{{h, f}, g} = 0. If only conditions (i)-(iii)

hold (i.e. the Jacobi identity is not satisfied) then the bracket is called an almost-

Poisson bracket. Letting zi denote local coordinates on P , the Poisson bracket is

given by
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(2.6) {f, g} = Bij ∂f

∂zi
∂g

∂zj
,

where Bij are the components of the antisymmetric tensor B on P (see [6] for details).

Now, it is well-known that every symplectic manifold is a Poisson manifold [6, 67],

with Poisson bracket given by {f, g} = ω(Xf , Xg). However, the converse is not true

and is perhaps most importantly illustrated by the Lie-Poisson structure associated

with the rigid body, to which we now turn.

2.4 The Euler-Poincaré and Lie-Poisson Equations

Suppose that the configuration space for our mechanical system is a Lie Group

G and let L : TG → R be a left-invariant Lagrangian. Denote by l : g → R the

restriction of L to the tangent space of G at the identity. Moreover, for a curve

g(t) ∈ G let ξ(t) = g(t)−1ġ(t). Then the following are equivalent (see [6]):

(i) g(t) satisfies the Euler-Lagrange equations for L on G.

(ii) The Euler-Poincaré equations hold:

(2.7)
d

dt

∂l

∂ξ
= ad∗ξ

∂l

∂ξ
,

where adξ : g → g is defined by adξν = [ξ, ν] and ad∗ξ is its dual. By making the

following Legendre transformation from g to g∗:

(2.8) µ =
∂l

∂ξ
, h(µ) = µiξ

i − l(ξ),

it follows that the Euler-Poincaré equations are equivalent to the Lie-Poisson equa-

tions :
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(2.9)
dµ

dt
= ad∗∂h/∂µµ.

Assuming that g is finite-dimensional and choosing coordinates (ξ1, . . . , ξn) on g

and corresponding dual coordinates (µ1, . . . , µm) on g∗, the (minus) the Lie-Poisson

equations (2.9) can be written as:

(2.10) µ̇ = {µ, h}−, where {f, k}− = −µaCa
bc

∂f

∂µb

∂k

∂µc
,

with Ca
bc the structure constants of g defined by [ea, eb] = Cc

abec, where (e1, . . . , en) is

the coordinate basis of g, and where for ξ ∈ g we write ξ = ξaea and for µ ∈ g∗ we

write µ = µae
a, with (ea) the dual basis.

The bracket {·, ·}− is called the (minus) Lie-Poisson bracket and the dual space

g∗ becomes a Poisson (but not symplectic) manifold with respect to the Lie-Poisson

bracket. The classical Euler equations [6, 67] for a rigid body provide an example of

this particular Poisson manifold.

2.5 The Inverse Problem of the Calculus of Variations

The previous sections began with the definition of Hamiltonian systems and

Hamilton’s principle and derived from that the second order equations of motion

for unconstrained mechanical systems. However, there is also an inverse procedure

known as the inverse problem of the calculus of variations which determines if a given

set of second-order differential equations are in fact the Euler-Lagrange equations of

some Lagrangian. This procedure has a long history (for a recent survey on this

history see [59]). A solution to the problem indicates that the system of equations

under study is in fact variational and hence a Hamiltonian can be defined. Below we

provide a brief outline of the method in preparation for its use in Chapter IV.
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Let Q be a manifold with local coordinates (qi) and assume we are given a system

of second-order ordinary differential equations q̈i = f i(q, q̇) on Q. In order for a

regular Lagrangian L(q, q̇) to exist we must be able to find functions gij(q, q̇), so-

called multipliers, such that

gij(q̈
j − f j) =

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
.

It can be shown [31, 81] that the multipliers must satisfy the so-called Helmholtz

conditions:

det(gij) 6= 0, gji = gij,
∂gij
∂q̇k

=
∂gik
∂q̇j

;

Γ(gij)−∇k
j gik −∇k

i gkj = 0,

gikΦ
k
j = gjkΦ

k
i ;

where ∇i
j = −1

2
∂q̇jf

i and

Φk
j = Γ

(
∂q̇jf

k
)
− 2∂qjf

k − 1

2
∂q̇jf

l∂q̇lf
k.

Here the symbol Γ stands for the vector field q̇i∂qi + f i∂q̇i on TQ that can naturally

be associated to the system q̈i = f i(q, q̇) and for our purposes here, we will fix from

the start gij = gji for j ≤ i and simply write gijk for ∂q̇kgij and also assume the

notation to be symmetric over all its indices.

Conversely, if one can find functions gij satisfying these the Helmholtz conditions

then the equations q̈i = f i are derivable from a regular Lagrangian. Moreover, if a

regular Lagrangian L can be found, then its Hessian
∂2L

∂q̇i∂q̇j
is a multiplier.

Now, the Helmholtz conditions are a mixed set of coupled algebraic and partial

differential conditions in (gij). We will refer to the penultimate condition as the ‘∇-

condition,’ and to the last one as the ‘Φ-condition.’ These algebraic Φ-conditions are

of course the easiest to start from. But in fact, we can easily derive more algebraic
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conditions (see e.g. [29]). For example, by taking a Γ-derivative of the Φ-condition,

and by replacing Γ(gij) everywhere by means of the ∇-condition, we arrive at a new

algebraic condition of the form

gik(∇Φ)kj = gjk(∇Φ)ki ,

where (∇Φ)ij = Γ(Φi
j)−∇i

mΦm
j −∇m

j Φi
m. As in [29], we will call this new condition

the (∇Φ)-condition. It will, of course, only give new information as long as it is

independent from the Φ-condition (this will not be the case, for example, if the

commutator of matrices [Φ,∇Φ] vanishes). One can repeat the above process on the

(∇Φ)-condition, and so on to obtain possibly independent (∇ . . .∇Φ)-conditions.

A second route to additional algebraic conditions arises from the derivatives of

the Φ-equation in q̇-directions. One can sum up those derived relations in such a

way that the terms in gijk disappear on account of the symmetry in all their indices.

The new algebraic relation in gij is then of the form

gijR
j
kl + gljR

j
ik + gkjR

j
li = 0,

where Rj
kl = ∂q̇j(Φ

k
i )− ∂q̇i(Φk

j ). For future use, we will call this the R-condition.

As before, this process can be continued to obtain more algebraic conditions,

with any mixture of the above mentioned two processes leading to possibly new and

independent algebraic conditions. Once we have used up all the information that we

can obtain from this infinite set of algebraic conditions, we can start looking at the

partial differential equations in the ∇-conditions.

We will employ the Helmholtz conditions in the next chapter to begin our Hamil-

tonization of nonholonomic systems. However, due to the complexity of the par-

tial differential equations encountered, even the simplest nonholonomic systems can

present a formidable challenge to Hamiltonize by solving the Helmholtz conditions.
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Despite this, we will be able to extract some rather general results on the Hamil-

tonization of a certain class of nonholonomic systems. In Chapter VII we will then

apply some of the obtained results to optimal control problems associated to this

class of nonholonomic systems.



CHAPTER III

Nonholonomic Mechanics

As we saw in Chapter II, Hamiltonian mechanics can be described in three equiv-

alent ways: (i) through the variational principle of Hamilton (Section 2.1), (ii) by the

existence of a Lagrangian that satisfies the Euler-Lagrange equations (Section 2.2),

or (iii) through the use of Poisson brackets (Section 2.3). In contrast, nonholonomic

mechanics fails to be expressible in any of these ways (as we will see below). This

thesis is largely concerned with presenting Hamiltonization methods based on this

failure and we will address (i), (ii) and (iii) in Chapters IV, III and V below. For

now let us summarize the situation on the nonholonomic side.

3.1 Constraints in Mechanics

Consider a mechanical system subject to linear velocity constraints that can be

expressed in generalized coordinates as aij(q)q̇
j = 0 for i = 1, . . . , k < dim(Q). We

call this constraint holonomic if (locally) there is a real-valued function h(q) such

that the constraint can be written as h(q) = constant. If no such function exists,

the constraint is said to be nonholonomic. Equivalently, constraints are holonomic

if their corresponding distribution1 is integrable (in the sense of Frobenius) and

nonholonomic otherwise.
1A distribution D is a collection of linear subspaces denoted by Dq ⊂ TqQ, one for each q.

15
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3.2 Constrained Mechanics and the Lagrange-d’Alembert Principle

Suppose now that we have a mechanical system on Q with Lagrangian L and

let D be the distribution describing the kinematic constraints of Section 3.1. The

equations of motion are then given by the Lagrange-d’Alembert principle [6]:

(3.1) δ

∫ b

a

L(qi, q̇i) dt = 0,

where the variations δq(t) of the curve q(t) satisfy δq(t) ∈ Dq(t) for each t ∈ [a, b] and

δq(a) = δq(b) = 0, along with the requirement that q̇(t) ∈ Dq(t) for all t (i.e. that the

curve q(t) ∈ Q satisfy the constraints). In order to distinguish the holonomic and

nonholonomic situations let us consider the constrained equations of motion resulting

from (3.1).

3.3 The Equations of Motion for Constrained Mechanics

The equations of motion for constrained mechanics (both holonomic and nonholo-

nomic) can be derived from a generalization of Hamilton’s principle (as we shall do

below). For our purposes, we shall consider a constrained mechanical system on a

configuration manifold Q to be a pair (L,D), where L : TQ → R is a regular La-

grangian of mechanical type L = T − V , where T : TQ → R is the kinetic energy

corresponding to a Riemannian metric g on Q, and V : Q → R is the potential en-

ergy, and D is the vector subbundle of TQ defined by the null space of k independent

constraint one-forms ωa [6, 26]. Moreover, in a neighborhood of each point, one can

choose a local coordinate chart such that ωa and D take the form:
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ωa = dsa + Aaα(r, s)drα,(3.2)

D = span {∂rα − Aaα(r, s)∂sa},(3.3)

respectively, where q = (r, s) ∈ Rn−m×Rm and hereafter we make the index conven-

tions: a, b, c = 1, . . . , k, α, β, γ = 1, . . . ,m, where n = dim Q and m := n− k is the

number of degrees of freedom of the constrained system.

Now define the vector bundle with coordinates (rα, sa) and projection map π :

(rα, sa)→ rα. Introducing the vertical space Vq := ker Tqπ, we can define an Ehres-

mann connection Aq : TqQ→ Vq represented locally by the vector-valued differential

form ωa:

(3.4) A = (dsa + Aaα(r, s)drα)∂sa .

It follows that the horizontal space Hq := ker Aq = D, and that TQ = Vq ⊕ Hq,

so that we can project a tangent vector onto its vertical and horizontal parts using

the connection2. Defining the constrained Lagrangian Lc(q, ṙ) = L(q, hor q̇), the

corresponding equations of motion for a constrained mechanical system are obtained

through the Lagrange-d’Alembert principle (3.1), and are given by:

δLc = 〈FL,B(q̇, δq)〉,

where δLc = 〈δqα, ∂Lc
∂qα
− d

dt

∂Lc
∂q̇α
〉,(3.5)

and where 〈·, ·〉 denotes the pairing between a vector and a dual vector. Here,

FL : TQ → T ∗Q is the fiber derivative of Section 2.1, δq is a horizontal variation,
2In coordinates, the horizontal projection hor Xq of a vector Xq ∈ TqQ is the map (ṙα, ṡa) 7→ (ṙα,−Aaα(r, s)ṙα).
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and B is the curvature of the Ehresmann connection A regarded as a vertical-valued

two-form (see below). These equations are to be supplemented by the constraint

equations (given by (3.7) in local coordinates).

The curvature of A is the vertical-vector-valued-two-form B on Q defined by

B(X, Y ) = −A([hor X, hor Y ]), where the Jacobi-Lie bracket of vector fields on the

right hand side is obtained by extending the vectors X and Y on Q to vector fields3.

In this form it becomes apparent that the curvature exactly measures the failure of

the horizontal distribution D to be integrable (in the Frobenius sense). Hence, for

holonomic systems this curvature vanishes, meaning from (3.5) that the equations of

motion are given by δLc = 0 along with the (integrable) constraint equations (3.7).

This is then equivalent to the statement that for holonomic systems, one can “plug

in the constraints” and compute the Euler-Lagrange equations of Lc to obtain the

mechanics of the unconstrained variables. In nonholonomic systems, on the other

hand, even after substituting in the constraints and arriving at Lc the constraint

forces given by the right hand side of the first line in (3.5) must be taken into

account. An important result is then that [6] a nonholonomic system is variational

iff it is holonomic. We will see this more directly in Section 3.3 below.

Locally, we therefore have the constrained equations of motion along with the

constraint equations given as:

d

dt

∂Lc
∂ṙα
− ∂Lc
∂rα

= −
(
∂L

∂ṡb

)
c

Bb
αβ ṙ

β − Aaα
∂Lc
∂sa

,(3.6)

ṡa = −Aaα(r, s)ṙα,(3.7)

where the local expression for the curvature is given by:

3Moreover, the curvature can be shown to be independent of the extension of the vector fields [6].
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(3.8) Bb
αβ =

∂Abα
∂rβ
−
∂Abβ
∂rα

+ Aaα
∂Abβ
∂sa
− Aaβ

∂Abα
∂sa

.

Note that the first term on the right hand side of (3.6) is the only instance where

the ṡb occur. We can eliminate this through the constraints (3.7), and we shall

henceforth denote with a subscript c any expression for which we have eliminated

the fiber dependency by using (3.7).

Equations (3.6) and (3.7) then describe the mechanics of the nonholonomic system

(L,D), and for ease of use later, we henceforth define φa := ṡa + Aaα(r, s)ṙα.

3.4 Variational Constrained Mechanics

Another way to derive equations of motion for a constrained mechanical system

is to use Lagrange’s Multiplier theorem [43]. In brief, define the space Q̃ = Q×M ,

where dim Q=n as before, and dim M=k, and where locally we denote the extra

coordinates of Q̃ by µ1(t), . . . , µk(t). We shall call the µa(t) the multipliers and form

the augmented Lagrangian LV : TQ̃→ R:

(3.9) LV = L− µaφa.

Note that LV is automatically singular, due to the absence of µ̇.

Applying Hamilton’s principle to the augmented Lagrangian then yields the un-

constrained equations of motion

(3.10)
d

dt

∂L

∂q̇i
− ∂L

∂qi
= µ̇a

∂φa

∂q̇i
+ µa

(
d

dt

∂φa

∂q̇i
− ∂φa

∂qi

)
,

where i = 1, . . . , n, as well as the equations of constraint (3.7) which arise as the

Euler-Lagrange equations of the µa coordinates. This set of equations is sometimes
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called the vakonomic equations, after Arnold, Kozlov and Neishtadt [2] who intro-

duced nonholonomic dynamics under the Lagrange variational point of view. We

shall thus prefer to call these equations the variational constrained equations.

Now, if the constraints are holonomic then one can show [43] that the variational

constrained equations reproduce the equations of motion for a holonomic system,

showing more directly that holonomically constrained systems are variational. How-

ever, if the constraints are nonholonomic then the variational constrained equations

do not reproduce the nonholonomic equations4. When the constraints are nonholo-

nomic, we will call the variational constrained equations the variational nonholo-

nomic equations.

3.5 Almost Poisson Structures in Nonholonomic Mechanics

Returning to the equations of motion (3.6), one can define the constrained mo-

menta pα = ∂Lc/∂ṙ
α and, assuming Lc is hypperregular, the constrained Hamiltonian

HM on the constraint phase space M := FL(D) ⊂ T ∗Q. The equations of motion

(3.6) and constraint (3.7) then become [6, 84]:

ṙα =
∂HM
∂p̃α

,(3.11)

ṗα = −∂HM
∂rα

+ Akα
∂HM
∂sk

− pγRγ
l B

l
αβ

∂HM
∂pβ

,(3.12)

ṡk = −Akβ
∂HM
∂pβ

,(3.13)

respectively, whereRγ
l is defined byMaα∂HM/∂pα = Rγ

apγ, whereMaα = gaα−gakAkα,

with gij the components of the kinetic energy metric of the unconstrained Lagrangian,

Bl
αβ is the curvature of the connection, HM = pαṙ

α − Lc is the constrained Hamil-

tonian, and pα = (∂L/∂ṙα) − (∂L/∂ṡk)Akα. These are a set of 2n − m equations
4Sadly, several authors and even textbooks have incorrectly claimed otherwise, causing much confusion in the

area (see the references in [43] for more details).
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on the submanifold M with induced coordinates (rα, sk, pα), and are manifestly

non-Hamiltonian, a reflection of the fact that the presence of nonholonomic con-

straints induces additional forces that enforce those constraints. Furthermore, the

constrained equations (3.11)-(3.12) can be written in terms of the almost-Poisson

bracket {·, ·}AP as:

(3.14) ṙα = {rα, HM}AP , ṗα = {pα, HM}AP ,

where the almost-Poisson bracket is given by5:

(3.15) {f, g}AP = {f, g}can − Abα
(
∂f

∂sb
∂g

∂pα
− ∂f

∂pα

∂g

∂sb

)
− pγKγ

l B
l
αβ

∂f

∂pα

∂g

∂pβ
,

for any two real-valued functions f, g on M. Now, since (3.15) is a bracket for only

the constrained mechanics, there are rare nonholonomic systems for which it is in fact

a Poisson bracket (see [38]). However, when one considers the almost-Poisson bracket

for the entire system (3.11)-(3.13), one can then show [6] that this bracket is a Poisson

bracket (i.e. satisfies the Jacobi identity) iff the constraints are holonomic. This is

the third and final manifestation of the difference between Hamiltonian mechanics

and nonholonomic mechanics: the latter is not variational, not the Euler-Lagrange

mechanics of any Lagrangian and cannot be expressed in terms of a Poisson bracket.

3.6 Nonholonomic Systems with Symmetry

Consider, as before, a nonholonomic system with an n dimensional configuration

manifold Q and mechanical Lagrangian L which is subject to k linear nonholonomic

constraints described by the distribution D. Suppose that we have a Lie group G

5Here {f, g}can = ∂f
∂rα

∂g
∂pα
− ∂f
∂pα

∂g
∂rα .



