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Abstract. We report on new applications of the Poincaré and Sundman time-
transformations to the simulation of nonholonomic systems. These transfor-

mations are here applied to nonholonomic mechanical systems known to be

Hamiltonizable (briefly, nonholonomic systems whose constrained mechanics
are Hamiltonian after a suitable time reparameterization). We show how

such an application permits the usage of variational integrators for these non-

variational mechanical systems. Examples are given and numerical results are
compared to the standard nonholonomic integrator results.

Introduction. It is well known that the dynamical equations of motion of uncon-
strained mechanical systems follow from a variational principle, namely Hamilton’s
principle of stationary action [1, 26]. In the 1970s and 1980s several researchers
discretized this continuous variational principle and developed the discrete Euler-
Lagrange equations (see [27] and references therein for a historical account). Like
its continuous counterpart, this discrete variational mechanics preserves many of
the constants of motion between timestep increments, such as the energy and mo-
mentum, as well as the symplectic form, under appropriate assumptions [21, 27].
The resulting numerical integrators, termed mechanical integrators, have found ap-
plication in molecular dynamics simulations [34, 24, 23] and planetary motion [23],
as well as in satellite dynamics [23]. For fixed timesteps, it was shown in [18] that
a mechanical integrator for a non-integrable mechanical system with symmetry can
at best preserve two of the three quantities mentioned above. For this reason, fixed
timestep mechanical integrators are named according to what invariants they do
preserve. In particular, mechanical integrators preserving the discretized symplec-
tic form and momentum are known as variational integrators.
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Variational integrators for mechanical systems with position constraints (known
as holonomic constraints) were developed shortly after the formulation of discrete
variational mechanics (see [32] and Section 3.4 of [27] and references therein). How-
ever, for mechanical systems subject to non-integrable constraints on the velocities
(known as nonholonomic systems), developing corresponding integrators remained
a challenge for some time. The inherent difficulty arises from the fact that the
equations of motion of a general nonholonomic system on a symplectic manifold
(T ∗Q,ω) (here ω is the symplectic form) follow not from Hamilton’s principle, but
instead from the Lagrange-d’Alembert principle [1]. The most immediate conse-
quence is that the nonholonomic flow does not preserve the symplectic form ([8],
Section 3.4.1). Thus, the basis of discrete variational mechanics (the discretization
of Hamilton’s principle) does not apply to nonholonomic systems. Despite this diffi-
culty, the development of a “nonholonomic integrator” was achieved more recently
in [9]. The authors discretized the Lagrange-d’Alembert principle to arrive at a
mechanical integrator which preserves the evolution of the discretized symplectic
form ω under the nonholonomic flow. In addition, for a nonholonomic system with
symmetry, their nonholonomic integrator satisfies a discrete version of the nonholo-
nomic momentum equation1.

Historically, although the fact that nonholonomic mechanics is not variational
(meaning the governing equations of motion do not follow from Hamilton’s prin-
ciple) was proved as early as 1899 by Korteweg [22], there have since been many
attempts to “Hamiltonize” nonholonomic systems. In light of Korteweg’s result, this
is impossible to accomplish for the “full” nonholonomic system, which is generally a
coupled set of first-order kinematic equations (in the simplest case of linear homoge-
neous nonholonomic constraints) and second-order dynamical equations. However,
under certain symmetry conditions the kinematic equations decouple from the dy-
namics, in which case one can investigate the possibility of “Hamiltonizing” the
second-order dynamical equations. The most successful early attempts to do so
were made by the Russian mathematician S.A. Chaplygin in 1903, motivating the
name Chaplygin System [1] (Section 5.4). In [6, 7] he showed that for nonholo-
nomic systems in two degrees of freedom (q1, q2) which preserve a scaled symplectic
form f(q1, q2)ω for some multiplier f ∈ C2(Q) one can define the time reparame-
terization dτ = f(q) dt such that the nonholonomic equations become the Euler-
Lagrange equations of the time-reparameterized nonholonomic Lagrangian. This
result is known as the Chaplygin Reducing Multiplier Theorem, and has been the
subject of recent renewed interest (see [15] and references therein). It has recently
been applied to nonholonomic Hamilton-Jacobi theory [31], and to the study of the
integrability of rolling bodies (see [4] and references therein).

In this paper we apply Chaplygin’s theorem to develop two new mechanical
integrators for Chaplygin nonholonomic systems for which Chaplygin’s theorem
applies (termed Chaplygin Hamiltonizable). The mechanical integrators developed,
in contrast to the nonholonomic integrator discussed above, are variational, that is,
they are developed by discretizing Hamilton’s principle. The examples developed
in Section 5 suggest that, in general, the new algorithms accurately simulate the
second-order dynamics of the Chaplygin Hamiltonizable system, and in some cases
outperform the results obtained by the nonholonomic integrator. These results

1Unlike unconstrained mechanics, infinitesimal symmetries of nonholonomic systems do not
necessarily lead to momentum conservation laws. Instead, the corresponding momentum maps

evolve according to the nonholonomic momentum equation [1] (Section 5.5).
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confirm earlier studies [29] showing that the combination of Hamiltonization and
variational integrators can lead to superior numerical schemes for simulating the
dynamics of many of the relevant nonholonomic systems.

The paper is organized as follows. We begin with a review of nonholonomic
mechanics in Section 1, followed by a review of variational and nonholonomic inte-
grators in Section 2. We discuss Chaplygin’s theorem in more detail in Section 3
in preparation for the introduction of the new integrators in Section 4. In Section
4.1 we introduce the Hamiltonized discrete Euler-Lagrange algorithm, an integra-
tor which proceeds in discretized τ -time. In Section 4.2 we introduce the Poincaré
transformed Hamiltonized discrete Euler-Lagrange algorithm, which proceeds in t-
time, and makes use of the so-called Poincaré transformation [23] (Chapter 9).
Finally, we compare the performance of the two new integrators with that of the
nonholonomic integrator for three examples in Section 5, and indicate possible ap-
plications and directions for future research in the Conclusion.

1. Nonholonomic Chaplygin systems. Consider a mechanical system on an n-
dimensional Riemannian configuration manifold Q with metric g and with regular
Lagrangian L : TQ → R. We assume that L = T − V , where T : TQ → R is
the kinetic energy given by T (q, q̇) = 1

2gij q̇
iq̇j , i, j = 1, . . . , n, where gij are the

components of g, and V : Q → R is the potential energy (we identify V with its
lift to TQ). We note that we will adhere to the Einstein summation convention for
repeated indices throughout.

Suppose that we now define a constraint distribution D ⊂ TQ by the one-forms
{ωa}ka=1, k < n, as

D = {v ∈ TQ |ωa(v) = 0, a = 1, . . . , k}. (1)

We will assume that the constraints are linear and homogeneous, so that locally
ωa(v) = caj (q)q̇j , and that D has constant rank. Then the triple (Q,L,D) is known
as a nonholonomic mechanical system [1].

Now, suppose that a k-dimensional Lie group G acts on Q such that M := Q/G
is a manifold; this happens, for example, if G acts freely and properly on Q. Let g
be the Lie algebra of G, and ξQ the infinitesimal generator on Q corresponding to
ξ ∈ g. We assume that its lifted action leaves L and D invariant, and that at each
q ∈ Q, the tangent space TqQ can be decomposed as

TqQ = gQ ⊕Dq, where gQ|q = {ξQ(q) | ξ ∈ g} (2)

is the tangent to the orbit through q ∈ Q [1] (Section 2.8). Then we will call
(Q,L,D, G) a Chaplygin nonholonomic system [1]. This setup gives rise to a princi-
pal bundle π : Q→M , with principal connection A : TQ→ g such that kerA = D.
This connection can then be used to decompose any tangent vector vq ∈ TqQ into
horizontal and vertical parts:

vq = hor(vq) + ver(vq), (3)

where hor(vq) = vq − (Aq(vq))Q(q), ver(vq) = (Aq(vq))Q(q).

We can now form the reduced velocity phase space TQ/G, and the Lagrangian
L induces the reduced Lagrangian l : TQ/G → R satisfying L = l ◦ πTQ, where
πTQ : TQ→ TQ/G is the standard projection. Furthermore, the decomposition (3)
gives rise to the reduced constrained Lagrangian lc : TM → R given by lc(r, ṙ) :=
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L(q,hor(q̇)), where r = π(q) and ṙ = Tqπ(q̇). Locally, we will write the reduced
constrained Lagrangian as

lc(r, ṙ) =
1

2
Gαβ(r)ṙαṙβ − V (r), (4)

where henceforth Greek indices will range from 1 to m :=dim M = n−k, the indices
a, b, c will range from 1 to k = dim G, and where V : M → R is defined by V = V ◦π.
Since we will be dealing exclusively with the reduced constrained Lagrangian, we
will drop the overbar on V henceforth. The Gαβ are the components of the metric on
the reduced space M induced by g according to Gr(vr, wr) := gq(hor(vq),hor(wq)),
where r = π(q).

To arrive at the local equations of motion of a Chaplygin nonholonomic system
we pick a local trivialization, where Q = Q/G×G and the action of G is given by
left translation on the second factor, and choose coordinates r for the first factor
and a basis ea of the Lie algebra g of G. The equations of motion then consist of a
system of second-order ordinary differential equations on M , together with a system
of first-order constraint equations [1]:

d

dt

∂lc
∂ṙα
− ∂lc
∂rα

= −
(
∂l

∂ξa

)∗
Baαβ ṙβ , (5)

ξa = −Aaα(r)ṙα. (6)

Here the star indicates that we have substituted the constraints (6) into (5) after
differentiation, and

Baαβ =
∂Aaβ
∂rα

− ∂Aaα
∂rβ

− CabcAbαAcβ (7)

are the components of the curvature of A, where Cabc are the structure constants of
the Lie algebra defined by [ea, eb] = Cabc.

As discussed in the Introduction, the full equations of motion, (5)-(6), cannot
in general be derived from Hamilton’s principle [1, 17, 22]. In other words, non-
holonomic mechanics is not variational, or said yet another way, (5)-(6) are not
the Euler-Lagrange equations for any Lagrangian, or of the canonical Hamiltonian
equations for any Hamiltonian (unless of course Baαβ = 0, in which case the system

in actually holonomic)2.

2. Geometric integrators. As discussed in the Introduction, the discretization
of Hamilton’s principle produces a variational integrator while discretizing the
Lagrange-d’Alembert principle produces a nonholonomic integrator. Let us briefly
review these discretizations.

2.1. Variational integrators. Suppose that one is interested in simulating the
dynamics of a Hamiltonian system between the two times t = a and t = b. Begin
by specifying the time steps a = t0 < t1 < . . . < tN = b with fixed step size
h := ti+1− ti, i = 0, . . . , N−1, and define the discrete trajectory to be the sequence

qj0, . . . , q
j
N ∈ Q, j = 1, . . . , n, where qji ≈ qj(ti). Then, define the smooth map

2We should mention, however, that the full system (5)-(6) can in some cases be embedded, in
a non-trivial way, in a larger system which is variational [14, 2].
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Ld : Q×Q→ R which will approximate the action over each time step3:

Ld(qi, qi+1) ≈
∫ ti+1

ti

L(q(t), q̇(t)) dt. (8)

One can then define the discrete action sum Sd(q0, . . . , qN ) by:

Sd(q0, . . . , qN ) =

N−1∑
i=0

Ld(qi, qi+1) ≈
∫ b

a

L(q(t), q̇(t)) dt. (9)

Then, taking variations of the discrete path (with fixed endpoints) leads to the
discrete Euler-Lagrange (DEL) equations [27]:

D1Ld(qi, qi+1) +D2Ld(qi−1, qi) = 0, i = 1, . . . , N − 1, (10)

where D1, D2 denote differentiation with respect to the first and second arguments,
respectively, and where q = (q1, . . . , qn) on Q. The DEL equations (10), under
appropriate regularity assumptions (see Section 7.2 in [8]), define the discrete time
evolution of the system via the map Φv : Q × Q → Q × Q given by Φv(qi−1, qi) =
(qi, qi+1) (where the superscript reminds us that this is a variational integrator
algorithm). The explicit formula for Φv is only available when the DEL algorithm
(10) is “explicit,” in the sense that one can explicitly solve for qi+1 = F (qi−1, qi)).
This happens, for example, when the Lagrangian L has a constant kinetic energy
metric g [27]. Otherwise, the algorithm (10) will be implicit, and one must use
implicit numerical solvers (such as a Newton method) to implement it.

One can show that the algorithm Φv preserves the discrete canonical symplectic
form

ΩLd(q0, q1) =
∂2Ld

∂qi0∂q
j
1

dqi0 ∧ dq
j
1. (11)

Moreover, provided the discrete Lagrangian is invariant under the action of G on
Q, the algorithm also preserves the discrete momentum map Jd : Q×Q→ g∗ given
by

〈Jd(q, q′), ξ〉 = 〈D2Ld(q, q
′), ξQ(q′)〉; (12)

for details see [27] (Section 1.3.2 and Theorem 1.3.3).
Now, although L admits many discretizations, we will restrict ourselves here to

symmetrized discrete Lagrangians

Lsym,εd (qi, qi+1) =
1

2

(
Lεd(qi, qi+1) + L1−ε

d (qi, qi+1)
)
, (13)

where Lεd(qi, qi+1) := hL

(
(1− ε)qi + εqi+1,

qi+1 − qi
h

)
.

The reason for using this particular discretization is that it produces second-order
variational integrators for any ε ∈ [0, 1]; see Section 2.3 of [27].

3We will choose the same discretization for each time interval [ti, ti+1]. Although one can
certainly drop this restriction (see [27]), for simplicity we will continue using this assumption

henceforth.
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2.2. Nonholonomic integrators. The discretization of nonholonomic mechanics
begins again with the discrete Lagrangian Ld, but now adds a discrete constraint
space Dd ⊂ Q × Q having the same dimension as D, and containing the diagonal:
(q, q) ∈ Dd for all q ∈ Q. The solution sequence {qi} is then restricted by (qi, qi+1) ∈
Dd through the discretization of the constraint one-forms ωa which define D:

ωa,ε,symd (qi, qi+1) =
1

2

(
ωa,εd (qi, qi+1) + ωa,1−εd (qi, qi+1)

)
, (14)

ωa,εd (qi, qi+1) := ωa
(

(1− ε)qi + εqi+1,
qi+1 − qi

h

)
= caj ((1− ε)qi + εqi+1)

qi+1 − qi
h

.

The ωa,εd : Q × Q → R, a = 1, . . . , k, are the functions whose annihilation defines
Dd, meaning that (qi, qi+1) ∈ Dd if and only if ωa,εd (qi, qi+1) = 0.