22

which acts freely and properly on the configuration space Q, with the Lagrangian

L and constraints D invariant with respect to the induced action of G on TQ. For

simplicity, assume also that the constraints and the orbit directions span the entire

tangent space to the configuration space:

(3.16) Dq + TqOrb(q) = TqQ,

sometimes known as the dimension assumption [6]. Under this setup, the resulting

nonholonomic equations of motion are known as the Hamilton-Poincaré-d’Alembert

equations and split into a coupled set of second-order equations on the shape space

M := Q/G and first-order nonholonomic momentum equations on g∗ [6, 55], whose

number equals dim Sq, where Sq := Dq ∩ TqOrb(q).

These equations can also be collectively written in bracket form with respect to

an almost-Poisson bracket {·, ·}M, where M =M/G, with M = FL(D) ⊂ T ∗Q as

before. In general, this bracket does not satisfy the Jacobi identity, preventing these

reduced, constrained equations of motion from being expressed as the equations of a

Hamiltonian system.

For future reference, we will now describe two special cases: (1) where Sq =

{0}, known as the purely kinematic or nonabelian Chaplygin case, and (2) the case

where Q = G, where the resulting equations represent a generalization of the Euler-

Poincaré-Suslov equations [6].

3.6.1 Nonholonomic Chaplygin Systems

Consider the subclass of nonholonomic systems with symmetry corresponding to

Sq = {0}, known as the purely kinematic case [6], where the group orbits exactly

complement the constraints. These are nonholonomic systems on an n dimensional
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configuration manifold Q characterized by a principal G-bundle π : Q→ Q/G, where

Q 6= G, associated with a free and proper action Φ of G on Q. In addition they carry

a mechanical Lagrangian L : TQ→ R and non-integrable distribution D describing

the nonholonomic constraints which are both G-invariant with respect to the lifted

action on TQ.

These systems are also known as nonabelian Chaplygin systems [6, 26, 54], since

in the special case where Q = Rs × Sr and G is either a torus action Tm or acts

by translations R2m, they are called abelian Chaplygin systems and correspond to

the classical exposition of Chaplygin systems [73] where there exist local coordinates

(rα, sa), α = 1, . . . , n − 2m, a = n − 2m + 1, . . . , n such that the Lagrangian L

does not depend on the sa coordinates, and where the constraints can be written as

ṡa = −Aaα(r)ṙα.

For nonabelian Chaplygin systems we can form the reduced velocity phase space

TQ/G, and the Lagrangian L induces the reduced Lagrangian l : TQ/G → R

as well as the reduced constrained Lagrangian lc : T (Q/G) → R. The nonholo-

nomic Lagrange-d’Alembert equations of motion then induce well-defined reduced

Lagrange-d’Alembert equations on T (Q/G) [6, 26]:

δlc = 〈 ∂l
∂ξ
,B(ṙ, δr)〉,

ξ = −Aṙ,(3.17)

where δr ∈ T (Q/G), B is the local expression for the curvature of A, ξ = g−1ġ, and

where we have chosen the bundle coordinates r ∈M := Q/G, g ∈ G.

In a local trivialization M ×G of π, the equations of motion are given as follows

[26]. Let (rα, ga) be local coordinates for Q, where α = 1, . . . , n − k and a =
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1, . . . , k = dim G. Choosing a basis ea (a = 1, . . . , k) of the Lie algebra g and using

the left trivialization TG ∼= G × g, we can write ξ = ξaea ∈ g as ξ = g−1ġ. In

terms of the coordinates (rα, ga, ṙα, ξa) on TQ, the G-invariant reduced Lagrangian

is L = l(rα, ṙα, ξa). Similarly, the constraints take the form ξa = −Aaαṙα, where

Aaα are the connection coefficients of the given principal connection. The reduced

constrained Lagrangian is then given by lc = l(rα, ṙα,−Aaβ ṙβ), and finally, the local

equations corresponding to the system (3.17) are:

d

dt

∂lc
∂ṙα
− ∂lc
∂rα

= −
(
∂l

∂ξa

)
c

Baαβ ṙβ,(3.18)

ξa = −Aaα(r)ṙα,(3.19)

where Baαβ are components of the curvature of A in local form, and where the sub-

script c denotes that we have substituted in the constraints. With the structure

constants of g with respect to our basis given by [eb, ec] = Ca
bcea, the curvature

components are given by:

Baαβ =
∂Aaα
∂rβ

−
∂Aaβ
∂rα

− Ca
bcAbαAcβ.

For easy reference later on, we also define the semi-basic two-form [20] Λ on TM

with components

(3.20) Λαβ(r, ṙ) :=

(
∂l

∂ξa

)
c

Baβα,

so that the right hand side of (3.18) can also be expressed as Λαβ ṙ
β.

Defining the cojugate momenta pα = ∂lc/∂ṙ
α and assuming that lc is hyperregular

we can use the Legendre transform to define the reduced constrained Hamiltonian
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hc : T ∗M → R, hc(r, p) = pαṙ
α − lc|ṙ→p, the nonholonomic equations (3.18) can be

written with respect to an almost-Poisson bracket:

(3.21) ṙα = {rα, hc}AP , ṗα = {pα, hc}AP ,

where the almost-Poisson bracket is given by [21]:

(3.22) {g, k}AP (r, p) = {g, k}can(r, p)−
[(

∂l

∂ξa

)
c

Baαβ
]
ṙ→p

∂g

∂pα

∂k

∂pβ
,

for any two functions g, k : T ∗M → R, and where {g, k}can was defined in footnote

5.

3.6.2 Nonholonomic Systems on Lie Groups

Consider now another subclass of nonholonomic systems with symmetry corre-

sponding to the setting where the configuration space is a Lie group G, and the sys-

tem is characterized by a left-invariant Lagrangian l = 1
2
〈Iξ, ξ〉, where ξ = g−1ġ ∈ g,

and I : g 7→ g∗ is the inertia tensor. Suppose also that the system is subject to the

left-invariant constraint

(3.23) 〈a, ξ〉 = aIξ
I = 0, I = 1, . . . , n,

where a ∈ g∗, and n = dim(G). For simplicity, we shall restrict ourselves here to

constraints for which the aI are constant.

The equations of motion in this case are the Euler-Poincaré-Suslov equations

[6, 55], and are given by:

(3.24) µ̇ = ad∗ξµ−
〈µ, adξI

−1a〉
〈a, I−1a〉

a,
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where µ = Iξ ∈ g∗ is the body momentum.

We now discuss a more general form of (3.24) for the case of multiple constraints

that emerges as a special case of the Hamilton-Poincaré-d’Alembert equations dis-

cussed above from the work of Section 5.8 of [6].

Suppose now that there are k < n constraints of the form (3.23) such that k of

the ξ’s are dependent, so that ξα = −bαi ξi, where6 α = 1, . . . , k and i = 1, . . . , n− k

and ξI = (ξi, ξα). Define the constrained Lagrangian lc(ξ
i) = l(ξi, ξα = −bαi ξi) as

well as the constrained subspace gc of g by gc = {ξ ∈ g|ξα = −bαi ξi}. The basis

vectors of this subspace are ui := ei − bαi eα, and writing an element Ω ∈ gc as Ωiui,

we have the transformations ξi = Ωi, ξα = −bαj ξj = −bnj Ωj. Now, assuming enough

regularity we can define the constrained reduced Hamiltonian hc(Ω, p̃) = p̃iΩ
i − lc,

where p̃i = ∂lc/∂Ωi. The constrained Euler-Poincaré-Suslov equations are then given

by [6]:

˙̃pi = −µJCJ
KLe

K
i e

L
j

∂hc
∂p̃j

,(3.25)

where the eIj are introduced through ξI = eIjΩ
j and in our particular case, as shown

above,

(3.26) eKi = (eki , e
α
i ) = (δki ,−bαi ),

and p̃i = gADpAe
D
i =: µDe

D
i , with pA = ∂L/∂ġA = (∂l/∂ξB)(g−1)BA. Here the gIJ

denote the lifted action of the group, CJ
KL are the structure constants of g and δki

is the Kronecker delta. Equation (3.25) represents the extension of the Lie-Poisson

equations (2.10) to the nonholonomic context.

6When discussing Euler-Poincaré-Suslov systems we will use the index conventions that all uppercase indices
I, J,K, . . . will range from 1 to n, all Greek indices from 1 to k and all lowercase indices i, j, k, . . . from 1 to n− k
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We can also write the equations of motion (3.25) as:

(3.27) ˙̃pi = {p̃i, hc}AP ,

with {·, ·}AP = {·, ·}−|gc , where {·, ·}− is the (minus) Lie-Poisson bracket on g∗.

Although (3.25) gives the explicit form, we note here that the almost-Poisson bracket

is equivalently given by:

(3.28) {g, k}AP = {p̃i, p̃j}
∂g

∂p̃i

∂k

∂p̃j
,

for any two functions g, k : (gc)∗ → R, and where the bracket on the right hand side

of (3.28) is computed by using the canonical bracket on T ∗G and then restricting to

gc (see [6], section 5.8 for more details). We will make use of this general form in

Chapter VI when we consider the Hamiltonization of (3.25).

3.7 Invariant Measures of Nonholonomic Systems

Unlike the Hamiltonian systems of Chapter II, nonholonomic systems do not au-

tomatically preserve measure. In this section we summarize the conditions under

which they do and extract special cases relevant to work presented in subsequent

chapters.

3.7.1 Invariant Measures for Chaplygin Systems

Consider now a nonholonomic (nonabelian) Chaplygin system (L,G,D) from Sec-

tion 3.6.1 and assume that the constrained reduced Lagrangian lc has an invertible

kinetic energy matrix. Then we can express the right hand side of (3.18) in terms of

the Λαβ of (3.20) as
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(3.29) Λαβ = −Kε
αβpε := −MaγG

γεBaαβpε,

where Gγε is the inverse of the kinetic energy metric of lc and Maγ was defined in

Section 3.5. Although Λ in (3.20) was defined on TM , we will continue to use Λ to

denote the Legendre transformed form in (3.29), an admitted abuse of notation.

The conditions for the existence of an invariant measure N(r) for the system

(3.18) are well studied [26, 57, 85], and we shall briefly review them here. If we

denote by Xnh the vector field which solves (3.18)-(3.19) and further assume that

the system has an invariant measure N(r) drα ∧ dpα = N(r)ωα, where ωα denotes

the standard measure on M, then by definition LXnh(Nωk) = 0, where L denotes

the Lie-derivative. From this, we have:

(3.30) 0 = divNωk(Xnh) = divωk(Xnh) +
1

N
Xnh(N) =

∂ṙα

∂rα
+
∂ṗα
∂pα

+
ṙα

N

∂N

∂rα
.

Then using (3.18) this becomes:

(3.31)

(
1

N

∂N

∂rβ
+
∂Λαβ

∂pα

)
ṙβ = 0,

and since the Λ’s depend linearly on the momenta from above, we see that the

quantities in parentheses in (3.31) depend only on the coordinates. Thus, the only

way (3.31) vanishes is if the parenthetical terms vanish identically:

1

N

∂N

∂rβ
+
∂Λαβ

∂pα
= 0,(3.32)

=⇒ 1

N

∂N

∂rβ
−Kα

αβ = 0.(3.33)
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Equation (3.32) locally describes explicitly how the measure density, metric, and

curvature arising from the nonholonomic constraints interact. Moreover, since it is

a system of first-order partial differential equations it can be easily solved by any of

the popular mathematical software packages to yield the invariant measure density

(if it exists).

3.7.2 Invariant Measures of Euler-Poincaré-Suslov Systems

In the unconstrained case, one can show [6] that the Euler-Poincaré equations

have an integral invariant iff the group G is unimodular7. In the constrained case,

for Euler-Poincaré-Suslov systems the existence of an invariant measure is given by

a general result of Jovanović [50]:

Theorem III.1. ([50]) The Euler-Poincaré-Suslov equations (3.25) have an integral

invariant with positive C1 density iff

(3.34) Kad∗I−1aa+ T = γa,

for some γ ∈ R, where K = 1/〈a, I−1a〉 and T ∈ g∗ is defined by 〈T, ξ〉 = Trace(adξ).

The measure preservation conditions for more general nonholonomic systems are

discussed in [16, 85].

The discussion of invariant measures in this section will allows us to understand

how to generalize Chaplygin’s theorem to higher dimensions. Recall from the In-

troduction that Chaplygin’s reducing multiplier theorem rested on the assumption

that the underlying system have an invariant measure. However, as we shall see

in Chapter VII with the example of the Chaplygin sleigh, the lack of an invariant

7G being unimodular is equivalent to the requirement that the structure constants satisfy Ccac = 0.
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measure in that case will not be an obstacle to its Hamiltonization using the results

we develop in Chapter VI.



CHAPTER IV

Hamiltonization through the Inverse Problem of the
Calculus of Variations

Recall from Section 2.5 that the inverse problem of the calculus of variations can

be used to determine if a set of second-order differential equations are the Euler-

Lagrange equations of some Lagrangian L. Now, although we already know that

nonholonomic systems are not variational, because ultimately the mechanics of non-

holonomic systems reduce to a set of mixed first- and second-order differential equa-

tions, it seems logical to begin the study of their Hamiltonization by considering

the issue within the framework of the inverse problem. To that end, we will present

various methods that associate to the nonholonomic equations of motion a fam-

ily of systems of second-order ordinary differential equations. These methods will

then allow us to apply the inverse problem of the calculus of variations [31, 81] to

these associated systems instead. We shall then show that if an unconstrained (or

free) regular Lagrangian exists for one of the associated systems, we will always be

able to find an associated Hamiltonian H by means of the Legendre transformation.

The canonical Hamiltonian equations resulting from H, when restricted to certain

invariant submanifolds, will then reproduce the nonholonomic mechanics, hence ac-

complishing the Hamiltonization.

We will also show that our method only makes use of the equations of motion of

31
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the system and thus depends only on the Lagrangian and constraints of the nonholo-

nomic system and not on the knowledge of the exact solutions of the system1. The

application of the methods of the inverse problem will also provide us with families of

regular Lagrangians which we expect to be useful in considering future applications

of this work (see Chapter VIII).

4.1 Second-Order Dynamics Associated to a class of Nonholonomic Sys-
tems

Rather than abstractly describing the various ways of associating a second-order

system to a given nonholonomic system, we will instead illustrate the method by

means of one of the most interesting examples of a nonholonomic system.

The vertical rolling disk is a homogeneous disk rolling without slipping on a hor-

izontal plane with configuration space Q = R2 × S1 × S1 and parameterized by the

coordinates (x, y, θ, ϕ), where (x, y) is the position of the center of mass of the disk,

θ is the angle that a point fixed on the disk makes with respect to the vertical and

ϕ is measured from the positive x-axis (see Figure 7.1).

The system has the Lagrangian and constraints given by:

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2,

ẋ = R cos(ϕ)θ̇,

ẏ = R sin(ϕ)θ̇,(4.1)

where m is the mass of the disk, R is its radius, and I, J are the moments of inertia

about the axis perpendicular to the plane of the disk and about the axis in the plane

1In contrast to some of the methods discussed in the Introduction.
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of the disk, respectively. The constrained equations of motion are simply:

(4.2) θ̈ = 0, ϕ̈ = 0, ẋ = R cos(ϕ)θ̇, ẏ = R sin(ϕ)θ̇.

The solutions of the first two equations are of course

θ(t) = uθt+ θ0, ϕ(t) = uϕt+ ϕ0,

and in the case where uϕ 6= 0, we get that the x- and y-solution is of the form

x(t) =

(
uθ
uφ

)
R sin(ϕ(t)) + x0,

y(t) = −
(
uθ
uφ

)
R cos(ϕ(t)) + y0,(4.3)

from which we can conclude that the disk follows a circular path. If uϕ = 0, we

simply get the linear solutions

(4.4) x(t) = R cos(ϕ0)uθt+ x0, y(t) = R sin(ϕ0)uθt+ y0.

The situation in (4.4) corresponds to the case when ϕ remains constant, i.e. when

the disk is rolling along a straight line. For much of what we will discuss in the next

sections we will exclude these type of solutions from our framework, since our results

will depend on q̇(0) 6= 0.

Having introduced the vertical disk, let us take a closer look at the nonholonomic

equations of motion (4.2). As a system of ordinary differential equations, these equa-

tions form a mixed set of coupled first- and second-order equations and as mentioned

in the Introduction, it is well-known that these equations are never variational on

their own [6, 26] in the sense that we can never find a regular Lagrangian whose

(unconstrained) Euler-Lagrange equations are equivalent to the nonholonomic equa-

tions of motion. There are, however, systems of second-order equations (only) whose

solution set contains the solutions of the nonholonomic equations (3.6). We shall
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call these second-order systems associated second-order systems, and in the next sec-

tion will determine whether or not we can find a regular Lagrangian for at least

one of those associated second-order systems. If so, we can then use the Legendre

transformation to get a full Hamiltonian system on the associated phase space. The

Legendre transformation will also map the constraint distribution onto a constraint

submanifold in phase space and the nonholonomic solutions, considered as particular

solutions of the Hamiltonian system, will then all lie on that submanifold.

Although there are infinitely many ways to arrive at an associated second-order

system for a given nonholonomic system, we shall focus on three particular methods

of constructing them in this chapter and illustrate these three choices below using

the vertical rolling disk as an example.

4.1.1 Associated Second-Order Systems by Example

Firstly, consider taking the time derivative of the constraint equations so that a

solution of the nonholonomic system (4.2) also satisfies the following complete set of

second-order differential equations in all variables (θ, ϕ, x, y):

(4.5) θ̈ = 0, ϕ̈ = 0, ẍ = −R sin(ϕ)θ̇ϕ̇, ÿ = R cos(ϕ)θ̇ϕ̇.

We shall call this system the associated second-order system of type I. Excluding for

a moment the case where uϕ = 0, the solutions of equations (4.5) can be written as

θ(t) = uθt+ θ0

ϕ(t) = uϕt+ ϕ0

x(t) =

(
uθ
uφ

)
R sin(ϕ(t)) + uxt+ x0,

y(t) = −
(
uθ
uφ

)
R cos(ϕ(t)) + uyt+ y0.
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By restricting the above solution set to those that also satisfy the constraints ẋ =

cos(ϕ)θ̇ and ẏ = sin(ϕ)θ̇ (i.e. to those solutions above with ux = uy = 0), we get back

the solutions (4.3) of the non-holonomic equations (4.2). Similar reasoning holds for

the solutions (4.4).