Taking variations of the discrete action (9) (with fixed endpoints) and enforcing
the conditions δqi ∈ Dqi , along with (qi, qi+1) ∈ Dd, yields the discrete Lagrange-
d’Alembert (DLA) algorithm [9]:

D1Ld(q
j
i , q

j
i+1) +D2Ld(q

j
i−1, q

j
i ) = λac

a
j (qi), (15)

ωad(qji , q
j
i+1) = 0. (16)

Here Ld, ω
a
d are unsymmetrized, ε = 0, and λa are Lagrange multipliers.

We will also refer to (15)-(16) as the nonholonomic integrator, and will denote
the discrete time evolution map it defines by Φnh. We remark that, as pointed out
in Section 7.3 of [8], one should apply the same discretization technique for both L
and ωa, meaning that if L is symmetrized according to (13), then the ωa should be
symmetrized according to (14).

Example: As our running example, let us consider the motion of a free particle
in Q = R3 subjected to a particular nonholonomic constraint—the so-called “non-
holonomic” free particle [1]. Supposing the particle has unit mass, the Lagrangian
and constraint are given by:

L =
1

2

(
ẋ2 + ẏ2 + ż2

)
, ż + xẏ = 0. (17)

For this system, q = (x, y, z), n = 3, k = 1, c11 = c13 = 0 and c12 = x. The discrete

Lagrangian Lεd(q
j
i , q

j
i+1) and discrete constraint ωεd(q

j
i , q

j
i+1) are given by:

Lεd(q
j
i , q

j
i+1) =

h

2

((
xi+1 − xi

h

)2

+

(
yi+1 − yi

h

)2

+

(
zi+1 − zi

h

)2
)
, (18)

ωεd(q
j
i , q

j
i+1) =

zi+1 − zi
h

+ ((1− ε)xi + εxi+1)

(
yi+1 − yi

h

)
. (19)

Returning to the theory, we note that the DLA algorithm is designed to approxi-
mate the discrete trajectory for the full nonholonomic problem (reduced mechanics
together with constraint kinematics). However, Chaplygin Hamiltonization, dis-
cussed in Section 3, is performed on the reduced system (5). The resulting non-
holonomic integrator which discretizes the reduced mechanics leads to the reduced
discrete Lagrange-d’Alembert algorithm (RDLA).

Following [8] (Section 7.5.3), one begins by noting that locally Q can be iden-
tified with M × G, which we will coordinatize by qi = (ri, gi). Moreover, the
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discretized constraints (16) allow Dq to be identified with M × M × G locally
through (ri, gi, ri+1, gi+1) ∈ Dq → (ri, ri+1, gi) since gi+1 is uniquely determined
by the discretized constraint forms ωa,εd (ri, gi, ri+1, gi+1) = 0. Then we can define
Lcd : Dq → R, the restriction of the discrete Lagrangian Ld to Dq. This leads to the
reduced discrete Lagrangian L∗d : M ×M → R defined by

L∗d(rk, rk+1) = Lcd(rk, rk+1, e). (20)

The DLA algorithm then reduces to the RDLA algorithm on M (see Section 7.5.3
of [8]):

D1L
∗
d(r

α
i , r

α
i+1) +D2L

∗
d(r

α
i−1, r

α
i ) = F−(rαi , r

α
i+1) + F+(rαi−1, r

α
i ), (21)

where F+, F− are the discretizations of the right-hand-side force in (5) (see Section
7.5.3 of [8] for more details):

F−(qi, qi+1) =
∂ld

∂fi,i+1
(ri, ri+1, fi,i+1)

∂gi+1

∂rβi
(ri, ri+1)eb

−R∗fi,i+1

∂ld
∂fi,i+1

(ri, ri+1, fi,i+1)Abβ(ri)eb, (22)

F+(qi−1, qi) =
∂ld

∂fi−1,i
(ri−1, ri, fi−1,i)

∂gi

∂rβi
(ri−1, ri)eb

+U∗gi(ri−1,ri)

∂ld
∂fi−1,i

(ri−1, ri, fi−1,i)Abβ(ri)eb, (23)

fi,i+1 = g−1i gi+1 = gi+1(ri, ri+1), ld(ri, ri+1, fi,i+1) = Ld(ri, e, ri+1, g
−1
i gi+1).

Here Rg, Ug denote right and left multiplication in the Lie group by g ∈ G, and {eb}
is a basis for g. We will also symmetrize the RDLA, as in (13) in what follows, and
indicate that by the ε, sym superscript. In addition, if we denote the right-hand-
side of (5) by Fα(r, ṙ), then for g abelian, as in the case of the classical Chaplygin
systems where G = Ri × Tk−i, the (symmetrized) discrete forces become

F−,sym,εα (qi−1, qi) =
1

2

(
F εα(ri−1, ri) + F 1−ε

α (ri−1, ri)
)
, (24)

F+,sym,ε
α (qi, qi+1) =

1

2

(
F εα(ri, ri+1) + F 1−ε(ri, ri+1)

)
, (25)

where F εα(ri, ri+1) = Fα

(
(1− ε)ri + εri+1,

ri+1 − ri
h

)
.

Example: To continue our example, we first note that the system (17) is abelian
Chaplygin since it is translationally invariant in the z-direction, so that G = R.
Thus we have r = (x, y), g = z, q = (x, y, z), and the resulting constrained La-
grangian is:

lc(r, ṙ) =
1

2

(
ẋ2 + (1 + x2)ẏ2

)
. (26)

Now, with Azy = x, a simple computation shows that Bzxy = −1 is the only non-
zero curvature component. Thus, the constraint reaction forces F1, F2, and their
discretizations are given by:

F1 = −xẏ2, F2 = xẏ2, F εα = ±h ((1− ε)xi + εxi+1)

(
yi+1 − yi

h

)2

, (27)
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where F ε2 carries the positive sign and F ε1 the negative one. Moreover, the discrete

constrained Lagrangian L∗,εd (rji , r
j+1
i+1 ) (20) is given by

L∗,εd (rji , r
j
i+1) =

h

2

[(
xi+1 − xi

h

)2

+
(

1 + ((1− ε)xi + εxi+1)
2
)(yi+1 − yi

h

)2
]
,

(28)
which is just the discretization of (26).

Like the variational integrator, the DLA and RDLA nonholonomic integrators
have geometric invariance properties. In the continuous setting, under the action of
a Lie group G on Q which leaves L and D invariant, the associated momentum map
J is in general not conserved. Instead, along the integral curves of the nonholonomic
equations, it satisfies a nonholonomic momentum equation [1] (Section 5.5). If this
invariance passes to the discrete setting, so that Ld,Dd are again invariant under the
action of G on Q, then the DLA and RDLA algorithms satisfy a discrete version
of the nonholonomic momentum equation [8] (Section 7.5). In addition, the two
algorithms also preserve the discrete evolution of the canonical symplectic form
under the nonholonomic flow [9] (Section 5). Thus, these nonholonomic integrators
are not variational integrators, meaning that they do not follow from a discretization
of Hamilton’s principle. It would seem then that applying variational integrators
to simulate nonholonomic systems would be impossible.

3. Chaplygin Hamiltonization. As noted in the Introduction, the reduced me-
chanics of Chaplygin Hamiltonizable nonholonomic systems are Hamiltonian after a
suitable reparameterization of time. Let us now discuss this in more detail.