Now, taking note of the special structure of equations (4.5), we may alternately

use the constraints (4.2) to eliminate the θ̇ dependency. This yields another plausible

choice for an associated system:

(4.6) θ̈ = 0, ϕ̈ = 0, ẍ = − sin(ϕ)

cos(ϕ)
ẋϕ̇, ÿ =

cos(ϕ)

sin(ϕ)
ẏϕ̇.

We shall refer to this choice later as the associated second-order system of type II.

Lastly, we note that since the relation sin(ϕ)ẋ − cos(ϕ)ẏ = 0 is satisfied on the

constraint manifold we can easily add a multiple of this relation to some of the

equations above. One way of doing so leads to the system

ϕ̈ = −mR
J

(sin(ϕ)ẋ− cos(ϕ)ẏ)θ̇,

θ̈ =
mR

I +mR2
(sin(ϕ)ẋ− cos(ϕ)ẏ)ϕ̇,

ẍ = −R sin(ϕ)θ̇ϕ̇+
mR2

I +mR2
cos(ϕ)(sin(ϕ)ẋ− cos(ϕ)ẏ)ϕ̇,

ÿ = R cos(ϕ)θ̇ϕ̇+
mR2

I +mR2
sin(ϕ)(sin(ϕ)ẋ− cos(ϕ)ẏ)ϕ̇.(4.7)

For later discussion we shall refer to this system as the associated second-order system

of type III. We mention this particular second-order system here because, as we

show in Chapter V (using techniques that are different than those we develop in this

chapter), this complicated looking system is indeed variational! The Euler-Lagrange

equations for the regular Lagrangian

(4.8) L = −1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2 +mRθ̇(cos(ϕ)ẋ+ sin(ϕ)ẏ),
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are indeed equivalent to equations (4.7) and when restricted to the constraint distri-

bution reproduce the nonholonomic equations (4.2) exactly.

In Section 4.2 we will address the question of whether the second-order associated

systems introduced above are equivalent to the Euler-Lagrange equations of some

regular Lagrangian or not. However, let us now consider a more general setup.

4.1.2 Associated Second-Order Systems in General

We will, of course, not only be interested in the vertically rolling disk. It should

be clear by now that there is no systematic way to categorize the second-order sys-

tems that are associated to a nonholonomic system. If no regular Lagrangian exists

for one associated system, it may still exist for one of the infinitely many other

associated systems. For many nonholonomic systems, the search for a Lagrangian

using this method may therefore remain inconclusive. On the other hand, the solu-

tion of the inverse problem of any given associated second-order system is also too

hard and too technical to tackle in full generality. Instead, we aim here to concisely

formulate our results for a well-chosen class of nonholonomic systems which include

the aforementioned example and for only a few choices of associated second-order

systems.

To be more precise, let us assume from now on that the configuration space

Q = Rn and that the base space of the fibre bundle is two dimensional, writing

(r1, r2, sα) for the coordinates. We will consider the class of nonholonomic systems

where the Lagrangian is given by

(4.9) L =
1

2
(I1ṙ

2
1 + I2ṙ

2
2 +

∑
α

Iαṡ
2
α),

with all Iα positive constants and where the constraints take the following special
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form

(4.10) ṡα = −Aα(r1)ṙ2.

Although this may seem to be a very thorough simplification, this interesting class of

systems does include, for example, many of the classical examples of nonholonomic

systems. We also remark that the above class of nonholonomic systems falls in the

category of abelian Chaplygin systems from Section 3.6.1, which we will return to in

Chapters V and VI.

In what follows, we will assume that none of the Aα are constant (in that case the

constraints are, of course, holonomic). The nonholonomic equations of motion (3.6)

are now

(4.11) r̈1 = 0, r̈2 = −N2
(∑

β

IβAβA
′
β

)
ṙ1ṙ2, ṡα = −Aαṙ2,

where N is shorthand for the function

(4.12) N(r1) =
1√

I2 +
∑

α IαA
2
α

.

The function N has, in fact, a familiar interpretation in this case: it is the density of

the invariant measure for the system (4.11). To see this, recall from Section 3.7 that

we can obtain the invariant measure density by solving a set of partial differential

equations. In the present case, these two equations read:

(4.13)
1

N

∂N

∂r1

+

∑
β IβAβA

′
β

I2 +
∑

α IαA
2
α

= 0,
1

N

∂N

∂r2

= 0,

whose solution is precisely the expression for N in (4.12) up to an irrelevant mul-

tiplicative constant. In the case of the vertically rolling disk, for example, it is

a constant. Moreover, we shall see later in Proposition IV.2 that systems with a

constant invariant measure always play a special role.
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We are now in a position to generalize the associated second-order systems pre-

sented in Section 4.1.1 to the more general class of nonholonomic systems above. In

the set-up above, the associated second-order system of type I for the more general

systems (4.11) becomes the system

r̈1 = 0, r̈2 = −N2
(∑

β

IβAβA
′
β

)
ṙ1ṙ2, s̈α = −(A′αṙ1ṙ2 + Aαr̈2),

or equivalently, in normal form,

r̈1 = 0, r̈2 = −N2
(∑

β

IβAβA
′
β

)
ṙ1ṙ2,

s̈α = −
(
A′α −N2Aα

(∑
β

AβA
′
β

))
ṙ1ṙ2.(4.14)

For convenience, we will often simply write

r̈1 = 0, r̈2 = Γ2(r1)ṙ1ṙ2, s̈α = Γα(r1)ṙ1ṙ2,

for these types of second-order systems.

The associated second-order system of type II we encountered for the vertically

rolling disk also translates to the more general setting. We get

r̈1 = 0, r̈2 = −N2
(∑

β

IβAβA
′
β

)
ṙ1ṙ2,

s̈α =
(
A′α −N2Aα

(∑
β

IβAβA
′
β

))
ṙ1

(
ṡα
Aα

)
,(4.15)

where in the right-hand side of the last equation, there is no sum over α. A convenient

byproduct of this way of associating a second-order system to (4.11) is that now all

equations decouple except for the coupling with the r1-equation. To highlight this,

we will write this system as

r̈1 = 0, q̈a = Ξa(r1)q̇aṙ1

(no sum over a) where, from now on, (qa) = (r2, sα) and (qi) = (r1, qa).
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We postpone the discussion of the generalization of the associated second-order

system of type III to our class of nonholonomic systems until Section 4.2.3.

4.2 Lagrangians for Associated Second-Order Systems

Using the Helmholtz conditions from Section 2.5, we are now in a position to

investigate whether a Lagrangian exists for the two choices of associated systems,

(4.14) and (4.15).

4.2.1 Lagrangians for Associated Second-Order Systems of Type I

The first second-order system of interest is of the form

(4.16) r̈1 = 0, r̈2 = Γ2(r1)ṙ1ṙ2, s̈α = Γα(r1)ṙ1ṙ2.

The only non-zero components of (Φi
j) are

Φ2
1 = (

1

2
Γ2

2 − Γ′2)ṙ1ṙ2, Φ2
2 = −(

1

2
Γ2

2 − Γ′2)ṙ2
1,

Φα
1 = (

1

2
ΓαΓ2 − Γ′α)ṙ1ṙ2, Φα

2 = −(
1

2
ΓαΓ2 − Γ′α)ṙ2

1.

For ∇Φ and ∇∇Φ we get

(∇Φ)2
1 = (Γ2Γ′2 − Γ′′2)ṙ2

1 ṙ2, (∇Φ)2
2 = −(Γ2Γ′2 − Γ′′2)ṙ3

1,

(∇Φ)α1 = (ΓαΓ2 − Γ′′α)ṙ2
1 ṙ2, (∇Φ)α2 = −(ΓαΓ2 − Γ′′α)ṙ3

1,

and

(∇∇Φ)2
1 = ((Γ′2)2 + Γ2Γ′′2 − Γ′′′2 )ṙ3

1 ṙ2,

(∇∇Φ)2
2 = −((Γ′2)2 + Γ2Γ′′2 − Γ′′′2 )ṙ4

1

(∇∇Φ)α1 = (Γ′αΓ′2 +
3

2
ΓαΓ′′2 −

1

2
Γ′′αΓ2 − Γ′′′α )ṙ3

1 ṙ2,

(∇∇Φ)α2 = −(Γ′αΓ′2 +
3

2
ΓαΓ′′2 −

1

2
Γ′′αΓ2 − Γ′′′α )ṙ4

1,
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and so on.

We can already draw some immediate consequences just by inspection, but to

simplify the exposition let us illustrate the details using the four dimensional case.

Then, the Φ-equations of the system (4.16) and their derivatives are all of the form

g12Ψ2
2 + g13Ψ3

2 + g14Ψ4
2 = g22Ψ2

1 + g23Ψ3
1 + g24Ψ4

1,

g23Ψ2
1 + g33Ψ3

1 + g34Ψ4
1 = 0,

g23Ψ2
2 + g33Ψ3

2 + g34Ψ4
2 = 0,(4.17)

g24Ψ2
1 + g34Ψ3

1 + g44Ψ4
1 = 0,

g24Ψ2
2 + g34Ψ3

2 + g44Ψ4
2 = 0,

where, within the same equation, Ψ stands for either Φ, ∇Φ, ∇∇Φ, ∇∇∇Φ, ... We

will refer to the equations in the first line of (4.17) as equations of the first type, and

to equations of the next four lines as equations of the second type. The first three

equations of the first type, namely those for Φ, ∇Φ and ∇∇Φ are explicitly:

g12Φ2
2 + g13Φ3

2 + g14Φ4
2 = g22Φ2

1 + g23Φ3
1 + g24Φ4

1,(4.18)

g12(∇Φ)2
2 + g13(∇Φ)3

2 + g14(∇Φ)4
2 = g22(∇Φ)2

1 + g23(∇Φ)3
1 + g24(∇Φ)4

1,

g12(∇∇Φ)2
2 + g13(∇∇Φ)3

2 + g14(∇∇Φ)4
2 = g22(∇∇Φ)2

1 + g23(∇∇Φ)3
1 + g24(∇∇Φ)4

1.

For the systems at hand, the particular expression of Φ and its derivatives are such

that

Φ2
2(∇Φ)2

1 − Φ2
1(∇Φ)2

2 = 0,

(∇Φ)2
2(∇∇Φ)2

1 − (∇Φ)2
1(∇∇Φ)2

2 = 0,

and so on. By taking the appropriate linear combination of the first and the second,

and of the second and the third equation in (4.18), we can therefore obtain two
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equations in which the unknowns g12 and g22 are eliminated. Moreover, under certain

regularity conditions, these two equations can be solved for g13 and g14 in terms of

g23 and g24 (we will deal with exceptions later on). So, if we can show that g23 and

g24 both vanish, then so will also g13 and g14. Then, in that case g12Ψ2
2 = g22Ψ2

1, but

no further relation between g12 and g22 can be derived from this type of algebraic

conditions.

The infinite set of equations given by those of the second type in (4.17) are all

equations in the five unknowns g23, g33, g34, g24 and g44. Not all of these equations

are linearly independent, however. In fact, given that the system (4.16) exhibits the

property

Ψa
1Ψb

2 −Ψb
1Ψa

2 = 0,

(where Ψ is one of Φ,∇Φ,∇∇Φ, ...), one can easily deduce that the last four lines

of equations in (4.17) actually reduce to only two kinds of equations. If we assume

that we can find among this infinite set five linearly independent equations, there

will only be the zero solution

g23 = g33 = g34 = g24 = g44 = 0,

and from the above we then also know that g13 = g14 = 0.

To conclude, under the above mentioned assumptions, the matrix of multipliers

(gij) =



g11 g12 0 0

g12 g22 0 0

0 0 0 0

0 0 0 0


is singular and we conclude that there is no regular Lagrangian for the system2.

However, we note that the assumptions made above are not always satisfied and
2The above reasoning can, of course, be generalized to lower and higher dimensions.



42

need to be checked for every particular example. We will do so in Chapter VII where

we discuss a wide variety of examples, but for now let us return to our discussion of

the vertical disk.

The vertically rolling disk is in fact a special case, and so is any system (4.11)

with the property that
∑

α IαA
2
α is a constant (which is in fact equivalent with the

geometric assumption that the density of the invariant measure N is constant3). In

that case, we get Γ2 = 0. Not only does Γ2 vanish, but so do all Ψ2
1 and Ψ2

2 for

Ψ = Φ,∇Φ, .... We also have that Γ3 = −R sin(ϕ) and Γ4 = R cos(ϕ). Moreover,

one can easily show that for the vertically rolling disk the three expressions (4.18),

and any of the equations that follow in that set, are all linearly depending on the

following two equations

cos(ϕ)ϕ̇g13 + sin(ϕ)ϕ̇g14 + cos(ϕ)θ̇g23 + sin(ϕ)θ̇g24 = 0,

sin(ϕ)ϕ̇g13 − cos(ϕ)ϕ̇g14 + sin(ϕ)θ̇g23 − cos(ϕ)θ̇g24 = 0.

Although these equations are already in a form where g12 and g22 do not show up,

it is quite inconvenient that there is no way to relate these two unknowns to any of

the other unknowns. However, as we did in the general case above, we can deduce

from this an expression for g13 and g14 as a function of g23 and g24. We get

(4.19) g13 = − θ̇
ϕ̇
g23, g14 = − θ̇

ϕ̇
g24.

The infinite set of equations of the second type (i.e. the last four lines in (4.17))

are all linearly dependent to either one of the following four equations

cos(ϕ)g33 + sin(ϕ)g34 = 0, cos(ϕ)g34 + sin(ϕ)g44 = 0

sin(ϕ)g33 − cos(ϕ)g34 = 0, sin(ϕ)g34 − cos(ϕ)g44 = 0,

3This can be seen directly from (4.12).
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from which g33 = g34 = g44 = 0 follows immediately. In comparison to the general

case above, however, we can no longer conclude from the above that also g23 and g24

vanish, and therefore, we also cannot conclude from (4.19) that g13 and g14 vanish.

This concludes, in fact, the information we can extract from the Φ-condition and

the algebraic conditions that follow from taking its derivatives. Also, any attempt

to create new algebraic conditions by means of the tensor R is fruitless since an

easy calculation shows that when the above conclusions are taken into account all

equations that can be derived from R are satisfied vacuously. However, since the

determinant of the multiplier matrix

(gij) =



g11 g12 λg23 λg24

g12 g22 g23 g24

λg23 g23 0 0

λg24 g24 0 0


,

(with λ = −θ̇/ϕ̇) clearly vanishes, this is a violation of one of the first Helmholtz

conditions. Thus we can conclude that there does not exist a regular Lagrangian for

the associated second-order system of type I of the vertically rolling disk.

4.2.2 Lagrangians for Associated Second-Order Systems of Type II

In this section we investigate the inverse problem for associated systems of type

II,

(4.20) r̈1 = 0, q̈a = Ξa(r1)q̇aṙ1, a = 2, . . . , n,

where in the qa-equations there is no sum over a and where n = dim(Q). With

respect to the formulation of the inverse problem in Section 2.5, we have f1 = 0

and fa = Ξaq̇aṙ1. Moreover, one can easily compute that the only non-vanishing
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components of Φ are now

Φa
1 = −1

2
ṙ1q̇a(2Ξ′a − Ξ2

a), Φa
a =

1

2
ṙ2

1(2Ξ′a − Ξ2
a).

The Φ-conditions turn out to be quite simple: if Φa
a 6= 0, then

(4.21) q̇agaa = −ṙ1g1a,

and if Φa
a 6= Φb

b for a 6= b, then

(4.22) gab = 0.

These restrictions on Φ lead to the assumptions that first Ξa 6= 0 and Ξa 6= 2/(C−r1),

where C is any constant, second that Ξa 6= Ξb and, formally, Ξa − Ξb 6= Eb/(C −∫
Ebdr1), where Eb(r1) = exp(

∫
2Ξbdr1).

Suppose for now that we are dealing with nonholonomic systems (4.15) where

this is the case. Then one can easily show that all the other ∇ . . .∇Φ-conditions

do not contribute any new information, as well as that the R-condition is satisfied

vacuously. Thus we should therefore turn our attention to the ∇-condition, which

is a partial differential equation. To simplify the subsequent analysis though, we

note that although the multipliers gij can in general be functions of all variables

(r1, qa, ṙ1, q̇a), in view of the symmetry of the system we shall assume them to be,

without loss of generality, functions of (r1, ṙ1, q̇a) only.

Now, by differentiating the algebraic conditions by r1, ṙ1 and q̇a, we get the

additional conditions

q̇ag
′
aa = −ṙ1g

′
1a

gaa + q̇agaaa = −ṙ1g1aa, q̇ag1aa = −g1a − ṙ1g11a

gaab = 0 = g1ab, for a 6= b.
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Finally, the ∇-Helmholtz conditions are, with the above already incorporated,

g′11 +
∑
b

Ξb(g11bq̇b − gbb
q̇2
b

ṙ2
1

) = 0,

g′aa + Ξa(gaaaq̇a + gaa) = 0.

In what follows we will implicitly assume everywhere that ṙ1 6= 0. As a consequence,

the multipliers (gij) (and the Lagrangians we may derive from it) will only be defined

for ṙ1 6= 0.

It is quite impossible to find the most general solution for (gij) though. We will

show that there is an interesting class of solutions if we make the anszatz that gbbb = 0

for all b. With that and with the above gaab = 0 in mind, we conclude that all such

gbb will depend only on possibly r1 and ṙ1. Moreover, from the last ∇-conditions we

can determine their dependency on the variable r1. Since now

g′bb + gbbΞb = 0,

it follows that gbb(r1, ṙ1) = Fb(ṙ1) exp(−ξb(r1)), where ξb is such that ξ′b = Ξb and

where Fb(ṙ1) is still to be determined from the remaining conditions. From one of

the above conditions we get g1bb = −gbb/ṙ1 (since gbbb = 0), so

dFb
dṙ1

= −Fb
ṙ1

,

from which Fb = Cb/ṙ1, with Cb a constant, and thus gbb = Cb exp(−ξb)/ṙ1. There-

fore, from the algebraic conditions, g1b = −(gbb/ṙ1)q̇b = −Cb exp(−ξb)q̇b/ṙ2
1, and thus

g11b = 2Cbq̇b exp(−ξb)/ṙ3
1. With this, the first ∇-condition becomes

g′11 +
∑
b

Cb exp(−ξb)ξ′b
q̇2
b

ṙ3
1

= 0,

and thus

g11 =
∑
b

Cb exp(−ξb)
q̇2
b

ṙ3
1

+ C(ṙ1, q̇b).
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Given that g11b = 2Cbq̇b exp(−ξb)/ṙ3
1, we can now determine the q̇b-dependence of C.

We simply get

g11 =
∑
b

Cb exp(−ξb)
q̇2
b

ṙ3
1

+ F1(ṙ1).

Notice that g111 does not show up explicitly in the conditions or in the derived

conditions. Therefore, there will always be some freedom in the g11-part of the

Hessian, represented here by the undetermined function F1(ṙ1).

Up to a total time derivative, the most general Lagrangian whose Hessian gij =

∂2L

∂q̇i∂q̇j
is the above multiplier, is then:

(4.23) L = ρ(ṙ1) +
1

2

∑
b

Cb exp(−ξb)
q̇2
b

ṙ1

,

where d2ρ/dṙ2
1 = F1. One can easily check that the Lagrangian is regular as long as

d2ρ/dṙ2
1 is not zero, and as long as none of the Cb are zero. We also note that the

Lagrangian is only defined on the whole tangent space if Cb = 0 (and ρ is at least

C2 everywhere). We can therefore only conclude that there is a regular Lagrangian

(with the ansatz gbbb = 0) on that part of the tangent manifold where ṙ1 6= 0. As

a consequence, the solution set of the Euler-Lagrange equations of the Lagrangian

(4.23) will not include those solutions of the second-order system (4.16) where ṙ1 = 0,

which is why we will exclude them from our formalism. In the case of the vertically

rolling disk, for example, these solutions are the special straight line solutions.

Recall that at the beginning of this section, we made the assumptions that Φa
a 6= 0

and Φa
a 6= Φb

b. Suppose now that one of these assumptions is not valid, say Ξ2 = 0

and therefore Φ2
2 = 0. Then, among the algebraic Helmholtz conditions there will no

longer be a relation in (4.21) that relates g22 to g12. In fact, since the gij now need to

satisfy only a smaller number of algebraic conditions, the set of possible Lagrangians
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may be larger. We can, of course, still take the relation

(4.24) q̇2g22 = −ṙ1g12

as an extra ansatz (rather than as a condition) and see whether there exist La-

grangians with that property. By following the same reasoning as before, we easily

conclude that the function (4.23) is also a Lagrangian for systems with Φ2
2 = 0. In

fact, it will be a Lagrangian if any of the assumptions is not valid.

Apart from (4.24), we are, of course, free to take any other ansatz on g12 and g22.

If we simply set

g12 = 0,

it can easily be verified that

(4.25) L = ρ(ṙ1) + σ(ṙ2) +
1

2

(∑
α

aα exp(−ξα)
ṡ2
α

ṙ1

)

is also a Lagrangian for a system (4.20) with Ξ2 = 0 (where, as usual, (qa) = (r2, sα)).

Moreover, it is regular as long as both d2ρ/dṙ2
1 and d2σ/dṙ2

2 do not vanish. We can

thus summarize the results of this section as the following Proposition.

Proposition IV.1. The function

(4.26) L = ρ(ṙ1) +
1

2N

(
C2
ṙ2

2

ṙ1

+
∑
β

Cβ
ṡ2
β

Aβ ṙ1

)
,

with d2ρ/dṙ2
1 6= 0 and all Cα 6= 0 is a regular Lagrangian for the associated systems of

type II given by (4.15). Moreover, if the invariant measure density N is a constant,

then

(4.27) L = ρ(ṙ1) + σ(ṙ2) +
1

2N

∑
β

aβ
ṡ2
β

Aβ ṙ1

,

where d2ρ/dṙ2
1 6= 0, d2σ/dṙ2

1 6= 0 and all Cα 6= 0, is also a regular Lagrangian for the

associated systems of type II given by (4.15).
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Proof. For associated systems of type II, the second-order equations (4.20) are of the

form (4.15). One easily verifies that in that case

(4.28) ξ2 = lnN and ξα = ln(NAα)

are such that ξ′a = Ξa. The Lagrangian (4.26) is then equal to the one given by

(4.23). For a system with constant invariant measure N we get that Ξ2 = 0 and

therefore the function (4.25) is a valid Lagrangian.

4.2.3 Lagrangians for Associated Second-Order Systems of Type III

In Section 4.1.1 we described the associated second-order system of type III

(4.7) for the example of the vertically rolling disk. That complicated system ac-

tually results from a comparison of the variational nonholonomic and the Lagrange-

d’Alembert nonholonomic equations of motion which will be the subject of Chapter

V. Thus, we will defer the details of how the system was obtained until Chapter

V, but note here that we will see there that, adapted to our current needs, the

Lagrangian

LV := L−
∑
α

∂L

∂ṡα
(ṡα + Aαṙ2)

=
1

2
(I1ṙ

2
1 + I1ṙ

2
1 −

∑
α

Iαṡ
2
α)−

∑
α

AαIαṡαṙ2,(4.29)

produces the Euler-Lagrange equations in normal form given by

r̈1 = −
(∑

β

IβA
′
β ṡβ
)
ṙ2,

r̈2 = −N2
(∑

β

IβAβA
′
β

)
ṙ1ṙ2 +

(∑
β

IβA
′
β ṡβ
)
ṙ1,

s̈α = −
(
A′α −N2Aα

(∑
β

AβA
′
β

))
ṙ1ṙ2 − Aα(

∑
β

IβA
′
β ṡβ)ṙ1.(4.30)
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Although in general these systems are not associated to our class of nonholonomic

systems, that is, the restriction of their solutions to the constraint manifold ṡα =

−Aαṙ2 are not necessarily solutions of the nonholonomic equations (4.11), in case

the invariant measure density N is a constant, we have that
∑

β IβAβA
′
β = 0. As

a consequence, all the terms in the equations (4.30) that contain
∑

β IβA
′
β ṡβ vanish

when we restrict those equations to the constraint manifold and the equations in

s̈α integrate to the equations of constraint (4.10). The restriction of the equations

(4.30) is therefore equivalent with the nonholonomic equations (4.11). This proves

the following.

Proposition IV.2. If N is constant, the equations (4.30) form an associated second-

order system and, by construction, they are equivalent to the Euler-Lagrange equa-

tions of the variational nonholonomic Lagrangian LV .

4.3 Hamiltonian formulation and the Constraints in Phase Space

In the situations where we have found a regular Lagrangian, the Legendre trans-

formation leads to an associated Hamiltonian system. Since the base solutions of the

Euler-Lagrange equations of a regular Lagrangian are also base solutions of Hamil-

ton’s equations of the corresponding Hamiltonian, the Legendre transformation FL

will map those solutions of the Euler-Lagrange equations that lie in the constraint

distribution D to solutions of the Hamilton equations that belong to the constraint

manifold M = FL(D) in phase space. Recall however that the Lagrangians for

the associated second-order systems of type II (and their Legendre transformation)

were not defined on ṙ1 = 0, and thus will also be the case with the corresponding

Hamiltonians.

Now, for convenience let us choose ρ(ṙ1) = 1
2
I1ṙ

2
1 and σ(ṙ2) = 1

2
I2ṙ

2
2 in the La-
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grangians of Proposition IV.1. Then we have the following.

Proposition IV.3. Given the associated second-order system of type II (4.15), the

regular Lagrangian (4.26) (away from ṙ1 = 0) and constraints (4.10) on TQ are

mapped by the Legendre transform to the Hamiltonian and constraints in T ∗Q given

by:

(4.31) H =
1

2I1

(
p1 +

1

2
N

(
p2

2

C2

+
∑
β

Aβ
p2
β

Cβ

))2

, C2pα = −Cαp2.

In case N is constant, the second Lagrangian (4.27) and constraints (4.10) are trans-

formed into

(4.32) H =
1

2I2

p2
2 +

1

2I1

(
p1 +

1

2
N

(∑
β

Aβ
aβ
p2
β

))2

, I2Nṙ1pα + aαp2 = 0,

where ṙ1(r1, p1, pα) = (p1 + 1
2
N
∑

αAαp
2
α/aα)/I1.

Proof. The Legendre transformation for the Lagrangian (4.23) gives

(4.33) p1 = I1ṙ1 −
1

2

∑
b

Cb exp(−ξb)
q̇2
b

ṙ2
1

, pb = Cb exp(−ξb)
q̇b
ṙ1

,

from which one can easily verify that the corresponding Hamiltonian is

(4.34) H =
1

2I1

(
p1 +

1

2

∑
b

exp(ξb)
p2
b

Cb

)2

.

In the case of the associated second-order systems of type II in the form (4.15), the

ξa take the form (4.28) and we obtain the Hamiltonian in expression (4.31). From

(4.33) we can then compute the constraint manifold M in phase space. Since now

p2 = C2
ṙ2

Nṙ1

and pα = Cα
q̇α
Nṙ1

,

the constraints (4.10) can be rewritten as

ṙ1

(
pα
Cα

+
p2

C2

)
= 0,
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where ṙ1 = 1
I1

(p1 + 1
2
N(p2ṙ

2
2/C2 +

∑
β Aβp

2
β/Cβ)). Assuming as always that ṙ1 6= 0

yields the constraint manifold C2pα = −Cαp2 for all α in phase space.

An analogous calculation with the Lagrangian (4.27) gives the Hamiltonian and

the constraints in (4.32), in the case where N is constant.

As mentioned in the Introduction, the authors in [1] Hamiltonized two nonholo-

nomic systems in their paper by using the explicit solutions to the nonholonomic

equations of motion. A quick application of the above shows that we can now derive

their Hamiltonians from Proposition IV.3. As perhaps the simplest example, note

that with (r1, r2, sα) = (x, y, z), by taking C2 and C3 both to be 1 and A(r1) = x, we

recover the Hamiltonian and the constraint that appears in [1] for the nonholonomic

free particle.

For the rolling disk the first Hamiltonian (4.31) is

H =
1

2J

(
pϕ +

1

2
√
I +mR2

(
p2
θ

C2

− cos(ϕ)p2
x

C3

−
sin(ϕ)p2

y

C4

))2

,

and C2px = −C3pθ and C2py = −C4pθ for the constraints. However, these are

not the Hamiltonian and the constraints that appear in [1] though. Instead the

Hamiltonian and the constraints in [1] are in fact those that are associated to the

second Hamiltonian (4.32), with, for example, a3 = a4 = −J/
√
I +mR2:

H =
1

2I
p2
θ +

1

2

(
pϕ +

1

2
p2
x cos(ϕ) +

1

2
p2
y sin(ϕ)

)2

,

and the constraints are

ϕ̇px = pθ, ϕ̇py = pθ,

where ϕ̇ = pϕ + 1
2

cos(ϕ)p2
x + 1

2
sin(ϕ)p2

y or, equivalently,

px − py = 0, ϕ̇px − pθ = 0,

as they appear in [1].
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Proposition IV.3 yields the main results of our application of the methods of the

inverse problem to our goal of Hamiltonization for the class of nonholonomic systems

given by (4.11). As we shall see in Chapter VII, we can apply these results to many of

the well-known nonholonomic systems and obtain a Hamiltonization which can prove

useful for a number of applications (see Chapter VIII). Now, the ṙ1 6= 0 restriction

of the Proposition allows a degree of freedom which manifests itself as the family

of Lagrangians obtained in Proposition IV.1. Although this restriction may not be

relevant depending on the application of the results, it stands in contrast to the results

of Proposition IV.2 where Hamiltonization is accomplished without any restrictions

on the velocity of the system. Having seen the computational difficulties in obtaining

explicit results by applying the Helmholtz conditions to even our simplified class of

nonholonomic systems (4.11), the investigation of the content of Proposition IV.2 in

a more general context will occupy the body of the next chapter.



CHAPTER V

Variational Nonholonomic Systems and Hamiltonization

In Chapter IV we investigated the Hamiltonization of the class of nonholonomic

systems (4.11) by introducing the idea of associated systems and applying the inverse

problem to them. For the first two types of associated systems we provided rules for

their construction but did not discuss how to arrive at a general associated system

of type III. The reason is that these systems arise from a comparison of the vari-

ational nonholonomic equations (3.10) and the nonholonomic Lagrange-d’Alembert

equations (3.6)-(3.7) of Chapter III. Unlike Chapter IV, where we associated second-

order systems to nonholonomic equations and applied the techniques of the inverse

problem to derive the Lagrangian (and the Hamiltonian), here we start from a spe-

cific Lagrangian (the variational nonholonomic Lagrangian LV in (3.9) of Section

3.4) and investigate the conditions under which its variational equations match the

nonholonomic equations. Before we begin, we recall the index conventions of Section

2.4, where a, b, c = 1, . . . , k, α, β, γ = 1, . . . ,m, where m = n − k and n = dim(Q),

with k the number of nonholonomic constraints. We also introduce the uppercase

Roman indices I, J,K which range from 1 through n.

53



54

5.1 The Constrained Variational Nonholonomic Equations

Let us set q = (r, s) as in Chapter III, considering the r and s equations separately

and recalling the fundamentals of variational nonholonomic systems from Section 3.4.

Writing EI for the Euler-Lagrange operator in the I-th coordinate, we can rewrite

(3.10) as

Eα(L) = µ̇aA
a
α + µa

(
d

dt
(Aaα)−

∂Aaβ
∂rα

ṙβ
)
,(5.1)

Ea(L) = µ̇a − µb
∂Abα
∂sa

ṙα,(5.2)

and substituting µ̇a from (5.2) into (5.1), we get

(5.3) Eα(L) = AaαEa(L) + µaB
a
αβ ṙ

β.

One can then show [6] that by the definition of the constrained Lagrangian, (5.3)

can be re-written in the more suggestive form:

(5.4) Eα(Lc) =

(
µa −

∂L

∂ṡa

)
Ba
αβ ṙ

β − Aaα
∂Lc
∂sa

.

These along with the constraint equations (3.7) form the equations of motion for

the constrained variational nonholonomic system, and a simple comparison of (5.4)

and (3.6) reveals the extra term 〈µ,B(q̇, δq)〉, from which our analysis of the condi-

tions under which the two equations of motion coincide will be based.

We should also point out that one can equivalently express the dynamics of vari-

ational nonholonomic systems directly in terms of the constrained Lagrangian Lc,

without considering the Lagrangian equations on the full space Q̃ as we have done
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in (5.1)-(5.2) (see [27]). However, as we shall see in Section 5.2.2, equation (5.2) will

lead to an a priori determination of the multipliers µa(t).

5.2 Conditionally Variational Nonholonomic Systems

In order to specify a unique solution to the variational nonholonomic problem,

one must not only specify the initial values (q0, q̇0), but also the initial values of the

multipliers µ0. However, as we shall see, for certain initial values of the multipliers

the trajectories obtained by solving (3.6) and (5.4) will coincide. In some cases, only

some of the nonholonomic trajectories will coincide with variational trajectories, and

in other cases all the nonholonomic trajectories will coincide with variational ones.

To make these ideas more precise, we make the following definition.

Definition V.1. Consider the nonholonomic system (3.6)-(3.7) with initial condi-

tions (q0, q̇0) and the associated variational nonholonomic system (5.4), (3.7) with

initial conditions (q0, q̇0, µ0), where (q0, q̇0) satisfies the constraints (3.7). We make

the following definitions:

(1) We shall say that the nonholonomic system is conditionally variational if for ev-

ery initial condition (q0, q̇0) there exists an initial condition µ0 such that the solution

to (3.6)-(3.7) with initial condition (q0, q̇0) is the same as the solution to (5.4), (3.7)

with initial condition (q0, q̇0, µ0).

(2) We will call a nonholonomic system partially conditionally variational if there

exist some trajectories of the nonholonomic system which are also trajectories of the

variational nonholonomic system, i.e. if there exist some initial data (q0, q̇0) for which

there exist µ0 such that the solution to (3.6)-(3.7) with initial condition (q0, q̇0) is

the same as the solution to (5.4), (3.7) with initial condition (q0, q̇0, µ0).
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Remark V.2. A nonholonomic system which is conditionally variational can thus be

seen as a variational nonholonomic system with Lagrangian (3.9) and initial condition

µ0. We shall say more about the specifics of how to choose µ0 in Proposition V.5

below.

5.2.1 The Equivalence Conditions

The actual conditions under which the nonholonomic system would be (in our

nomenclature) conditionally variational were originally stated in [80]. There the

author shows that the necessary and sufficient conditions for the equivalence between

the two formalisms, in the notation adopted here, are:

(5.5) µaEJ(φa)δqJ = 0.

These conditions are stated more in the language of analytical mechanics, and for our

purposes we wish to have a more geometric and global view of them. The equivalent

geometric condition we shall come to has already been hinted at near the end of

Section 5.1, where we observed the difference in the two formalisms to depend on

the multipliers and the curvature.

To that end, we can geometrize these conditions by first using the constraints

(3.7) to relate (5.5) to the curvature (3.8) of the Ehresmann connection A:

EJ(φa) dqJ = Ba
αβ ṙ

βdrα = dωa(q̇, ·).(5.6)

Moreover, contracting with the vector δqJ∂qJ and pre-multiplying by µa gives:

(5.7) µaEJ(φa)δqJ = µadω
a(q̇, δq).
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Comparing the right hand side of the preceding with the vertical-vector-valued-two-

form definition of curvature given in (3.8), we arrive at the geometric necessary and

sufficient conditions for a nonholonomic system to be conditionally variational (see

also [34]):

Proposition V.3. The nonholonomic system (3.6)-(3.7) is conditionally variational

with Lagrangian (3.9) if and only if

(5.8) 〈µ,B(q̇, δq)〉 = 0.

Remark V.4. Since the curvature is vertical-vector-valued, Proposition V.3 intu-

itively says that a nonholonomic system is conditionally variational whenever the

one-form µ = µads
a is annihilated by B(q̇, δq). In the two degree of freedom case

(m = n − k = 2) with k constraints, (5.8) reads µaB
a
12q̇

2 = −µaBa
12q̇

1 = 0, and in

this special case these two conditions are satisfied if and only if Λ := µaB
a
12 = 0. We

shall call the conditions (5.8) the equivalence conditions, as originally named in [80].