Suppose that a two degree of freedom (dim M = 2) nonholonomic Chaplygin
system possesses an invariant measure with density f(r1, r2), meaning that the Lie
derivative of the two form fΩ along the nonholonomic flow vanishes, where Ω is
the canonical symplectic form on T ∗M . Then, in [7] it was shown that the reduced
equations of motion (5) are Hamiltonian in the new time defined by the reparame-
terization dτ = f(r1, r2) dt. Moreover, it also follows that if a nonholonomic system
can be written in Hamiltonian form after the time reparameterization dτ = f(r) dt,
then the original system has an invariant measure with density f(r)m−1, [10], where
m = dim M . As mentioned in the Introduction, these two results are collectively
known as Chaplygin’s Reducibility Theorem, and the function f is known as the
reducing multiplier, or simply the multiplier; see [10] and references therein. If f
has zeros, then the results only hold locally on open subsets of M .

Chaplygin’s Theorem has been expanded and generalized beyond the two de-
gree of freedom case, [15], and the process of finding a Hamiltonian form for the
reduced mechanics of a nonholonomic system via a reparameterization of time is
now called Chaplygin Hamiltonization4. Fortunately, the class of Chaplygin Hamil-
tonizable nonholonomic systems is large (see Tables 1 and 2 in [3], [4], and [15] for
a list of examples), and, given a nonholonomic system, one can check its Chaplygin
Hamiltonizability directly by solving a system of first-order linear partial differential
equations for f , [15] (Theorem 1). For Chaplygin systems, the relevant equations
depend on the metric G and curvature B.

4There are other methods of Hamiltonizing a nonholonomic system which do not require a time
reparameterization, see [12]
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Once the Chaplygin Hamiltonization has been achieved, one then has a Hamil-
tonian system (relative to the reparameterized time τ) to which one can apply any
of the known techniques applicable to Hamiltonian systems. In particular, one can
now simulate the dynamics of this (Hamiltonized) system and then “undo” the
Hamiltonization to arrive at a simulation of the reduced mechanics of the original
Chaplygin system. Let us now give the details.

4. Variational integrators for Chaplygin Hamiltonizable nonholonomic
systems. For the remainder of this section, suppose that we have already succeeded
in Chaplygin Hamiltonizing a Chaplygin system. Then, by the chain rule we have

r′(τ) =
dr

dτ
(τ) =

1

f(r(t(τ)))
ṙ(t(τ)).

Using this we can define the reduced constrained Hamiltonized Lagrangian

Lc(r, r′) := lc(r, ṙ = f(r)r′) =
1

2
f(r)2Gαβ(r)r′αr′β − V (r).

Supposing that Lc is regular, then we can define the momenta P = ∂Lc/∂r′
and the “Hamiltonized Hamiltonian” Hc(r, P ) via the usual Legendre transform.
We can now apply a variational integrator to our Hamiltonized system, and then
undo the Hamiltonization to arrive at approximations for the actual reduced non-
holonomic trajectories. However, doing so requires the discretization of the inverse
transformation τ 7→ t given by:

t(τ) =

∫ τ

0

1

f(r(τ̃))
dτ̃ , (29)

where we have set, without loss of generality, t0 = τ0 = 0, and where hereafter
we shall assume f 6= 0, unless otherwise noted. We shall discuss the discretization
of (29) in Section 4.1 below, but note briefly here the obvious: such a quadrature
rule will introduce an error δti, producing rα(ti + δti) as the approximation for
rα(ti) For this reason, in Section 4.2 below we will introduce an alternative method
which does not require that one invert the transformation, thus avoiding this error.
However, there we shall see that other challenges arise.

Example: Returning to our running example, one can show that the nonholonomic
free particle is a Chaplygin Hamiltonizable system, with f given by f(x) = (1 +
x2)−1/2 [15]. The time reparameterization dτ = f(x) dt then leads to x′ = (1+x2)ẋ
and y′ = (1 + x2)ẏ, and the Hamiltonized Lagrangian is given by

Lc(r, r′) =
1

2

[
x′2

1 + x2
+ y′2

]
, where r = (x, y). (30)

This Lagrangian is regular, and by calculating the momenta

Px = (1 + x2)−1/2x′, Py = y′,

the Hamiltonized Hamiltonian corresponding to (30) is

Hc(r, P ) =
1

2

[
(1 + x2)P 2

x + P 2
y

]
. (31)
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4.1. Integrators via time reparameterization. First, let us begin by defining
the symmetrized discrete Hamiltonized Lagrangian Lsym,εc from (13):

Lsym,εd (ri, ri+1) =
1

2

(
Lεd(ri, ri+1) + L1−ε

d (ri, ri+1)
)
, (32)

where Lεd(ri, ri+1) := hτLc
(

(1− ε)ri + εri+1,
ri+1 − ri

hτ

)
, hτ := τi+1 − τi.

We can then apply the DEL algorithm (10) to arrive at our first new integrator.

Definition 4.1. The Hamiltonized discrete Euler-Lagrange equations (HDEL) are
defined by

D1Lsym,εd (ri, ri+1) +D2Lsym,εd (ri−1, ri) = 0, i = 1, . . . , Nτ − 1, (33)

where Nτ is the total number of iterations.

These discrete equations approximate the trajectories according to rα(τi) ≈ rαi .
However, to compare to the RDLA algorithm (21) we need to calculate the discrete
t-values from the discrete τ -values according to

ti =

∫ τi

0

F (r(τ̃)) dτ̃ , i = 0, . . . , Nτ , where F (r(τ̃)) :=
1

f(r(τ̃))
. (34)

This requires that we apply a quadrature rule to each integral in (34). For sim-
plicity, we will choose to apply the same Newton-Cotes quadrature rule to each
integral5. The simplest of such rules is the trapezoidal rule, which yields the ap-
proximations:

ti ≈


hτ
2

(F (0) + F (τ1)) , i = 1,

hτ
2

(
F (0) + F (τi) + 2

i−1∑
l=1

F (lhτ )

)
, i = 2, . . . , Nτ .

(35)

These approximations produce an error δti in the assignment of a t-value to
each τ -value that the HDLA algorithm (33) uses. More specifically, we have the
following.

Proposition 1. Suppose that there exist Ci ∈ R, i = 1, . . . , Nτ such that |F ′′(r(τ))|
≤ Ci for all τ ∈ (τi−1, τi). Then the errors δti in making the approximations (35)
are bounded by

|δti| ≤
h3τ
12

i∑
l=1

Cl, i = 1, . . . , Nτ . (36)

Proof. We can write the integral (34) as

ti =

i∑
l=1

∫ τl

τl−1

F (r(τ̃)) dτ̃ , i = 1, . . . , Nτ . (37)

It is well known that there exist ηi−1,i ∈ (τi−1, τi) such that the error ∆ti in ap-
proximating the integral

∫ τi
τi−1

F (r(τ̃)) dτ̃ by the trapezoidal rule is given by

∆ti = −h
3
τ

12
F ′′(ηi−1,i). (38)

5Since we require the timestep to be fixed, we will not discuss the application of Gaussian
quadrature formulas. Although Gaussian quadrature gives better accuracy for a given order,

the non-constant timesteps it requires would necessitate the usage of asynchronous variational
integrators.
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Therefore, approximating each integral in (37) by the trapezoidal rule produces the
global error (see Theorem 7.16 in [16])

δti = −h
3
τ

12

i∑
l=1

F ′′(ηl−1,l), i = 1, . . . , Nτ . (39)

The claim then follows from the hypotheses on F ′′(r).