Verifying (5.8) is often impractical though, since the conditions depend on the

variational nonholonomic multipliers which are a priori unknown, thus requiring

one to solve the variational dynamics explicitly. Below we will show how to remove

this need in special cases, in addition to showing how to determine equivalence in

some cases by simple inspection of the nonholonomic system.

5.2.2 Abelian Chaplygin Systems

Suppose now that we are considering an abelian Chaplygin nonholonomic system

from Section 3.6.1. The curvature (3.8) then simplifies to just the difference of the

first two terms, and the last term on the right hand side of (3.6) also vanishes. Thus,

the equations of motion (3.6) reduce to the simpler form
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(5.9) Eα(Lc) = Fγαβ ṙ
γ ṙβ,

where the Fγβα are the components of Λαβ from (3.20), i.e. Λαβ = (gbγ−gbaAaγ)Bb
βαṙ

γ =:

Fγβαṙ
γ. In this modified form, it becomes easier to state the first main result:

Proposition V.5. Suppose the nonholonomic system (3.6)-(3.7) is (abelian) Chap-

lygin. Then we have the following:

(1) The variational nonholonomic multipliers are given by:

(5.10) µa =

(
∂L

∂ṡa

)
c

+ Ca, a = 1, . . . , k,

where the subscript denotes that we have used the constraints to eliminate the ṡb, and

where the Ca are integration constants.

(2) The system is conditionally variational if and only if the constrained nonholo-

nomic equations (3.6) are Lagrangian.

(3) The property of being conditionally variational is unaffected by the addition of a

potential function dependent on only the coordinates.

(4) The equivalence condition (5.8) reduces to the following conditions:

Fααβ = 0 ∀α 6= β,(5.11)

Fαβγ + Fβαγ = 0 for each γ, ∀α < β, α, β 6= γ.(5.12)

Consider now a general nonholonomic system (not necessarily Chaplygin). Then:

(5) Such a system with three generalized coordinates and one constraint is not con-

ditionally variational.
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Proof. For (1), consider the vakonomic momentum pVa := ∂LV /∂ṡ
a = (∂L/∂ṡa)−µa,

and note that ∂L/∂sa = 0 by the abelian Chaplygin assumption. Then by (5.2) we

have ṗVa = 0, from which the claim follows by integration and substitution of the

constraints (see also Remark 1 below).

For (2), the reduced equations (5.9) are Lagrangian when the right hand side

vanishes, which happens when Λαβ ṙ
β = 0 ∀α. These are precisely the conditions (5.8)

after taking into account (5.10). Conversely, suppose that the system is conditionally

variational. Then by (5.8) the constrained equations (5.9) are Lagrangian.

For (3), simply note that if the added potential V is independent of q̇, then the

multipliers µa from Part (1) of the Proposition are unchanged, and so is condition

(5.8). Thus, the system remains conditionally variational provided it was originally

conditionally variational.

For (4), using (2) the system is conditionally variational when the right hand side

of (5.9) vanishes. Since the Fγβα are only functions of rα, and Fαββ = 0 ∀α, β, these

together imply that the coefficients of the products ṙγ ṙβ must vanish as stated.

For (5), by way of contradiction suppose it is conditionally variational. Then this

means that (5.8) reads µB12 = 0 (taking into account Remark V.4). By assumption,

the system is nonholonomic, meaning that it is not variational, so that µ is nonzero.

Thus, the condition reduces to B12 = 0, which means that the system must actually

be holonomic, in contradiction.

Remarks :

1. Part (5) applies in the Chaplygin case as well. As such, it prevents some

well-known nonholonomic systems from being conditionally variational simply by in-

spection: the knife edge, the Chaplygin sleigh, the Heisenberg free particle, and the
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Euler-Poincaré-Suslov system on SO(3) (for details see [6]), to name a few.

2. Part (1) of the Proposition allows one to determine the variational nonholo-

nomic multipliers explicitly without having to solve the variational problem first.

However as we noted in our definition of conditionally variational, these multipliers

require initial conditions to be specified uniquely. To obtain the most general choice

of the initial conditions on the µa that maintain the conditionally variational property

we substitute (5.10) into (5.8). We see at once that one needs µa(0) = (∂L/∂ṡa)c(0)

∀a such that Ba
αβ 6= 0, and µa(0) may be chosen arbitrarily for each a such that

Ba
αβ = 0 ∀α, β.

3. The previous remark, along with conditions (5.8), now allows us to characterize

conditionally variational systems in terms of the Λαβ from (3.20). Namely, the two

statements imply that to be conditionally variational requires Λαβ = 0 ∀α, β.

4. Part (2) gives perhaps the simplest way to identify conditionally variational

systems in the abelian Chaplygin case if we already know the system’s constrained

equations of motion.

5. Although verifying the conditions of Part (4) might be complex, the two degree

of freedom case falls under Remark V.4, which is simpler to handle. Moreover, for a

three degree of freedom system it leaves 9 conditions in (5.12) to be checked.

6. Although not part of Proposition V.5, it should be clear that given a condi-

tionally variational nonholonomic system, if we add extra (constrained) coordinates

sb to its Lagrangian L and the extra constraints satisfy Bb
αβ = 0 ∀ α, β, then the new

system will still be conditionally variational. This happens to be the case for the the

two-wheeled carriage (see [38]).
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5.2.3 Non-Abelian Chaplygin Systems

To derive the analogue of Proposition V.5 for nonabelian Chaplygin systems, we

need the reduced constrained variational equations. As in the abelian Chaplygin case,

we define the variational nonholonomic reduced Lagrangian lV = l − µa(ξ − Aq̇)a.

Then the Euler-Lagrange equations are [23, 68]:

d

dt

(
∂l

∂ξ
− µ

)
= ad∗ξ

(
∂l

∂ξ
− µ

)
,

Eα(lc) = 〈µ− ∂l

∂ξ
,B〉α,(5.13)

along with (3.19).

We can now compare these equations with (3.18) and write the analogue of Propo-

sition V.5 in this context. However, due to the non-abelian character of the system,

some aspects of Proposition V.5 no longer hold.

Corollary V.6. Suppose that we have a non-abelian Chaplygin system given by

(3.18)-(3.19) for which the right hand side of (3.18) vanishes. Then a solution to

(3.18)-(3.19) with initial condition (q0, ξ0) is also a solution to the variational non-

holonomic system (5.13) with

(5.14) µb =
∂l

∂ξ
+ Cb,

and initial condition (q0, ξ0, µ0), where µ0 and Cb are subject to Remark 2 of Section

5.2.2. Moreover, under this condition Part (3) of Proposition V.5 holds when the

added potential is independent of ξ.

Proof. Suppose that the right hand side of (3.18) vanishes and consider a solution

to the non-abelian system (3.18)-(3.19) with initial condition (q0, ξ0). Then the
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condition (5.8) with µb chosen as above, taking into account Remark 2 of Section

5.2.2, is satisfied. Thus, the solution to (3.18) is also a solution to (5.13) with µ as in

(5.14) and µ0 and Cb subject to Remark 2 of Section 5.2.2. Moreover, the last part

of the Corollary follows by again observing that (5.8) is independent of the potential

so long as the potential is independent of ξ.

Clearly nonabelian Chaplygin systems are more complicated than their abelian

counterparts. For example, Part (1) of Proposition V.5 no longer applies, and here

the variational multipliers are not given by the fiber derivative a priori. However,

Corollary V.6 provides one with an alternative to solving the variational nonholo-

nomic nonabelian problem to check for equivalence. The Corollary shows that if one

can find a nonabelian Chaplygin system whose constrained reduced Euler-Lagrange

equations are Lagrangian, then we can view its nonholonomic solutions with initial

conditions (q0, ξ0) as variational solutions to (5.13) with initial conditions (q0, ξ0, µ0),

taking into account Remark 1 of Section 5.2.2 and (5.14).

5.2.4 Eliminating the Multipliers

We have defined and explored the idea of a nonholonomic system being condi-

tionally variational in the preceding sections, but in the process have sacrificed the

regularity of the new Lagrangian LV , as we pointed out in Section 2.5. Thus, so far

the variational system with Lagrangian LV fails to describe the nonholonomic sys-

tem via a regular Lagrangian, even though it describes it in terms of the dynamics

both formalisms produce for certain initial data. However, we shall see below that

this regularity may be regained in the abelian Chaplygin case by using a Lagrangian

which is only a function of (q, q̇) by eliminating the multipliers through Part (1) of

Proposition V.5.
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Suppose then that we again have an abelian Chaplygin nonholonomic system

with regular mechanical Lagrangian and consider the following modification of the

variational Lagrangian (3.9):

(5.15) LV = L− ∂L

∂ṡa
φa.

Computing the Euler-Lagrange equations for the r and s variables gives:

0 = Eα(LV ) = Eα(L) +
∂L

∂ṡa
Ba
βαṙ

β − Aaα
(
∂L

∂ṡa

)·
+

[
∂2L

∂rα∂ṡa
φa − (gαaφ

a)·
]
,

=⇒ Eα(Lc) = (gαaφ
a)· − ∂2L

∂rα∂ṡa
φa, and 0 = Ea(LV ) =

(
gabφ

b
)·
,(5.16)

=⇒
(
gabφ

b
)

(t) = gab(0)φb(0),(5.17)

We now see that if the constraints are satisfied initially (as they must be), and gab

is invertible as a sub-matrix of g, then the constraints φa are satisfied for all subse-

quent times. If in addition we know that the the right hand side of the α equations in

(5.16) vanishes, then the constrained Euler-Lagrange equations are Lagrangian and

by Proposition V.5, Part (2) we would then know that the abelian nonholonomic

Chaplygin system under consideration is actually conditionally variational with La-

grangian given by (5.15). Moreover, we can easily compute the Hessian of LV to be

the matrix

(5.18) Hess(LV ) = gVIJ =

 gαβ − gαaAaβ − gβaAaα −Aaαgab

−gacAcα gab

 ,

which is not automatically singular, as was the case for the L(q, q̇, µ; t) Lagrangian

(3.9). The preceding computations prove the following.
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Proposition V.7. Suppose that an abelian Chaplygin nonholonomic system with

regular Lagrangian is known to be conditionally variational, and that in addition

the sub-matrix gab is invertible. Then the nonholonomic mechanics can be derived

from Hamilton’s principle by using the Lagrangian (5.15) and with the initial data

satisfying the constraints (3.7).

Before discussing Proposition V.7, we should mention that its origins are rooted

in momentum conservation. Assuming the Hessian (5.18) is invertible we can effect

the Legendre transform and define H : T ∗Q→ R as usual:

(5.19) HV (pI , q
I) = pI q̇

I − LV .

We can then examine the momenta conjugate to the s variables:

(5.20) pa := (FLV )a =
∂LV
∂ṡa

= gabφ
b,

and from here it is clear that (5.17) is nothing but the a statement of conservation of

momenta. However, Proposition V.7 shows us that additional conditions are required

to translate this conservation of momentum into a statement about the preservation

of the constraints throughout the motion. Moreover, it enables the description of

conditionally variational nonholonomic systems without the use of the variational

multipliers, hence possibly regaining regularity in the instances in which (5.18) is

invertible. In fact, one such instance where (5.18) is nonsingular is the vertical

rolling disk (see Chapter VII).

The Proposition also allows one to re-interpret conditionally variational systems

as Hamiltonian systems restricted to certain subsets of phase space. This is because
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whenever the hypotheses of the Proposition are satisfied, (5.20) shows that enforcing

the constraints is the same as setting pa to zero. Thus, in these cases we can compute

the Hamiltonian mechanics based on (5.19) and restrict to the submanifolds of T ∗Q

defined by pa = 0 to recover the nonholonomic mechanics. In fact, this exactly turns

out to be the case for the vertical disk (see Chapter VII). This interpretation also

allows us to compare with the results of Proposition IV.3 of Section 4.4.

The final main idea to emphasize is that Proposition V.7 Hamiltonizes the entire

nonholonomic system (constrained mechanics plus the kinematic constraints), and

does so in some cases (the vertical disk being one) with a regular Lagrangian on TQ

(i.e. without the use of Lagrange multipliers in an extended space).

5.3 Conditionally Variational Systems, Hamiltonization and Invariant
Measures

As we saw in Section 3.4, variational nonholonomic dynamics can be derived from

Hamilton’s principle using the augmented Lagrangian (3.9). Hence, since the result-

ing system is Hamiltonian, it naturally preserves any non-zero constant multiple of

the associated standard measure. However, intuitively nonholonomic systems which

do possess invariant measures are in some sense closer to Hamiltonian systems and

thus we expect them to be closer in structure to variational systems. Indeed we

shall see below that in certain cases, having an invariant measure will render a non-

holonomic system conditionally variational, and also Hamiltonize the nonholonomic

system.

5.3.1 Conditionally Variational systems and Invariant Measures

Recall that Remark 3 from Section 5.2.2 tells us when an abelian Chaplygin

system is conditionally variational, and it is clear from that Remark and (3.32)
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that nonholonomic systems with nonconstant measure densities cannot hope to be

conditionally variational. Although this restricts the set of possible systems, the

vertical rolling disk possesses a constant density invariant measure, and we shall

make use of this in Chapter VII. However, as we shall see below having a constant

invariant measure density is not sufficient for an abelian Chaplygin system to be

conditionally variational.

Proposition V.8. Suppose that the nonholonomic system (3.6)-(3.7) is an abelian

Chaplygin system with an invariant measure with constant density N . Then the

system satisfies:

(5.21) Kα
αβ = 0.

In addition, if the system has two constraints and:

(a) Two degrees of freedom, it is also conditionally variational.

(b) Three degrees of freedom1, if R3
2, R

3
1, R

2
1 6= 0 and the system satisfies the conditions

(5.11), which in this case become:

F112 = F113 = F221 = F223 = F331 = F332 = 0,(5.22)

then it is also conditionally variational. For each of the aforementioned Rα
γ which

are zero we must add to (5.22) the condition Fγαβ + Fαγβ = 0, for γ 6= α 6= β. Also,

for each Rα
α which is zero, we may omit the conditions Fγγβ, γ 6= β from (5.22).

Proof. Firstly, we have from (3.32) that having an invariant measure of constant

density gives Kα
αβ = 0. Now, for the two degree of freedom case of Part (a), (3.32)

becomes (writing Λ := Λ12):
1Recall the definition of the Rαβ from Section 3.5.
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1

N

∂N

∂r3
− ∂Λ

∂p̃4

= 0,

1

N

∂N

∂r4
+
∂Λ

∂p̃3

= 0.(5.23)

However, from (3.29) we see that in general Λαβ =
∂Λαβ
∂p̃γ

p̃γ. Applying this here, we

see at once that

Λ =
∂Λ

∂p̃3

p̃3 +
∂Λ

∂p̃4

p̃4,

=⇒ Λ =
1

N

(
p̃4
∂N

∂r3
− p̃3

∂N

∂r4

)
,(5.24)

where the last line follows by (5.23). By assumption of constant N (5.24) then

shows that Λ vanishes, which by Remark 3 of Section 5.1.2 implies that the system

is conditionally variational.

For Part (b), note that for the three degree of freedom case we can write out

(5.12) by using the symmetry of g̃:

R3
2 (F231 + F321) = −

[
R2

1F121 +R3
1F131 +R2

2F221 +R3
3F331

]
,(5.25)

R3
1 (F132 + F312) = −

[
R1

1F112 +R1
2F212 +R3

2F232 +R3
3F332

]
,(5.26)

R2
1 (F123 + F213) = −

[
R1

1F113 +R2
2F223 +R1

3F313 +R2
3F323

]
.(5.27)

The parenthetical quantities are precisely (5.12) for the three degree of freedom

case, and vanish precisely under the assumptions (5.22), by using Fγαβ = −Fγβα.

Moreover, it is clear that for each Rγ
α in (5.25)-(5.27) which is zero we must add the

extra conditions as stated in Part (b).

Remark V.9. A similar result to Part (b) holds for the greater than three degree of

freedom case, and also for the k > 2 case but isn’t very computationally useful.
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5.3.2 Hamiltonization and Conditionally Variational Systems

As discussed in the Introduction, another method which has been used with great

success to Hamiltonize nonholonomic systems is Chaplygin’s Reducing Multiplier

Theorem. Having quantified the exact relationship between conditionally variational

systems and their invariant measures in the previous section, we are now in a position

to relate conditionally variational systems to the process of Chaplygin Hamiltoniza-

tion.

Proposition V.10. Suppose that the constrained abelian Chaplygin nonholonomic

system (3.6)-(3.7) has two degrees of freedom. Then if the system is conditionally

variational, it is also Chaplygin Hamiltonizable. Also, if the system is Chaplygin

Hamiltonizable with constant measure density, then it is also conditionally varia-

tional.

Proof. This follows directly from Chaplygin’s reducibility theorem (see Theorem 1.2

in [35]) and Part (a) of Proposition V.8.

Proposition V.10 gives the first relationship between two as yet unrelated av-

enues that both attempt to recover nonholonomic mechanics in Hamiltonian form.

The main advantage is contained in its second statement, for there are numerous

examples of abelian Chaplygin systems which are Hamiltonizable [18] and whose in-

variant measure densities are explicitly known. By considering particular values of

the system parameters (i.e. moment of inertia, mass, etc.) we can then extract the

constant measure density cases, and in the two degree of freedom case then express

the nonholonomic system as a conditionally variational one thanks to Proposition

V.10. Moreover, within the context of Chapter IV, we now see that Prop IV.2

of Section 4.2.3 shows that the system (4.11) is conditionally variational whenever
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∑
β AβA

′
β = 0, with LV given by (4.29).

The restriction of constant invariant measure leaves little freedom to consider the

Hamiltonization some of the other well-known nonholonomic systems through the

methods in this chapter though. For this reason, we shall now turn our attention to

extending Chaplygin’s Theorem to arbitrary degrees of freedom (in addition to, in

some cases, removing the restriction that the system possess an invariant measure)

and thereby arrive at a more general formulation of conditionally variational systems.



CHAPTER VI

Hamiltonization through a Generalization of a Theorem of
Chaplygin

6.1 Chaplygin Hamiltonization

To begin the generalization of Chaplygin’s Theorem, we note that one can view

Chaplygin’s time reparametrization dτ = N(r)dt from the Introduction in a dif-

ferent way as follows: we have ṙ = dr/dt = N(r)(dr/dτ) =: N(r)ω, which de-

fines the quasivelocities ω on M = Q/G. Thus, instead of considering which time

reparametrization Hamiltonizes our system, we can rephrase the problem as one of

finding a set of quasivelocities which enables one to rewrite the nonabelian Chaply-

gin equations (3.18) in terms of a Poisson bracket, or which enables one to write the

Euler-Poincaré-Suslov equations (3.25) in terms of the (minus) Lie-Poisson bracket.

To that end, we need to express the almost-Poisson brackets (3.22), (3.28) in terms

of the quasivelocities ω, to which we now turn.

6.1.1 Chaplygin Hamiltonization of Chaplygin Systems

Proposition VI.1. Consider a Chaplygin nonholonomic system (L,G,D) with me-

chanical Lagrangian L = T−V , and define the quasivelocities ω through ṙα = f(r)ωα,

where f is a never zero, smooth function, and let j̃ be the map j̃ : (r, ω) 7→ (r, ṙ).

Further, suppose that the constrained reduced Lagrangian lc has an invertible kinetic

70
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energy metric. The constrained reduced nonholonomic equations (3.6) in the qua-

sivelocities then become:

(6.1)
d

dt

(
∂Lc
∂ω

)
− f ∂Lc

∂r
=

[
ω,
∂Lc
∂ω

]∗
− 〈(FL)c,B(ω, f∂r)〉,

where Lc(r, ω) = j̃∗lc, (FL)c = j̃∗(Fl)c, and where [·, ·]∗ is the dual of the Jacobi-Lie

bracket. Moreover, defining the conjugate momenta Pα = ∂Lc/∂ωα and the map

j : (r,P) 7→ (r, p) we can define the Hamiltonian Hc := j∗hc = ωαPα − Lc|ω→P and

use it to obtain the quasi-Hamiltonian version of (6.1):

(6.2) ṙα = f{rα,Hc}′AP , Ṗβ = f{Pβ,Hc}′AP ,

where {·, ·}′AP (r,P) := (1/f)j∗{·, ·}AP (r, p) (recall (3.22)) is the almost-Poisson

bracket given by:

(6.3) {G,K}′AP (r,P) = {G,K}can(r,P) +
1

f

(
fKε

βα − Cε
αβ

)
Pε

∂G

∂Pα
∂K

∂Pβ

for any two functions G,K : T ∗Q → R, where the Cε
αβ are defined in (6.9) and the

Kε
βα were defined in (3.29). Here T ∗Q = j∗T ∗Q and {G,K}can(r,P) is defined as

(6.4) {G,K}can(r,P) :=
∂G

∂rα
∂K

∂Pα
− ∂G

∂Pα
∂K

∂rα
.

Proof. Let us begin with equations (3.18), expressed as:

(6.5)

(
d

dt

∂lc
∂ṙα
− ∂lc
∂rα

+

(
∂l

∂ξa

)
c

Baαβ ṙβ
)
δrα = 0.
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Now, with δrα = fδωα, and the following transformations:

∂Lc
∂ωα

= f
∂lc
∂ṙα

,

∂Lc
∂rα

=
∂lc
∂rα

+
∂lc
∂ṙβ

∂f

∂rα
ωβ,

ṙβ = fωβ,(6.6)

the two parts of (6.5) transform as follows:

(
d

dt

∂lc
∂ṙα
− ∂lc
∂rα

)
δrα =

(
d

dt

∂Lc
∂ωα

− f ∂Lc
∂rα

+ Cε
αβ

∂Lc
∂ωε

ωβ
)
δωα,((

∂l

∂ξa

)
c

Baαβ ṙβ
)
δrα =

([(
1

f

)
MaγG

γε∂Lc
∂ωε

] (
Baαβfωβ

)
f

)
δωα,(6.7)

= fKε
αβ

∂Lc
∂ωε

ωβδωα,(6.8)

where we have written l as l(r, ṙ, ξ) = (1/2)gIJ(r)q̇I q̇J − V (r), with q̇ = (ṙ, ξ),

and we remind the reader of the definition of Maγ from Section 3.5 and Kε
αβ from

(3.29). Here the constrained Lagrangian is lc = (1/2)Gαβ ṙ
αṙβ − V (r), where Gαβ =

gαβ − 2gaαAaβ + gabAaαAbβ and the Cε
αβ are defined by:

(6.9) Cε
αβ :=

[
δεβ
∂f

∂rα
− δεα

∂f

∂rβ

]
.

Finally, a simple renaming of indices along with the definition of the curvature 2-form

yields:

(6.10)
d

dt

(
∂Lc
∂ωα

)
− f ∂Lc

∂rα
=

[
ω,
∂Lc
∂ω

]∗
α

− 〈(FL)c,B(ω, f∂rα)〉,

which is the component version of (6.1).
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Now, using the definition of P and Hc we can write (6.10) in the form:

(6.11) Ṗα = −f ∂Hc

∂rα
+
(
fKε

βα − Cε
αβ

)
Pε
∂Hc

∂Pβ
,

which, along with ṙα = fωα = f(∂Hc/∂Pα), allows us to construct the almost-

Poisson bracket (6.3) and thus arrive at (6.2).

Now, returning to (6.3), it is clear that the choice of multiplier f affects whether

or not the system (6.2) is Chaplygin Hamiltonizable. More precisely, we have our

first main result.

Theorem VI.2. Suppose we have a Chaplygin nonholonomic system (L,G,D) sat-

isfying the assumptions of Proposition VI.1 and let f(r) ∈ C1 be a function which is

nonzero everywhere on its domain. Then the necessary and sufficient conditions for

Chaplygin Hamiltonization (using dτ = fdt) on M = Q/G are that f satisfy

(6.12) j∗{g, k}AP (r, p) = f{G,K}can(r,P).

Moreover, the Hamiltonization of equations (3.21) are then:

(6.13) ṙα = f{rα,Hc}can, Ṗβ = f{Pβ,Hc}can.

Proof. By definition, a Chaplygin Hamiltonizable nonholonomic system can be writ-

ten in Hamiltonian form with respect to the time reparameterization (dτ = fdt).

This is equivalent to the requirement that (6.3) be a Poisson bracket, which is equiv-

alent to the requirement that it satisfy the Jacobi identity. A short calculation shows

that (6.3) satisfies the Jacobi identity iff the second term in (6.3) vanishes ∀ α, β, ε,
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which is equivalent to the requirement (6.12). Under this condition the Hamiltonized

form of equations (3.21) then become (6.13).

Remark VI.3. : In the context of Chaplygin’s work, as well as to compare directly

with [18], we note that the quasi-Hamiltonian form (6.13) is the “t-time” analogue

of the Hamiltonian form stated for two degrees of freedom in the classical Chaplygin

Reducibility Theorem in “τ -time,” and the two are related through ṙ = fr′, Ṗ = fP ′,

where r′ = dr/dτ and P ′ = dP/dτ .

The condition (6.12) is more (computationally) useful in its local form:

∂f

∂rδ
Gαν +

∂f

∂rν
Gαδ − 2

∂f

∂rα
Gδν = f (Kµ

αδGµν +Kµ
ανGµδ) ,(6.14)

for all α, ν, δ = 1, . . . ,m, since this set of partial differential equations can then

be solved (using any of the popular mathematics software programs) for a given

nonholonomic system to determine the multiplier (if it exists).

Now, to extract Chaplygin’s Reducibility Theorem as a special case1 (m = 2), let

us investigate the two degree of freedom case of Theorem VI.2.

Corollary VI.4. The necessary and sufficient condition for a Chaplygin nonholo-

nomic system (L,G,D) for m = 2 to be Chaplygin Hamiltonizable is that

(6.15)
∂K1

12

∂r1
= −∂K

2
12

∂r2
.

The multiplier is then given by f(r) = e
∫
K1

12dr
2
. Moreover, in case the system (3.18)

is known to possesses an invariant measure with nonzero density N(r) ∈ C1, then

the system is Chaplygin Hamiltonizable with f = N .

1Recall from Chapter III that m := n− k is the number of degrees of freedom.
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Proof. From Theorem VI.2, the only independent conditions in (6.12) in the two

degree of freedom case are:

(
∂f

∂r2
− fK1

12

)
G11 −

(
∂f

∂r1
+ fK2

12

)
G12 = 0,(6.16) (

∂f

∂r2
− fK1

12

)
G21 −

(
∂f

∂r1
+ fK2

12

)
G22 = 0.(6.17)

Since we have previously assumed that Gαβ is invertible, (6.16)-(6.17) then implies

that the satisfaction of these equations is equivalent to the vanishing of the paren-

thetical terms. The resulting set of equations is soluble only when (6.15) is satisfied,

in which case f is given in explicit form as in the Corollary. Moreover, from (3.33) we

see that the invariant measure density N of the reduced, constrained system (3.18)

for m = 2 satisfies:

(6.18) K1
12 =

1

N

∂N

∂r2
, K2

12 = − 1

N

∂N

∂r1
.

One sees immediately that this satisfies (6.15), and hence f = N .

The second part of Chaplygin’s Reducibility Theorem2 is that if such a multiplier

f is found, the original nonholonomic system (3.18) has an invariant measure with

density fm−1. This too is the case in our situation, as shown below.

Proposition VI.5. Suppose f satisfies the conditions of Theorem VI.2. Then the

original system (3.6) has an invariant measure with density fm−1.

Proof. Suppose f satisfies (6.14). Multiplying by ṙδ and ṙν and adding results in:

(6.19)
1

f

(
∂f

∂rβ
pα −

∂f

∂rα
pβ

)
ṙβ =

(
∂l

∂ξa

)
c

Baαβ ṙβ.

2See [35], or the discussion in the Introduction.
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Comparing the ṙβ coefficients yields3

(6.20) Λβα =
1

f

(
∂f

∂rβ
pα −

∂f

∂rα
pβ

)
,

where we remind the reader of the definition of Λ from (3.20), and have used pα =

∂lc/∂ṙ
α. Thus, for a Chaplygin Hamiltonizable system, the right hand side of (3.18)

can be written in terms on f as in (6.20). Now, suppose Xnh = ṙα∂rα + ṗα∂pα is the

nonholonomic vector field solution to the system (3.18)-(3.19). We will show that

fm−1 is an invariant measure density by showing that the vector field fm−1Xnh has

zero divergence. A straightforward calculation yields

(6.21)

div (fm−1Xnh) =
∂(fm−1ṙα)

∂rα
+
∂(fm−1ṗα)

∂pα
= fm−2ṙα

(
(m− 1)

∂f

∂rα
+ f

∂Λβα

∂pβ

)
,

and a simple calculation of the last term in (6.21) using (6.20) then shows that the

divergence does indeed vanish and completes the proof.

On the one hand, we see from Corollary VI.4 that Chaplygin’s original Theorem

represented sufficiency conditions for Hamiltonization for m = 2, and its use was

restricted to systems known to have invariant measures.

On the other hand, Theorem VI.2 yields the necessary conditions for the Hamil-

tonization of the Chaplygin system (3.18)-(3.19), which locally are first-order partial

differential equations (6.14) in r. The theorem generalizes the classical Chaplygin

reducibility theorem to systems with nonabelian symmetry groups in higher degrees

of freedom. Proposition VI.5 then completes the generalization by providing us with

the invariant measure density given a solution to Theorem VI.2. Thus, in light
3We note that this relationship was also presented as a sufficient condition for the existence of an invariant measure

by [82] (see also [26]), but here is derived from the conditions of Theorem VI.2.
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of this, whereas previously the hopes for Chaplygin Hamiltonization rested on the

knowledge of a two degree of freedom system’s invariant measure density, it now

makes most sense to tackle the problem of Chaplygin Hamiltonization by solving

(6.14), since then we get the invariant measure density for free if a multiplier exists.

This path to Hamiltonization stands in contrast to the usual attempt to apply the

ideas behind Chaplygin’s theorem to higher dimensions (namely the guessing of a

multiplier based on m and a known invariant measure and then a computation to

verify that the equations in the reparameterized time are Hamiltonian), for (6.14)

requires no guesswork on our part.

It may be the case, however, that (6.14) does not have a solution. This does not

mean that the system is not Chaplygin Hamiltonizable though, since it may still

possess more symmetries which reduce the degrees of freedom, and which allow one

to seek such a solution on the second reduced phase space. We illustrate such a

situation in the next section, making use of the classical Routhian [6] to explore the

effect of additional simple symmetries in (3.18) on its Chaplygin Hamiltonizability.

6.1.2 Momentum Conservation and Chaplygin Hamiltonization

Suppose that (6.12) has no solutions, but that the nonholonomic system possesses

momentum conservation laws that we have yet to account for. With the aid of these

conservation laws, we can apply the reduction process to further reduce the degrees

of freedom of the system and re-attempt a Hamiltonization on the reduced space.

In order to illustrate this in a simple manner, we restrict ourselves in this section

to Chaplygin systems which we will call nonholonomic cylic. By this we mean that

we have an abelian Lie group H acting on M = Q/G by M 3 rα = (wα
′
, vi) 7→

(wα
′
, vi + hi), h ∈ H, where i = 1, . . . l = dim(H) and α′ = 1, . . . ,m − l and

such that Λα′i = 0 ∀i, α′ (we shall hereafter denote the nonconserved conjugate
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variable indices w with a prime). Under these assumptions the vi equations in (3.18)

lead to the momentum conservation laws4 and we can thus set pi = µi = constant

and perform a partial Legendre transform in the vi variables to form the classical

(constrained) Routhian [67, 68] Rc(w, ẇ) defined by

(6.22) Rc(w, ẇ) :=
[
lc(w, ẇ, v̇)− µiv̇i

]
pi=µi

.

Since Rc : T (M/H)→ R we can now attempt to Hamiltonize on the reduced space.

This gives the second main result.

Theorem VI.6. Suppose that the Chaplygin nonholonomic system given by (3.18)-

(3.19) is not Hamiltonizable by Theorem VI.2 but is nonholonomic cyclic. Further,

suppose that the kinetic energy matrix of lc and the sub-matrix (∂2lc/∂v
i∂vj) are

invertible and define the maps j : (w, ω) 7→ (w, ẇ) and jp : (r, µi) 7→ (r, pi). Then

if there exists a multiplier f(w), nonzero everywhere on its domain with f(w) ∈ C1,

satisfying

(6.23)

[
ω,
∂Rc

∂ω

]∗
= 〈(FRc)

′,B(ω, f∂w)〉,

where Rc(w, ω) = j
∗
Rc and5 (FRc)

′ = j
∗
p(FRc)

′, the reduced system is Chaplygin

Hamiltonizable on M ′ = M/H under the choice of quasivelocity ẇ = fω. Further-

more, its mechanics on T (M/H) can be written in the quasi-Hamiltonian form:

(6.24) ẇα
′
= f{wα′ ,H′}AP , Ṗ ′β′ = f{P ′β′ ,H′}AP ,

4Since the H-invariance implies that lc does not depend explicitly on the vi, these variables are cyclic and produce
momentum conservation laws in unconstrained systems. However, due to the presence of the Λαβ , cyclic variables
are not enough to produce the conservation laws, hence the introduction of nonholonomic cyclic.

5Where (FRc)′ is defined in the Proof.
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where P ′α′ = ∂Rc/∂ω
α′ and H′ = ωα

′P ′α′ − R′c|ω→P ′ is the Hamiltonian and the

almost-Poisson bracket is defined by:

(6.25)

{G,K}AP (w′,P ′) = {G,K}can(w′,P ′)−
∑
α′<β′

fKi
α′β′µi

(
∂G

∂P ′α′
∂K

∂P ′β′
− ∂G

∂P ′β′
∂K

∂P ′α′

)
.

Moreover, the bracket satisfies the Jacobi identity for dim(M ′) = 2.

Proof. Locally, the equations of motion in the w variables are

(6.26)
d

dt

∂Rc

∂ẇα′
− ∂Rc

∂wα′
= −

(
∂l

∂ξa

)
c

Baα′β′ẇβ
′
.

However, the last term on the right hand side of (6.26) can be rewritten in terms of

the Routhian:

(
∂l

∂ξa

)
c

Baα′β′ = MaαG
αβ ∂lc
∂ṙβ
Baα′β′ =

[
MaαG

αε′ ∂lc
∂ẇε′

+MaαG
αiµi

]
Baα′β′ ,

=

[(
MaαG

αε′ ∂Rc

∂ẇε′

)
+MaαG

′αiµi

]
Baα′β′ ,(6.27)

= Kε′

α′β′
∂Rc

∂ẇε′
+Ki

α′β′µi,(6.28)

with the parenthetical term in (6.27) locally defining6 (FRc)
′ from (6.23) and where

G′αi = Gαi + Gαε′GijGjε′ . Now, under the quasivelocity transformation ẇ = f(w)ω

the reduced equations (6.26) become (taking into account (6.28)):

(6.29)
d

dt

∂Rc

∂ωα′
− f ∂Rc

∂wα′
=

(
W ε′

α′β′
∂Rc

∂ωε′
ωβ
′
)
− f 2Ki

α′β′µiω
β′ ,

where W ε′

α′β′ := fKε′

β′α′ − Cε′

α′β′ . Now, if f is chosen to satisfy (6.23), then the

parenthetical term in (6.29) vanishes. By defining the Hamiltonian H′ as in the
6We also remind the reader of the definition of the Kε

αβ in (3.29).
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statement of the Theorem, the equations of motion can then be written as in (6.24)

with the almost-Poisson bracket (6.25). Lastly, a straightforward computation shows

that the Jacobi identity is automatically satisfied for dim(M ′) = 2, owing to the fact

that non-canonical part in (6.25), {Pα′ ,Pβ′}AP , is independent of the momenta.

Theorem VI.6 will be used in Chapter VII when discussing the Chaplygin sphere,

a classic example of how the failure of Hamiltonizability can be reversed in the

presence of momentum conservation laws.

6.1.3 Chaplygin Hamiltonization of Euler-Poincaré-Suslov Systems

Keeping with the general idea of Section 6.1 and recalling the setup and index

conventions of Section 3.6.2, we now consider the quasivelocity transformation ξI =

f(g)ωI , where g ∈ G, of the system (3.27), assuming again that f is smooth and

nowhere vanishing on its domain. Such a transformation is equivalent to the change

of basis eI 7→ vI := feI of the Lie algebra g. We then have the analogue of Proposition

VI.1 in this case.