Thus, due to Proposition 1, although the HDLA algorithm (33) produces second-
order approximations to rα(τj), when converted to t-time this yields the second-
order approximation rα(tj + δtj) to rα(tj). We note that one could decrease the
error δti by using a higher-order Newton-Cotes formula, like Simpson’s or Boole’s
rule, but for simplicity we will only discuss the trapezoidal rule here.

Remark 1: In practice, since we are using the HDEL algorithm to compute second-
order approximations to rα(τi), we will not have a priori an explicit expression for
rα(τ) with which we can compute the bounds Ci. Instead, we must first express r′′

as a function of r, r′ through the Euler-Lagrange equations for Lc, so that (rα)′′ =
gα(r, r′). Then, after differentiating F ′′(r(τ)) with the chain rule, we can write
F ′′(r(τ)) = g(r, r′, r′′) = g(r, r′)). We can then finally use the discrete trajectory
values rαi computed from the HDEL algorithm to find the bounds Ci. We will
illustrate this in Section 5 below.

Let us note that although the HDLA uses the constant step size hτ , for f 6= const.
the corresponding step size hi = ti+1 − ti varies once the approximations (37) are
made. Although this is a shortcoming of this method, if one is merely interested
in the geometry of the trajectories, then one can avoid the approximations (37)
altogether by choosing one of the rα as a new independent variable and plotting (in
τ -time) the other rβ against it. We shall illustrate this strategy in Section 5 below.

Given some of the difficulties presented by the need to approximate the integrals
(34), we will discuss an alternative method which avoids the need to invert the time
transformation altogether in the next section. Before doing so, let us illustrate the
discretization (32).

Example: Returning to our running example, we discretize the Hamiltonized La-
grangian (30) by first computing Lεd:

Lεd(ri, ri+1) =
hτ
2

[
1

1 + ((1− ε)xi + εxi+1)2

(
xi+1 − xi

hτ

)2

+

(
yi+1 − yi

hτ

)2
]
,

(40)
and then computing Lsym,εd according to (32). Then, the HDEL equations follow
from (33), where r = (x, y). Numerical results will follow in Section 5.1.

4.2. Integrators via Poincaré transformations. The time reparameterization
dτ = f(r) dt, apart from its usage in the Hamiltonization of nonholonomic systems,
is also well-known from the theory of adaptive geometric integrators. In fact, in
Chapter 9 of [23] the reparameterization is called a Sundman transformation, and
has been used in computational astronomy to vary an integrator’s timestep6. An
alternative which achieves the same objective is known as a Poincaré transformation
[23] (Chapter 9).

6As [19] notes, this nomenclature dates back to Levi-Civita’s treatment of the three body

problem.
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To construct this transformation, we follow Section 9.1 of [23], and first define the

Hamiltonian H̃c(r, P ) := f(r) (Hc(r, P )− E), where E := Hc(r0, P0). We can then

view r(τ), P (τ), H̃c as functions of t via (29). The canonical equations of motion

for H̃c, written in terms of Hc, are

drα

dt
= f(r)

∂Hc
∂Pα

, (41)

dPα
dt

= −f(r)
∂Hc
∂rα

− (Hc(r, P )− E)
∂f

∂rα
. (42)

Now, since the system (41)-(42) is Hamiltonian, H̃c is conserved in time, and

in particular equal to its initial value, so that H̃c(r(t), P (t)) = H̃c(r(0), P (0)) =
f(r) (Hc(r(0), P (0))− E). If we now choose the initial conditions r(0) = r0, P (0) =

P0, then H̃c(r0, P0) = 0, and hence H̃c(r(t), P (t)) = 0, which gives Hc(r(t), P (t)) =
E. With this choice of initial conditions the parenthetical term in (42) vanishes and
the system (41)-(42) reduces to the system

drα

dt
= f(r)

∂Hc
∂Pα

,
dPα
dt

= −f(r)
∂Hc
∂rα

. (43)

This is significant because in Section 4 we defined the Hamiltonian Hc(r, P ) from
Lc(r, r′) according to Hc(r, P ) = r′αPα − Lc(r, r′). By using dτ = f(r) dt and the
chain rule to rewrite r′, P ′, as well as (29), the canonical equations of motion of
Hc are transformed into precisely (43). Thus, the non-Hamiltonian system (43) can
be represented as the Hamiltonian system (41)-(42) provided we choose the initial

conditions such that H̃c(r0, P0) = 0. More precisely, one can easily show that given
the same initial condition the solutions to (41)-(42) and (43) are identical, up to
the reparameterization (29) [19] (Lemma 1).

To apply the Poincaré transformation in practice, one chooses the initial condi-
tions r(0), P (0) and then constructs H̃c(r, P ) by inserting the value E = Hc(r0, P0).
Before proceeding to the discretization of the system (41)-(42), let us first find the

corresponding Lagrangian L̃c (since we will need it to apply the DEL algorithm).

Proposition 2. The Poincaré Lagrangian L̃c(r, ṙ) is given by

L̃c(r, ṙ) = f(r) (lc(r, ṙ) + E) =
f(r)

2
Gαβ(r)ṙαṙβ − f(r)(V (r)− E). (44)

Proof. By definition, we have

L̃c(r, ṙ) = ṙαPα − H̃c(r, ṙ)

= ṙα(f(r)Gαβ(r)ṙβ)− f(r)

(
1

2(f(r))2
Gαβ(r)(f(r))2ṙαṙβ + V (r)− E

)
=

f(r)

2
Gαβ(r)ṙαṙβ − f(r)(V (r)− E) = f(r) (lc(r, ṙ) + E) . (45)

We can then define the symmetrized discrete Poincaré transformed Hamiltonized
Lagrangian L̃sym,εd (ri, ri+1) by (32), where we replace Lc by L̃c from (44), and hτ
by h. We can then apply the DEL algorithm (10) to arrive at our second integrator.
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Definition 4.2. The Poincaré transformed Hamiltonized discrete Euler-Lagrange
equations (PTHDEL) are defined by

D1L̃sym,εd (ri, ri+1) +D2L̃sym,εd (ri−1, ri) = 0, i = 1, . . . , N − 1. (46)

The algorithm (46) proceeds in discretized t-time, versus the algorithm (33)
which proceeds in discretized τ -time. Thus, (46) has the advantage of avoiding
the problematic discretization of (29) in order to recover the t-time approximations
from (33). However, the discrete energy behavior of the algorithm (46) depends on
f(r). To see this, we note that for a general regular Lagrangian L, its associated
energy function EL(t) is defined by

EL(t) = ṙα
∂L

∂ṙα
− L(r(t), ṙ(t)), (47)

and for the Lagrangians lc and L̃c we have

Elc(t) = lc(r(t), ṙ(t)) + 2V (r(t)), (48)

EL̃c(t) = f(r(t)) (lc(r(t), ṙ(t)) + 2V (r(t))− E) = f(r(t))(Elc(t)− E) (49)

From (49) it follows immediately that

Elc(t) = E + F (r(t))EL̃c , (50)

where we remind the reader that F (r) = (f(r))−1.

In the continuous case, since the chosen initial conditions result in H̃c = 0 = EL̃c
for all t (as discussed following the system (43)), it follows from (50) that the energy
of the constrained reduced nonholonomic mechanics Elc is conserved. Once we

discretize L̃c, like any fixed timestep variational integrator the PTHDEL algorithm
(46) will not exactly conserve the discrete energies (EL̃c)d(ri, ri+1). By (50), the

deviations in Elc − E at each timestep, as [23] (pg. 237) points out, will depend
on f . If f is bounded or grows (so that F is bounded or decays) we expect the
PTHDEL algorithm to inherit the good long-term behavior of the discrete energies
(EL̃c)d. We will see this in Section 5.

Example: Let us now illustrate the Poincaré transformation for our running ex-
ample. Using the reduced constrained Lagrangian (26) we can define the Poincaré

transformed Lagrangian L̃c from (44) by:

L̃c(r, ṙ) =
1

2

[
ẋ2√

1 + x2
+
√

1 + x2 ẏ2
]

+
E√

1 + x2
. (51)

We then construct the symmetrized discrete Lagrangian corresponding to (51) ac-

cording to (32), where L̃εd is given by:

L̃εd(ri, ri+1) =
h

2
√

1 + ((1− ε)xi + εxi+1)2

(
xi+1 − xi

h

)2

+
h

2

√
1 + ((1− ε)xi + εxi+1)2

(
yi+1 − yi

h

)2

+
E√

1 + ((1− ε)xi + εxi+1)2
. (52)

The PTHDEL algorithm then proceeds according to (46), where r = (x, y).
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Before proceeding to the examples, we have quickly summarized the three inte-
grators we will be comparing in the next section and some of their properties in
Tables 1 and 2 below.

Integrator Algorithm

RDLA (21) D1L
∗
d(ri, ri+1) +D2L

∗
d(ri−1, ri) = F−(ri, ri+1) + F+(ri−1, ri)

HDEL (33) D1Lsym,εd (ri, ri+1) +D2Lsym,εd (ri−1, ri) = 0

PTHDEL (46) D1L̃sym,εd (ri, ri+1) +D2L̃sym,εd (ri−1, ri) = 0

Table 1. Comparison of Integrator Formulations.

Integrator Time Used Variational?

Nonholonomic (21) t No

HDEL (33) τ Yes

PTHDEL (46) t Yes

Table 2. Comparison of Integrator Properties.

5. Examples.

5.1. The nonholonomic particle. Let us return to our running example, the
nonholonomic free particle with unit mass. Before discussing the numerical results,
let us remark that we have chosen to begin with this system since it is integrable by
quadratures, and hence we can directly compare both of the integrators developed
above (the HDEL and PTHDEL) to the exact solutions. The solutions to the
constrained nonholonomic equations of motion (5) are given by [13]:

x(t) = αxt, y(t) =
αy
αx

ln
(
x(t) +

√
1 + x(t)2

)
, (53)

where we have chosen, without loss of generality, the initial conditions x0 = y0 = 0,
and we have assumed that αx := ẋ(0) 6= 0 and αy := ẏ(0) 6= 0. Moreover, the time

reparameterization is given explicitly by integrating dτ = (1 + x(t)2)−1/2 dt, using
x(t) from (53), to arrive at

τ(t) =
1

αx
ln
(
x(t) +

√
1 + x(t)2

)
, (54)

where τ0 = τ(t = 0) = 0. One can also invert (54) and find t(τ):

t(τ) =
1

αx
sinh (αxτ) , and also τ(t) =

1

αx
sinh−1(αxt), (55)

and as a consequence we can use t(τ) in (53) to arrive at the reduced dynamics in
terms of τ :

x(τ) = sinh (αxτ) , y(τ) = αyτ. (56)



VARIATIONAL INTEGRATORS FOR HAMILTONIZABLE SYSTEMS 151

From (56) it follows that

x = sinh

(
αx
αy
y

)
, (57)

which we will use to compare the performance of the two integrators developed
above.

Let us now turn to the numerical simulations. We have chosen αx = αy = 1,
h = hτ = 0.05 and N = 200. Thus, the simulation time hN is 10 seconds. With
our choice of initial conditions the energy E = 1, and we will use the symmetrized
versions of the Lagrangians (28), (52), and (40) with ε = 0.5 as the symmetrization
parameter. Also, since from (54) we see that τ(10) ≈ 2.998, then 200 iterations
in t-time corresponds to τ(10)/hτ ≈ 60 iterations in τ -time. Thus, to more easily
compare the nonholonomic (RDLA) and HDEL integrators, we will choose Nτ = 60.
We also wish to note that all of our numerical calculations were done using MAPLE.

Figure 1 below shows a comparison of the root mean square deviation (rmsd) of
the discrete values computed by each algorithm from the known solutions (53) for
the RDLA and PTHDEL algorithms and (56) for the HDEL algorithm. This error is

defined by
√

(xi − x(ti))2 + (yi − y(ti))2 for the RDLA and PTHDEL algorithms,
and an analogous expression, with t replaced by τ for the HDEL algorithm. The
rmsd error is smallest for the RDLA algorithm (of order 10−4), followed by the
HDEL algorithm (of order 10−3) and finally the PTHDEL algorithm (of order 10−2).

(a) (b)

(c)

Figure 1. Nonholonomic Particle: rmsd errors for the (a) RDLA,
(b) HDEL, and (c) PTHDEL algorithms.
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The difference of two orders of magnitude in the rmsd errors between the PTHDEL
and RDLA algorithms is explained by looking at how well they preserve the discrete
energy. Figure 2 (parts (a)-(c)) below shows a comparison of the deviation of the
discrete energies from one for each algorithm. While the RDLA and HDEL algo-
rithms both have stable errors of order 10−4 (Figure 2 (a) and (b), respectively),
Figure 2(c) shows that the PTHDEL algorithm’s discrete energy values seem to
grow linearly away from one. This is expected since, although the PTHDEL al-
gorithm results in good long-term behavior for EL̃c (Figure 2(d)), since (50) here

reads (recall F (r) = (f(r))−1)

Elc(t) = 1 +
√

1 + x2EL̃c ,

as x(t) increases, since EL̃c remains roughly constant at C ≈ 5.2× 10−4, the t-time

energy Elc(t) − 1 ≈ C
√
x2(t) = Ct, using (53). Such an increase in the energy

contributes to the rmsd error over the long-term as well (Figure 1(c)).

(a) (b)

(c) (d)

Figure 2. Nonholonomic Particle: deviation from one of the dis-
crete energies for the (a) RDLA, (b) HDEL, and (c) PTHDEL
algorithms, and (d) deviation from zero of the discrete energy EL̃c
for the PTHDEL algorithm.
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Figure 3 shows a comparison of the deviation from zero of each algorithm’s
discrete constraint values7. The constraint preservation error is smallest for the
HDEL algorithm, of order 10−9, followed by the RDLA and PTHDEL algorithms
(both of order 10−8).

(a) (b)

(c)

Figure 3. Nonholonomic Particle: constraint errors for the (a)
RDLA, (b) HDEL, and (c) PTHDEL algorithms.

Lastly, let us illustrate the application of Proposition 1. From (56), it follows
that F ′′(x(τ)) = cosh(τ). However, as discussed in Remark 1, one would not know
this before running the HDEL algorithm. Therefore, let us discuss how one can find
the bounds Ci of Proposition 1 using only the numerical results from the HDEL
algorithm.