Proposition VI.7. Define the map jω : (ωI)→ (ξI), along with P = j∗ωp̃ and Hc =

j∗ωhc and consider an Euler-Poincaré-Suslov system with Lagrangian l(ξ) = 1
2
IIJξ

IξJ .

Further, suppose that the constrained Lagrangian lc has an invertible kinetic energy

metric. Then the mechanics of the system (3.27) becomes:

(6.30) Ṗi = f{Pi,Hc}′AP ,

where {·, ·}′AP := (1/f)j∗ω{·, ·}AP (recall (3.28)) is the almost-Poisson bracket given

by:
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(6.31) {G,K}′AP = − 1

f

(
fKm

ji − C
m

ij

)
Pm

∂G

∂Pi
∂K

∂Pj
,

for any two functions G,K : j∗ω(gc)∗ → R, where Km
ji and C

m

ij are defined, in analogy

with (6.8) and (6.9), by (6.33) and (6.34) below, respectively.

Proof. We compute j∗ω{p̃i, p̃j} as:

(6.32) f{Pi,Pj}′AP = −
(
fMm

J C
J
KLe

K
i e

L
j −

∂f

∂gJ
gJK
(
eKj δ

m
i − eKi δmj

))
Pm,

from which we define the Km
ji and C

m

ij by:

Km
ji := Mm

J C
J
KLe

K
i e

L
j ,(6.33)

and C
m

ij :=
∂f

∂gJ
gJK
(
eKj δ

m
i − eKi δmj

)
,(6.34)

where Mm
J is defined from the constrained µI as follows. From ξI = eIjΩ

j we have

lc(Ω) = (1/2)IIJe
I
i e
J
j ΩiΩj =: (1/2)GijΩ

iΩj. Assuming Gij is invertible, we can write

Ωj = Gjip̃i and so

(6.35) (µI)c =

(
∂l

∂ξI

)
c

= (IIJξ
J)c = IIJe

J
j Ωj = IIJe

J
jG

jmp̃m =: Mm
I p̃m.

Using these in (3.28) then transforms the equations of motion (3.27) into (6.30)

with the new bracket (6.31).

Theorem VI.8 below now gives our last main result of this chapter, the analogue

of Theorem VI.2 for Euler-Poincaré-Suslov nonholonomic systems.
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Theorem VI.8. Consider an Euler-Poincaré-Suslov system satisfying the conditions

of Proposition VI.7 and let f(g) ∈ C1 be a function which is nonzero everywhere on

its domain. Then the necessary conditions for Chaplygin Hamiltonization (using

dτ = fdt) on (gc)∗ are that f satisfy

(6.36) j∗ω{g, k}AP = f{G,K}j
∗
ω(gc)∗

− ,

where {·, ·}j
∗
ω(gc)∗

− is the (minus) Lie-Poisson bracket on j∗ω(gc)∗. Moreover, the Hamil-

tonized equations (3.27) are then:

(6.37) Ṗi = f{Pi,Hc}j
∗
ω(gc)∗

− .

Proof. Similar to the proof of Theorem VI.2, we again recall that a Chaplygin Hamil-

tonizable nonholonomic system can be written in Hamiltonian form after the time

reparameterization (dτ = fdt). Now, since the natural Hamiltonian form for an

Euler-Poincaré-Suslov system carries a (minus) Lie-Poisson bracket, this is equiva-

lent to the requirement that f be chosen so as to make (6.31) a Poisson bracket,

which is equivalent to the requirement that it satisfy the Jacobi identity. A short

calculation shows that (6.31) satisfies the Jacobi identity iff the following relation is

satisfied:

SlkmS
m
ij + SljmS

m
ki + SlimS

m
jk = 0, ∀i, j, k, l = 1, . . . , n− k,(6.38)

where Slkm := −
(
K l
mk − C

l

km

)
.

If such an f exists, then j∗ω(gc)∗ becomes a Lie algebra under the Poisson bracket

(6.31), and this bracket then gives the Hamiltonization of equations (3.27) which

then becomes (6.37).
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Taken together, Theorems VI.2 and VI.8 provide the necessary conditions for

Hamiltonization of both nonabelian Chaplygin systems and Euler-Poincaré-Suslov

systems in higher degrees of freedom. Through the local expressions of the theorems,

equations (6.14) and (6.38), it is now possible to determine the reducing multiplier

(if it exists) for a nonholonomic system in arbitrary degrees of freedom satisfying the

conditions of the theorems directly from its given data (L,G,D) by using any popular

software package to solve the associated partial differential equations. Moreover, if a

reducing multiplier does not exist we may still employ Theorem VI.6 in the presence

of momentum conservation laws and re-attempt a Hamiltonization on the reduced

space.

As a preliminary application of these theorems we shall now use Theorem VI.2 to

extend the class of conditionally variational nonholonomic systems we introduced in

Chapter V.

6.2 Conditionally Variational Systems in the Quasivelocity Context

Recall from Proposition V.10 that only nonholonomic systems with an invariant

measure with constant density can hope to be conditionally variational. However,

using Theorem VI.2 we can now extend this result to a more general setting if we

instead focus on the Chaplygin Hamiltonized system. To that end we have the

following result:

Theorem VI.9. Suppose that for a given abelian Chaplygin nonholonomic system

(L,G,D) with constraints given by

(6.39) φa(q, q̇) = ṡa + Aaα(r)ṙα, a = 1, . . . , k < n,

where q = (r, s), we have found an f as in Theorem VI.2 above and let L(q, ω) :=
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L(q, ṙ = fω, ṡ = fω). Then if the matrix g̃ab := (∂2L/∂ωa∂ωb) is invertible, the

nonholonomic mechanics of the original system can be derived from the (almost)

Euler-Lagrange equations

(6.40)
d

dt

∂LV
∂ωI

− f ∂LV
∂qI

= 0, I = 1, . . . , n,

by using the Lagrangian LV (q, ω) defined by

(6.41) LV (q, ω) = L(q, ω)− 1

f

∂L
∂ωa

φa(q, ω).

Proof. The existence of an f which Chaplygin Hamiltonizes the system guarantees,

by Part (2) of Proposition V.5, that the system (L(q, ω), φ(q, ω)) is conditionally

variational after the substitution dτ = f(r)dt. Then, the theorem follows from

Proposition V.7.



CHAPTER VII

Applications of the Theory

In the past three chapters we have developed three main methods of Hamiltonizing

nonholonomic systems: (1) through associated second-order systems (Chapter IV),

(2) through conditionally variational criteria (Chapter V), and (3) through Chaplygin

Hamiltonization (Chapter VI). Moreover, we have also seen that each method has its

advantages, disadvantages and area of applicability for a given nonholonomic system.

In this chapter we will discuss the application of all three methods. We begin with

a theoretical application which closes the gap between nonholonomic mechanics and

the optimal control dynamics of mechanical systems [6]. We then proceed to illus-

trate the three methods above through various examples of well-known nonholonomic

systems.

7.1 The Pontryagin Maximum Principle and Nonholonomic Systems

It is well known that for holonomic systems the Lagrange-d’Alembert principle,

variational constrained equations, and Pontryagin’s Maximum Principle (see below)

applied to the associated first-order control system all produce the same mechanics1.

For nonholonomic systems, however, this equivalence breaks down in general. Having

investigated the Hamiltonization of nonholonomic systems in the previous chapters

1Certain regularity conditions are needed, see Section 7.3 in [6].
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though, as a theoretical application of the methods in Chapter IV we will show in this

section that the Hamiltonians (4.31) and (4.32) can also be derived by associating

a first-order controlled system to the (associated) nonholonomic systems of type II

and applying Pontryagin’s maximum principle.

To begin, consider the optimal control problem of finding the controls u that

minimize a given cost function G(x, u) under the constraint of a first order controlled

system ẋ = f(x, u). One of the hallmarks of continuous optimal control problems is

that, under certain regularity assumptions, the optimal Hamiltonian can be found

by applying the Pontryagin Maximum Principle [6]. Moreover, in most cases of

physical interest the problem can be rephrased so as to be solved by using Lagrange

multipliers p as follows. Form the Hamiltonian HP (x, p, u) = 〈p, f(x, u)〉−p0G(x, u)

and calculate, if possible, the function u∗(x, p) that satisfies the optimality conditions

∂HP

∂u
(x, p, u∗(x, p)) ≡ 0.

Then, an extremal x(t) of the optimal control problem is also a base solution of Hamil-

ton’s equations for the optimal Hamiltonian given by H∗(x, p) = HP (x, p, u∗(x, p)).

The optimal controls u∗(t) then follow from substituting the solutions (x(t), p(t)) of

Hamilton’s equations for H∗ into u∗(x, q).

We will show here that for the associated systems of type II

r̈1 = 0, q̈a = Ξa(r1)q̇aṙ1,

we can also find the Hamiltonians of Section 4.4 via an application of Pontryagin’s

Maximum Principle. Hereto, let us put Ξa = ξ′a as before and observe that the

above second-order system can easily be solved for (ṙ1(t), q̇a(t)). Indeed, obviously

ṙ1 is constant along solutions, say u1. We will suppose as before that u1 6= 0. From

the qa-equations it also follows that q̇a/ exp(ξa) is constant, and we will denote this
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constant by ua. To conclude,

ṙ1(t) = u1, q̇a(t) = ua exp(ξa(r1(t))).

Keeping that in mind, we can consider the following associated controlled first-order

system:

(7.1) ṙ1 = u1, q̇a = ua exp(ξa(r1))

(no sum over a), where (u1, ua) are now interpreted as controls.

The next proposition relates the Hamiltonians of Proposition IV.3 to the optimal

Hamiltonians for the optimal control problem of certain cost functions, subject to

the constraints given by the controlled system (7.1).

Proposition VII.1. The optimal Hamiltonian H∗ of the optimal control problem of

minimizing the cost function

G1(r1, qa, u1, ua) =
1

2

(
I1u

2
1 +

∑
a

Ca exp(ξa(r1))
u2
a

u1

)
subject to the dynamics (7.1) is given by:

(7.2) H∗(q, p) =
1

2I1

(
pr1 +

1

2

∑
b

exp(ξb)
p2
b

Cb

)2

.

If Ξ2 is zero, the optimal Hamiltonian for the optimal control problem of minimizing

the cost function

G2(r1, qa, u1, ua) =
1

2

(
I1u

2
1 + I2u

2
2 +

∑
α

aα exp(ξα(r1))
u2
α

u1

)
,

subject to the dynamics (7.1) is given by:

(7.3) H∗(q, p) =
1

2I2

p2
2 +

1

2I1

(
p1 +

1

2

∑
β

exp(ξβ)
p2
β

aβ

)2

.

In case the controlled system is associated to a nonholonomic system (that is, in case

the ξa take the form (4.28)), the above Hamiltonians are respectively the Hamiltonians

(4.31) and (4.32) of Proposition IV.3.
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Proof. The Hamiltonian HP is

(7.4) HP (r1, qa, p1, pa, u1, ua) = p1u1 +
∑
a

paua exp(ξa)−G1.

The optimality conditions ∂HP/∂u1 = 0, ∂HP/∂ua = 0, together with the assump-

tion that u1 6= 0, yield the following optimal controls as functions of (q, p):

I1u
∗
1 = p1 +

1

2

∑
a

exp(ξa)
p2
a

Ca
,

u∗a
u∗1

=
pa
Ca
.

For the Hamiltonian H∗(q, p) = HP (q, p, u∗(q, p)), we get

H∗(q, p) =

(
p1 −

1

2
I1u
∗
1

)
u∗1 +

∑
a

exp(ξa)u
∗
a

(
pa −

1

2
Ca
u∗a
u∗1

)

=
1

Ix

[(
1

2
p1 −

1

4

∑
a

exp(ξa)
p2
a

Ca

)(
p1 +

1

2

∑
b

exp(ξb)
p2
b

Cb

)

+
1

2

∑
a

exp(ξa)
p2
a

Ca

(
p1 +

1

2

∑
b

exp(ξb)
p2
b

Cb

)]

=
1

2I1

(
p1 +

1

2

∑
b

exp(ξb)
p2
b

Cb

)2

,

which is exactly the Hamiltonian (4.34).

For the second cost function, with Ξ2 = 0, we get for Pontryagin’s Hamiltonian

HP = pr1ur1 + pr2ur2 +
∑
α

pαuα exp(ξα)−G2.

The optimal controls as functions of (q, p) are now

I1u
∗
r1

= pr1 +
1

2

∑
α

exp(ξα)
p2
α

aα
,

I2u
∗
r2

= pr2 ,

u∗α
u∗r1

=
pα
Cα

.
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With this the Hamiltonian becomes

H∗(q, p) =
1

2I2

p2
r2

+
1

2I1

(
pr1 +

1

2

∑
β

exp(ξβ)
p2
β

aβ

)2

,

which is exactly (4.32) after the substitution (4.28).

7.2 Examples of Hamiltonization

In this section we illustrate the three main avenues for Hamiltonization developed

in this thesis and outlined above. Although we do not provide all of the details for

each Hamiltonization method, it should be clear from the exposition of the previous

chapters that not all of Hamiltonization methods developed earlier will apply for any

given system. However, in view of the fact that at least one of our methods can be

applied to most of the well-known nonholonomic systems, in an effort to conserve

space we have limited our examples to those that best illustrate the results thus far.

7.2.1 The Vertical Rolling Disk

Consider the nonholonomic vertical rolling disk (see [6]) pictured in Figure 7.1 below2

with configuration space Q = R2 × S1 × S1 and parameterized by the coordinates

(x, y, θ, ϕ), where (x, y) is the position of the center of mass of the disk, θ is the angle

that a point fixed on the disk makes with respect to the vertical and ϕ is measured

from the positive x-axis. This system has Lagrangian and constraints given by:

L =
1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2,

φ1 = ẋ−Rcos ϕθ̇ = 0,

φ2 = ẏ −Rsin ϕθ̇ = 0,(7.5)

2Used with permission from [6].
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where m is the mass of the disk, R is its radius, and I, J are the moments of inertia

about the axis perpendicular to the plane of the disk, and about the axis in the plane

of the disk, respectively.

x

z

y

(x, y)

θ

P0

ϕ

P

Figure 7.1: The Vertically Rolling Disk.

Viewing this system as an abelian Chaplygin system with (s1, s2, rα1 , r
α
2 ) = (x, y, θ, ϕ)

we compute (3.29) as:

Λ34 = (mRẋsin ϕ−mRẏcos ϕ)

= mR
(

(Rcos ϕθ̇)sin ϕ− (Rsin ϕθ̇)cos ϕ
)

= 0,(7.6)

which by Remark V.4 shows that this system is conditionally variational. Moreover,

the variational nonholonomic Lagrangian (5.15) is given by:

(7.7) LV = −1

2
m(ẋ2 + ẏ2) +

1

2
Iθ̇2 +

1

2
Jϕ̇2 +mRθ̇(ẋcos ϕ+ ẏsin ϕ).

The results of Proposition V.7 also apply here, and thus one could apply the Euler-

Lagrange equations to LV , and by imposing the constraints in (7.5) only initially,

recover the full nonholonomic dynamics. It is also worth noting that a straightforward

computation of (5.18) shows that LV is regular, unlike in the variational approach
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where the Lagrangian is automatically singular.

Thus, we have regained regularity and may now pass to the Hamiltonian picture

with momenta defined through the Legendre transform as in (5.20):

px = −mẋ+mRcos ϕθ̇,

py = −mẏ +mRsin ϕθ̇,

pθ = Iθ̇ +mR (ẋcos ϕ+ ẏsin ϕ) ,

pϕ = Jϕ̇.(7.8)

With these momenta, the constraints (4.1) are simply px = py = 0, and the Hamil-

tonian becomes:

HV =
p2
ϕ

2J
+

1

2mβ

[
m2p2

θ −
(
a2sin2 ϕ+ Im

)
p2
x −

(
a2cos2 ϕ+ Im

)
p2
y

]
+

1

2mβ

[
(a2sin 2ϕ)pxpy + (cosϕpx + sinϕpy) pθ

]
,(7.9)

where β = a2 +Im, and a = mR. Indeed, we see at once that since H is independent

of x,y, and θ, the corresponding momenta are conserved. Moreover, after computing

the associated canonical Hamilton equations and imposing on these the constraints

px = py = 0, a straightforward verification shows that the resulting equations of

motion reproduce the nonholonomic second-order equations of motion.

The Lagrangian (7.7) has already been encountered in (4.8). In that chapter we

also discussed the Hamiltonization of the vertical disk through associated systems.

By viewing the vertical disk within the framework of an associated system of type

II, the first Lagrangian (4.26) is:

(7.10) L = ρ(ϕ̇) +

√
I +mR2

2

(
C2
θ̇2

ϕ̇
+ C3

ẋ2

cos(ϕ)ϕ̇
+ C4

ẏ2

sin(ϕ)ϕ̇

)
,
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and the second Lagrangian (4.27) is:

(7.11) L = ρ(ϕ̇) + σ(θ̇)−
√
I +mR2

2

(
a3

ẋ2

cos(ϕ)ϕ̇
+ a4

ẏ2

sin(ϕ)ϕ̇

)
.

Moreover, as we saw in Section 4.4, we obtained a family of Hamiltonians that did

not reproduce all of the nonholonomic solutions (only those for which ẋ 6= 0). The

single Hamiltonian (7.9), in contrast, does reproduce all solutions on the submanifold

defined by px = py = 0 but is also more complicated and allows no freedom. Compare

this as well to the associated systems of type I of Section 4.3.1 for which there are

no Hamiltonians at all.

Lastly, we mention that Corollary VI.4 adds no new information since it gives

f = N = const.

7.2.2 The Nonholonomic Free Particle

The nonholonomic free particle consists of a free particle of mass m in R3 with po-

sition (x, y, z) subject to a nonholonomic constraint. The Lagrangian and constraint

are given by [6]:

L =
1

2
m(ẋ2 + ẏ2 + ż2),

ż = −xẏ.(7.12)

We may view the system as an abelian Chaplygin system, and it is easy to show

that it has an invariant measure with density N = 1√
1+x2 , as can be verified di-

rectly through (5.23). Since this is nonconstant, we know that the system cannot be

conditionally variational (this also follows immediately from Part (5) of Proposition

V.5).