First, we note that from the x Euler-Lagrange equation of Lc, it follows that

x′′ =
xx′2

1 + x2
. (58)

Then, after finding F ′′(x(τ)) using the chain rule, we can substitute in (58) to arrive
at

F ′′(x(τ)) =
(x′(τ))2√
1 + (x(τ))2

. (59)

7We have constructed this for each of the three integrators by plotting the discretization of the
constraint ż + xẏ, using the exact solution for z and the algorithm solution for x, y.
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Since the HDEL algorithm shows that the discrete trajectory xi is increasing for all
τ (in agreement with (56)), then it follows that for all τ ∈ [τi−1, τi],

|F ′′(x(τ))| ≤ (x′(τ))2√
1 + (xi−1)2

. C̃i :=
(xi − xi−1)2

(hτ )2
√

1 + (xi−1)2
, (60)

where, although we cannot precisely bound x′(τ), we have estimated it using the
forward finite difference of the HDEL algorithm’s discrete trajectories xi. Using
these bounds in Proposition 1, the errors |δti| are computed to be

|δt1| ≈ 1.04× 10−5, |δt2| ≈ 2.09× 10−5, . . . , |δtNτ | ≈ 2.14× 10−3. (61)

Since we do have the exact expression for F ′′(x(τ)) after all, we can compare
the approximate errors in (61) to the actual error bounds computed by using
|F ′′(x(τ))| ≤ Ci := | cosh(τi)| for τ ∈ [τi−1, τi]. The rmsd difference between the

error bounds Ci and C̃i for |δti| is shown in Figure 4 below.

(a)

Figure 4. Nonholonomic Particle: rmsd difference between ap-
proximate and actual error bounds for |δti| for the HDEL algo-
rithm.

Figure 4, along with (61), shows that by using only the numerical results of
the HDEL algorithm to approximate the unreparameterized values rα(t(τi)) with
the discrete values rαi produced from the HDEL algorithm, we incur an additional
error in t of order at most 10−3. Finally, we note that an alternative method to
estimate the errors |δti| is to compare the numerical results for two different orders
of accuracy. This approach is at the heart of the Runge-Kutta-Fehlberg method [5].

5.2. The sinusoidal nonholonomic particle. To further illustrate the effect of
the multiplier f on Elc described by (50), let us consider again the nonholonomic
particle example, but instead with the constraint

ż = −(sinx)ẏ.

This abelian Chaplygin nonholonomic system is again integrable by quadrature,
and also Hamiltonizable with multiplier f(x) = (1 + sin2(x))−1/2. The solutions to
the constrained nonholonomic equations (5), with x0 = 0 and αx, αy 6= 0, are

x(t) = αxt, y(t) =
αyF(αxt | − 1)

αx
, (62)
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where F(t|m) is the elliptic integral of the first kind [30] (Section 19). After Hamil-
tonization, the solutions (62) become

x(τ) =
1

αx
am

(
αxτ

αy
,−1

)
, y(τ) = αyτ (63)

in τ -time, where am(τ,m) is the Jacobi amplitude function [30] (Section 22.16).

Because |F (x)| =

∣∣∣∣√1 + sin2(x)

∣∣∣∣ ≤ 2, we expect that the PTHDEL algorithm

will have better long-term energy tracking than in the previous example, since by
(50) this would lead to energy errors Elc of roughly the same order as that of
EL̃c . Using the same initial conditions as in the previous example, and again with

ε = 0.5, N = Nτ = 200, h = hτ = 0.5, and the initial energy E = 1, Figure 5(c)
below confirms this8. As the figure shows, for the sinusoidal nonholonomic particle
system all three integrators have comparable long-term energy behavior, with errors
of order 10−4.

(a) (b)

(c) (d)

Figure 5. Sinusoidal Nonholonomic Particle: deviation from one
of the discrete energies for the (a) RDLA, (b) HDEL, and (c)
PTHDEL algorithms, and (d) deviation from zero of the discrete
energy EL̃c for the PTHDEL algorithm.

8In fact, from (50) we can estimate the maximum error in Elc . Using the fact that the maximum

error in EL̃c is 0.0006 (Figure 5(d)), along with |F | ≤
√

2, we estimate that Elc−1 ≤ (0.0006)
√

2 ≈
0.00085, in agreement with the maximum error in Figure 5(c).
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The corresponding rmsd errors are shown in Figure 6 below. The improved
energy behavior of the PTHDEL algorithm has led to errors of the same order of
magnitude as the RDLA algorithm by the end of the computation time (compare
Figure 6, parts (a) and (c)). Figure 6(b) shows that the HDEL algorithm has the
best long-term rmsd error behavior of the three algorithms.

(a) (b)

(c)

Figure 6. Sinusoidal Nonholonomic Particle: rmsd error for the
(a) RDLA, (b) HDEL, and (c) PTHDEL algorithms.

Finally, Figure 7 below shows a comparison of the deviation from zero of each
algorithm’s discrete constraint values. Once again the HDEL algorithm produces
the smallest errors (of order 10−9) of the three algorithms (Figure 7(b)). The RDLA
and PTHDEL algorithms both have comparable errors of order 10−8 (Figure 7, parts
(a) and (c), respectively).

5.3. The knife edge on an inclined plane. Consider a plane slanted at an angle
α from the horizontal and let (x, y) denote the position of the point of contact of a
knife edge on the plane with respect to a fixed Cartesian coordinate system on the
plane, see [1] (Section 1.6). Moreover, let ϕ represent the orientation of the knife
edge with respect to the xy-axis. The Lagrangian and constraints are then given
by

L =
1

2

(
ẋ2 + ẏ2 + ϕ̇2

)
+ x sinα, ẏ − ẋ tanϕ = 0, (64)
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(a) (b)

(c)

Figure 7. Sinusoidal Nonholonomic Particle: constraint errors for
the (a) RDLA, (b) HDEL, and (c) PTHDEL algorithms.

where we have set all parameters (mass, moment of inertia, and the gravitational
acceleration) equal to one for simplicity. The system is again Chaplygin Hamil-
tonizable with f(ϕ) = cosϕ, [13]. Now, although f has zeros, this will not prevent
the application of the results obtained thus far. Indeed, we have that

Lc =
1

2
(x′2 + cos2 ϕϕ′2) + x sinα.

The reduced equations of motion are once again integrable by quadrature [13],
and taking ϕ(0) = x(0) = 0 and ω := ϕ̇(0) 6= 0 yields the nonholonomic solutions

x(t) =
sinα

2ω2
sin2(ϕ(t)) +

κ

ω
sinϕ(t), ϕ(t) = ωt, (65)

where κ := ẋ(0). The time reparameterization dτ = f(ϕ) dt = cos(ϕ(t)) dt can
once again be integrated explicitly to obtain

τ(t) =
1

ω
sin(ϕ(t)), (66)

where we have again set τ(t = 0) = 0 for simplicity. We can invert this to obtain
the τ -time version of the solutions (65):

x(τ) =
sinα

2
τ2 + κτ, ϕ(τ) = arcsin(ωτ), (67)
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where we choose the branch of the inverse sine function based on the values of ϕ(t).
Moreover, since (66) shows that |τ(t)| ≤ 1

ω , we conclude that although the solutions

(67) are only defined for τ ∈ [− 1
ω ,

1
ω ], the change in branch cut for the inverse sine

function as ϕ crosses π
2 implies that (67) represents periodic motion, in agreement

with the t-time solutions (65).
For our numerical simulations of the knife edge on the inclined plane, we chose

the initial conditions x(0) = ϕ(0) = 0 and κ = ω = 1, and set the incline angle
α = 5◦. We again selected to symmetrize the Lagrangians used, with ε = 0.5, and
chose N = 100, h = hτ = 0.07. Thus, our total simulation time in t-time is hN = 7
seconds.

Now, since f(ϕ) has roots this means that the corresponding simulation time in
τ -time is τ(hN) = τ(7), which is approximately 0.66 seconds, computed from (66).
Thus, we have chosen Nτ = N = 100 for the number of iterations in τ -time.

The comparison of the rmsd errors is shown in Figure 8 below. The RDLA
algorithm leads to the smallest rmsd error (of order 10−3), followed by the HDEL
algorithm (of order 10−3) and finally the PTHDEL algorithm (of order 10−2). The
abrupt behavior encountered by all the algorithms near iteration numbers i = 23
and i = 68 is a result of the fact that ϕ(23h) ≈ π

2 and ϕ(68h) ≈ 3π
2 . Near these

values lc, which depends on secϕ, becomes singular. Similarly, since the Lagrangians
Lc and L̃c for the knife edge are

Lc =
1

2

(
x′2 + (cos2 ϕ)ϕ′2

)
+ x sinα

L̃c =
1

2

(
(secϕ)ẋ2 + (cosϕ)ϕ̇2

)
+ cosϕ(x sinα+ 1), (68)

near those two iteration points the numerical solver is again attempting to continue
the algorithm despite approaching a singularity (as is the case for Lc, Figure 8(c)),

or approaching a vertical tangent at arcsin(±1) (as is the case for L̃c, Figure 8(b)).
Figure 9 below shows a comparison of the discrete energy errors for the three

algorithms. The PTHDEL algorithm has the best long-term performance, with
errors of order 10−2 (although these errors increase as the algorithm approaches
the aforementioned iteration values i = 23 and i = 68). The RDLA and HDEL
algorithms both have errors of order 10−1. Figure 10 below compares how well
the three algorithms numerically preserve the nonholonomic constraint. All three
algorithms lead to errors of order 10−9.

6. Conclusion. We have developed two new numerical algorithms to simulate
the mechanics of Chaplygin Hamiltonizable nonholonomic systems, the HDEL and
PTHDEL algorithms defined by (33) and (46), respectively. The development of
these two new integrators was based on the assumption that the underlying non-
holonomic system was Chaplygin Hamiltonizable. Although it is certainly not true
that every nonholonomic system is Chaplygin Hamiltonizable, in [2] necessary and
sufficient conditions were derived in the form of a coupled set of linear first-order
partial differential equations for f whose solution, if there is one, determines the
multiplier, up to a constant. Practically speaking then, given a nonholonomic sys-
tem one can check its Chaplygin Hamiltonizability (using a symbolic software pack-
age, like MAPLE), find f , and then apply one of the two integrators developed
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(a) (b)

(c)

Figure 8. Knife Edge on Inclined Plane: rmsd error for the (a)
RDLA, (b) HDEL, and (c) PTHDEL algorithms.

herein. By then exploiting the Hamiltonian form of the time reparameterized re-
duced nonholonomic equations, these new algorithms allow the application of vari-
ational integrators to non-Hamiltonian nonholonomic systems which are Chaplygin
Hamiltonizable.

The HDEL algorithm (33) proceeds in the reparameterized time τ , and our nu-
merical examples above indicate that it generally leads to superior long-term discrete
constraint preservation behavior relative to the RDLA nonholonomic integrator.
The examples also suggest that the long-term discrete energy behavior compares
well with the RDLA algorithm. Moreover, the fact that the HDEL algorithm pro-
ceeds in τ -time does not affect its usefulness. As the Example 5.1 showed, for small
enough timesteps h these errors δti can be very small. As an alternative, instead of
insisting on a smaller timestep to improve this error one can always apply a higher-
order quadrature rule to (34) to reduce the error in assigning a discrete t value to
each discrete τ value used in the algorithm.

However, in case one is interested in attempting to preserve the equal timesteps
in t-time, a possibility for future research would be to add the holonomic constraints
h =

∫ τi+1

τi
F (r(τ̃)) dτ̃ , i = 1, . . . , Nτ − 1, to the unconstrained Hamiltonian system

defined by the Hamiltonized Lagrangian Lc. By defining the box functions χi,i+1(τ)
to be equal to unity for τ ∈ [i, i+ 1] ⊂ [0, N ] and zero otherwise, one could express
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(a) (b)

(c) (d)

Figure 9. Knife Edge on Inclined Plane: deviation from one of the
discrete energies for the (a) RDLA, (b) HDEL, and (c) PTHDEL
algorithms, and (d) deviation from zero of the discrete energy EL̃c
for the PTHDEL algorithm.

these constraints as h =
∫ Nτ
0

χi,i+1(τ̃)F (r(τ̃)) dτ̃ , i = 1, . . . , Nτ − 1. These con-
straints then take the form of isoperimetric constraints (see Section 4.3.2 of [33]).
One could then apply a holonomic variational integrator, [27], to the new system,
and expect the resulting integrator to have roughly fixed timesteps h without the
need (but also without the freedom) of selecting a quadrature rule for (34).

The PTHDEL algorithm, a new application of the Poincaré transformation to
nonholonomic mechanics, also seems to compare well with the RDLA nonholonomic
integrator for multipliers f which are either bounded or show long-term growth. For
this class of multipliers, the PTHDEL algorithm inherits the favorable long-term
discrete energy behavior from the variational integrator it is based on. Moreover,
as the knife edge example shows, the PTHDEL algorithm may even have superior
long-term behavior relative to the RDLA integrator for multipliers with roots.

Let us conclude by indicating two more intriguing directions for future research.
We note first that despite the requirement that the nonholonomic system under
consideration be Chaplygin Hamiltonizable in order to apply the new integrators
developed here, different techniques exist for the Hamiltonization of nonholonomic
systems [12]. In particular, in [2], Hamiltonization is accomplished by directly
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(a) (b)

(c)

Figure 10. Knife Edge on Inclined Plane: constraint errors for
the (a) RDLA, (b) HDEL, and (c) PTHDEL algorithms.

solving the inverse problem of the calculus of variations. This method of Hamil-
tonization is then used in [29] to simulate the dynamics of a class of nonholonomic
systems using variational integrators. It is within the realm of possibility that one
could combine the results of [2] with the results of [15, ] on Chaplygin Hamil-
tonizability to enlarge the class of Hamiltonizable nonholonomic systems. The idea
would be to solve the inverse problem of the calculus of variations for a suitably
reparameterized reduced nonholonomic system, where the reparameterization func-
tion f need not be what we have hitherto called the multiplier. As in [2], one would
expect a family of Lagrangians as solutions. This freedom to choose the Lagrangian
could be used to develop more accurate and efficient numerical methods for these
Hamiltonized systems. In addition, for nonholonomic systems on Lie groups, an
analogous process to Hamiltonization called Poissonization, discussed in [15], could
be used to develop variational integrators applicable to Poissonizable nonholonomic
systems. A comparison of these results with the works of [11, 20, 28] would be
interesting.

Finally, we wish to mention that although we have restricted ourselves here in
basing the development of our two new integrators on the simplest quadrature rule
for the Lagrangian (13), one could certainly use more advanced quadrature rules as
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a starting point. In particular, the quadrature rules used in the Galerkin Hamil-
tonian Variational Integrators and Symplectic Partitioned Runge-Kutta methods,
discussed recently in [25], appear to be promising and worth pursuing.
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