Since the system is not conditionally variational, not all nonholonomic solutions
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can be seen as variational ones. However, the solutions (ẋ0t + x0, y0, z0) for which

ż = 0 can be seen as variational ones (for in this case Λ = 0 from Remark V.4).

Now, considering the associated system of type I from Chapter IV, we note that

Γ2 = −x/(1+x2) and Γ3 = −1/(1+x2). The equations for Ψ = Φ,∇Φ of the second

type give the following two linearly independent equations

(ẋ2 − 2)g23 + 3xg33 = 0, (x3 − 5x)g23 + (5x2 − 1)g33 = 0.

We can easily conclude that g23 = g33 = 0 and hence the first two equations of the

first type are

(x2 − 2)ẋg12 + 3xẋg13 + (x2 − 2)ẏg22 = 0,

(x3 − 5x)ẋg12 + (5x2 − 1)ẋg13 + (x3 − 5x)ẏg22.

It follows from this g13 = 0 and ẋg12 = −ẏg22, and that there is therefore no regular

Lagrangian for the associated systems of type I. However, considering the associated

system of type II we have that the Lagrangian (4.26) is:

(7.13) L = ρ(ẋ) +
1

2

√
1 + x2

(
C2
ẏ2

ẋ
+ C3

ż2

xẋ

)
.

Now, within the framework of Chapter VI, we note that by Corollary VI.4 f(x) =

(1 + x2)−1/2 and the quasivelocities are then defined by ω =
√

1 + x2ṙ, where r =

(x, y). Corollary VI.4 then shows that the system is Chaplygin Hamiltonizable. To

illustrate Theorem VI.9, note that L(q, ω) = (1/2)f 2(ω2
x + ω2

y + ω2
z) and that since

g̃zz = (1/2)f 2 equations (6.40) give:

ω̇x =
xω2

x

(1 + x2)3/2
,

ω̇y = 0,

d

dt
(f 2(ωz + xωy)) = 0.(7.14)
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Recalling that q̇ = fω, (7.14) expresses the conservation in time of the original

constraint equation (7.12). Thus, enforcing the constraints initially is equivalent to

choosing the integration constant to be zero in (7.14). In doing so, a short compu-

tation using the quasivelocity relations then shows that the dynamics in the system

(7.14) are equivalent to the original nonholonomic mechanics. Theorem VI.9 then

finally allows us to express the dynamics of the system (7.14) as the result of (6.40),

where LV is given by:

(7.15) LV (q, ω) =
1

2(1 + x2)

(
ω2
x + ω2

y − ω2
z − 2xωxωy

)
,

and although (6.40) is not Hamiltonian, it is after Chaplygin’s time reparameteriza-

tion. Thus the nonholonomic free particle, like the vertical disk, is Hamiltonizable

but since f 6= const it is only conditionally variational after a reparameterization of

time.

7.2.3 The Chaplygin Sphere

The Chaplygin sphere is a sphere rolling without slipping on a horizontal plane

(see [6]) whose center of mass is at the geometric center, but the principal moments

of inertia are distinct. In Euler angles (θ, ψ, ϕ) the Lagrangian and constraints are:

L =
I1

2

(
θ̇ cos ψ + ϕ̇ sin ψ sin θ

)2

+
I2

2

(
−θ̇ sin ψ + ϕ̇ cos ψ sin θ

)2

+
I3

2

(
ψ̇ + ϕ̇ cos θ

)2

+
m

2

(
ẋ2 + ẏ2

)
,

φ1 = ẋ− θ̇ sin ϕ+ ψ̇ cos ϕ sin θ = 0,

φ2 = ẏ + θ̇ cos ϕ+ ψ̇ sin ϕ sin θ = 0.(7.16)
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where Ii are the moments of inertia about the qi axes, and the ball is assumed to

have mass m.

Now, since q = (x, y, θ, ψ, ϕ), and the constraints and Lagrangian are independent

of x, y, we can view this system as an abelian Chaplygin system. The system also has

an invariant measure whose density is in general non-constant (see [18]). However,

the density is constant for the homogeneous sphere case (in which I1 = I2 = I3 = I).

Thus, the system might be conditionally variational if it satisfies (5.22). However, a

quick computation shows that Fψθψ = sin θ cos θ, which fails to satisfy (5.22).

There are still nonholonomic solutions that can be seen as variational ones though.

The condition (5.8) becomes the matrix

(7.17)


mψ̇ sin θ(ϕ̇+ ψ̇ cos θ)

−mθ̇ sin θ(ϕ̇+ ψ̇ cos θ)

−mψ̇ θ̇ sin θ +mψ̇ θ̇ sin θ

 = 0.

Clearly the last entry of (7.17) vanishes, and a straightforward computation shows

that the variational nonholonomic Euler-Lagrange equation for ϕ reduces to the

momentum conservation law:

(7.18)
d

dt

∂L

∂ϕ̇
= 0.

Now, for I1 = I2 = I3 (7.18) expresses the conservation law ϕ̇ + ψ̇ cos θ = C,

and so for the homogeneous sphere all the nonholonomic trajectories chosen such

that C = 0 initially will annihilate (7.17). Thus all nonholonomic trajectories which

satisfy C = 0 initially can be seen as variational ones. Moreover, since in this case

we cannot view all of the nonholonomic trajectories as variational ones (only those

which have C = 0), then system is not conditionally variational.
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Returning to the general case, applying Theorem VI.2 shows that there does not

exist an f which Hamiltonizes the three degree of freedom mechanics. However, it

is easily seen that ϕ is a nonholonomic cyclic variable and leads to the momentum

conservation law pϕ = µϕ. Thus we can form the constrained Routhian as in (6.22)

and further reduce the dynamics to M ′ = S1 × S1. We can then Hamiltonize on

M ′ through Theorem VI.6, from which (6.23) shows that f = N(θ, ψ), where N

is the invariant measure density for the resulting system on M ′ (see [18]). The

non-canonical part of the almost-Poisson bracket (6.25) is then computed to be

(7.19) {P ′1,P ′2} = −µψ(I3 + 1)f 3 sin θ(I1 cos2 ϕ+ I2 sin2 ϕ+ 1),

and by the same Theorem (or simple computation) we know that this bracket satisfies

the Jacobi identity and hence is indeed a Poisson bracket. This verifies the result

obtained in [18] and is an example of a system that although is not Hamiltonizable

at first is in fact so on the reduced space.

7.2.4 The Snakeboard

Another example of Theorem VI.6 is the Snakeboard [6, 55]. This system is

modeled as a rigid body (the board) with two sets of independent actuated wheels,

one on each end of the board. The human rider is modeled as a momentum wheel

which sits in the middle of the board and is allowed to spin about the vertical axis,

see Figure 7.2.

The configuration space is Q = SE(2)×S1×S1 and the Lagrangian L : TQ→ R

and constraints are given by:
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φ

θ
ψ

(x,y) θ
ψ

φ

Figure 7.2: The Snakeboard.

L =
1

2

(
ẋ2 + ẏ2 + θ̇2 + ψ̇2 + 2ψ̇θ̇ + 2φ̇2

)
,(7.20)

ẋ = − cotφ cos θθ̇,(7.21)

ẏ = − cotφ sin θθ̇,(7.22)

where we have set the mass m, moments of inertia, and the distance r from the center

of the board to its wheels equal to unity. Here (x, y, θ) represents the position and

orientation of the center of the board, ψ the angle of the momentum wheel relative

to the board and φ1 and φ2 the angles of the back and front wheels relative to the

board. Here we’ve made the simplification that φ1 = −φ2, as in [6, 55].

As stated, we can view this system as an abelian Chaplygin nonholonomic system

with three degrees of freedom. Its equations of motion are given in [55] as:

ṗθ = −1

2
secφ cscφ(pθ − pψ)pφ, θ̇ = tan2 φ(pθ − pψ),

ṗφ = 0, φ̇ =
1

2
pφ,

ṗψ = 0, ψ̇ =
pψ − sin2 φpθ

cos2 φ
.

Since this system satisfies the conditions of Theorem VI.6 we can set pψ = µψ =

const. and focus on Hamiltonizing the reduced system. Given that this reduced

system has the invariant measure N(φ) = tanφ, by Corollary VI.4 f = N . The
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non-canonical part of the almost-Poisson bracket (6.25) is then computed to be:

(7.23) {P ′1,P ′2} = sec2 φµψ,

and by the same Theorem we know that this bracket satisfies the Jacobi identity

(since the reduced system has two degrees of freedom) and is thus a Poisson bracket.

7.2.5 The Chaplygin Sleigh

The Chaplygin Sleigh [6, 24, 25, 73] consists of a rigid body in the plane which is

supported at three points, two of which slide freely without friction while the third

is a knife edge, a constraint that allows no motion perpendicular to its edge. The

configuration manifold Q = R2 × S1, where (x, y) are the coordinates of the contact

point while θ is the angle the knife edge makes with the x-axis, see Figure 7.3 below.

Moreover, we suppose here that the center of mass of the system C is not on top of

the knife edge3.

z

OO

θ
(x,y) .

C
y

x

Figure 7.3: The Chaplygin Sleigh.

The Lagrangian L and constraints are given by:

3If it is, then one can show [6] that the sleigh reduces to another nonholonomic system known as the knife edge,
which possesses an invariant measure.
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L =
1

2

(
ẋ2 + ẏ2 + 2θ̇2 − 2(ẋ sin θ + ẏ cos θ)θ̇

)
,(7.24)

ẏ cos θ − ẋ sin θ = 0,(7.25)

where for simplicity we have set all parameters to unity. Recall from Remark 1 in

Section 5.2.2 that the Chaplygin sleigh is not conditionally variational. Moreover,

due to its complicated Lagrangian, it does not fit into the class of systems (4.11) con-

sidered in Chapter V. However, it is Hamiltonizable within the framework of Chapter

VI. Interestingly though, considered as an abelian Chaplygin system with symme-

try group G1 = R it is not Hamiltonizable, but using its G2 = SE(2) symmetry,

considered as an Euler-Poincaré-Suslov system it is.

Since the Lagrangian and constraint are left invariant on the Lie group G2 =

SE(2) we can treat the problem within the Euler-Poincaré-Suslov framework. Defin-

ing ξ = g−1ġ, where g = (x, y, θ), we can write the Lagrangian L in terms of ξ as

l(ξ) = ξ2
3 + (1/2)(ξ2

1 + ξ2
2) + ξ2ξ3, and the constraint as ξ2 = 0. Thus from Section

3.6.2 we have that in this case bni = 0 ∀i.

With the structure constants given by C2
13 = −1 = −C1

23 and all other zero we

see that f = const. satisfies Theorem VI.8, which agrees with the recent result of

[45]. Moreover, as is well-known the Chaplygin sleigh does not possess an invariant

measure [6, 45], yet as we’ve seen above this system is Chaplygin Hamiltonizable.

This system is of critical importance in the study of Hamiltonization since unlike

Proposition VI.5, the Chaplygin sleigh shows that just because a system is Hamil-

tonizable does not imply that it possesses an invariant measure. Thus, unlike in the

nonabelian Chaplygin case, the Hamiltonizability of Euler-Poincaré-Suslov systems

does not automatically imply that the system possesses an invariant measure. The



100

traditional relationship between the existence of the invariant measure and the re-

ducing multiplier f thus breaks down. However, as Theorem VI.8 and the above

example shows, may still be able to Hamiltonize, or more properly, “Poissonize”

(since the Hamiltonization doesn’t always result in an invariant measure).

7.2.6 A Mathematical Example

Consider the following mathematical example due to Iliyev [64]. The Lagrangian

and constraints are given by:

L =
1

2

(
(q̇1)2 + (q̇2)2 + (q̇3)2 + (q̇4)2 + (q̇5)2

)
,

q̇4 = q̇2 tan(q1),

q̇5 = q̇3 tan(q1).(7.26)

This is a nonholonomic system with three degrees of freedom (m = 3) and can most

easily be treated as an abelian Chaplygin system. Solving the conditions in (6.14)

yields f = cos(q1). Moreover, as a check of Proposition VI.5, we can use (3.33) to

compute the system’s invariant measure density to be N = cos2(q1), which indeed is

equal to fm−1, as the Proposition suggests.



CHAPTER VIII

Conclusion and Future Directions

8.1 Conclusion

The results of Chapters IV - VI show that although nonholonomic systems are not

variational, in many cases they can be cast in Hamiltonian form through a variety of

methods, not all of which are simultaneously applicable to a particular system. In this

regard Hamiltonization is somewhat of an art form. This is perhaps best illustrated

by the examples of the Chaplygin sleigh and vertical disk of Sections 7.2.5 and 7.2.1,

respectively. Ignoring the symmetry of the Chaplygin sleigh leads to an inability

to Hamiltonize it using any of the methods presented here, forcing one to consider

its SE(2) symmetry in order to Hamiltonize it. In the case of the vertical disk

in Section 7.2.1, although Chaplygin Hamiltonization and Hamiltonization through

the identification of the vertical disk as a conditionally variational system are both

applicable, the family of Lagrangians for the associated second-order systems in

some cases does not exist (for type I) and in other cases does not reproduce all of

the solutions to the original system (7.5).

Given the art form involved in Hamiltonizing nonholonomic systems, one must ask

why do so at all? An immediate partial answer to this question comes from Section

7.1, where we were able to preserve the equivalence present between the equations of

101



102

motion of holonomic systems and their associated first-order optimal control prob-

lems. From a theoretical standpoint, the optimal control of nonholonomic systems

is itself a large area of research, and Proposition VII.1 now makes possible a direct

comparison between, in Hertz’s terminology, the “straightest” curves and “shortest”

curves which represent the physical trajectories of two different objectives (user de-

fined optimal control on the one hand and actual motion on the other). However,

there are other main areas to which we are currently applying the results of this

thesis.

8.2 Future Directions

8.2.1 Quantization of Nonholonomic Systems

The quantization of nonholonomic systems has recently attracted the attention

of many researchers [1, 17, 32, 52, 53, 75]. Although some would consider it a the-

oretical exercise, from a practical point of view the advent of nanomachines may

influence this viewpoint, and from a theoretical point of view developing a consistent

quantization scheme which can handle even simple holonomic constraints or even

configuration spaces of non-zero curvature is still a challenge (see [52]). However,

the variational Lagrangian (7.7) looks promising as a starting point for a quantiza-

tion of a nonholonomic system based on the ideas developed in Chapter V. We are

currently investigating the results of its quantization [12]. Moreover, we expect that

the overall results obtained in the previous chapters (specifically the overarching idea

of Hamiltonizing the entire nonholonomic system) will provide the groundwork for

quantizing more general nonholonomic systems.
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8.2.2 Numerical Schemes

Recently, the development of variational integrators (see [69] for a recent summary

of the basic theory) has allowed substantially more accurate simulations at lower cost

for conservative (or weakly dissipative) systems. Although we have emphasized the

non-variational nature of nonholonomic systems, the various Hamiltonization meth-

ods presented in this thesis circumvent this to a large degree and allow the possibility

of applying variational integrators to nonholonomic systems. We are currently ex-

ploring this byproduct of Hamiltonization [11].

8.2.3 Development of a Nonholonomic Hamilton-Jacobi Equation

The Hamilton-Jacobi equation of classical mechanics is well developed and highly

useful in tackling the integrability of mechanical systems [67]. However, since it relies

on a variational principle it is again inapplicable to nonholonomic systems. Recently,

the authors in [63] proposed a Hamilton-Jacobi theory for nonholonomic systems and

discussed its application to Chaplygin systems. We should note that these ideas are

not new, and were implicitly used in [73], albeit in “quasicoordinates,” to integrate

the Chaplygin sleigh, among other systems. Given the success of the results of the

previous chapters, especially with Chaplygin systems, it would be interesting to use

the existing Hamilton-Jacobi theory in conjunction with our Hamiltonization mehods

to develop a Hamilton-Jacobi theory for the classes of systems studied in this thesis.

We are currently collaborating with the authors in [74] on this issue.

8.2.4 The Effect of Symmetry on the Hamiltonizability of a Nonholonomic System

We have commented on the fact that in some cases it is to our benefit (as far

as Hamiltonization goes) to ignore the symmetry present in a nonholonomic system,
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whereas in other cases it is not. Moreover, most symmetries discussed in the liter-

ature [6] are physical symmetries, meaning that they arise based on consideration

of the physical properties of the system. It also seems important though, to ask

the following question: given a nonholonomic system, what is the set of symmetry

groups under which a the system is (1) conditionally variational or (2) Chaplygin

Hamiltonizable? For example for the Chaplygin sleigh of Section 7.2.5, G = R does

not belong to this set, whereas G = SE(2) does. We are presently exploring this in

[39].

8.2.5 Hamiltonization by Stages

Finally, we note that the multi-dimensional Veselova system and multi-dimensional

Chaplygin sphere have recently been Hamiltonized in [37] and [51], respectively.

However, the methods and conditions for Hamiltonization presented in this thesis

are inapplicable to those Hamiltonizations due to the particular Hamiltonization

methods used by the authors. In the former, the authors constructed redundant

coordinates and showed that the solutions of the multi-dimensional Veselova system

can be mapped isomorphically into the solutions of an associated different Hamilto-

nian system known as the Neumann system. Within the framework of the methods

presented here, this would be equivalent to the statement that after an appropriate

time reparameterization, applying the inverse problem of the calculus of variations

to the resulting system would yield the Neumann Lagrangian as a solution. In the

latter case, the author Hamiltonizes the multi-dimensional Chaplygin sphere by con-

structing redundant coordinates and effecting a time-reparameterization. It is then

shown that the reduced mechanics of the higher dimensional nonholonomic Chaply-

gin sphere emerge as the restriction to the invariant submanifolds of the Hamiltonian

system resulting from the time reparameterization. Within our framework, this is
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equivalent to the statement that the author in [51] has succeeded in constructing

an associated second-order system for the time-reparameterized mechanics. Thus,

the main difference with our work is that in Chapter IV we constructed associated

second-order systems for the original nonholonomic system (not the time reparame-

terized one).

Given the above discussion, we therefore expect that the aforementioned multi-

dimensional Hamiltonizations can be realized as special cases of a synthesis of the

general (yet mostly disjoint) methods presented in this thesis. We are currently

exploring this [41].
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