COARSE OBSTRUCTIONS TO POSITIVE SCALAR CURVATURE IN NONCOMPACT
ARITHMETIC MANIFOLDS

STANLEY S. CHANG

ABSTRACT. Block and Weinberger show that an arithmetic manifold can be endowed with a pos-
itive scalar curvature metric if and only if it3-rank exceed®. We show in this article that these
metrics are never in the same coarse class as the natural metric inherited from the base Lie group.
Furthering the coars€™-algebraic methods of Roe, we find a nonzero Dirac obstruction idkthe

theory of a particular operator algebra which encodes information about the quasi-isometry type of
the manifold as well as its local geometry.

I. Introduction

In the course of showing that no manifold of non-positive sectional curvature can be endowed
with a metric of positive scalar curvature, Gromov and Lawson [9] were led to consider what we
would now call restrictions on the coarse equivalence type of complete noncompact manifolds
of such positively curved metrics. In particular, they showed that such metrics cannot exist in
manifolds for which there exists a degree one proper Lipschitz map from the universal cover to
R™, now understood to be essentially a coarse condition. Block and Weinberger [2] investigate
the situation in which no coarse conditions are imposed upon the complete metric, focusing on
quotientsI"\G// K of symmetric spaces associated to a latfice an irreducible semisimple Lie
groupG. They show that the spadd = I'\GG/K can be given a complete metric of uniformly
positive scalar curvature > ¢ > 0 if and only if I is an arithmetic group of-rank exceeding.

Note that the theorem of Gromov and Lawson [9] mentioned above establishes this theorem
in the case of rankI" = 0. In the higher rank cases, for which the resulting quotient space is
noncompact, the metrics constructed by Block and Weinberger are however wildly different in the
large when compared to the natural oneMninherited from the base Lie grou@. In fact, their
examples are all coarse quasi-isometric to rays. Their theory evokes a natural question: Can the
metric be chosen so that it is simultaneously uniformly positively curved and coarsely equivalent
to the natural metric induced liy?

One of the important developments in analyzing positive scalar curvature in the context of non-
compact manifolds, especially when restricted to the coarse quasi-isometry type, is introduced by
Roe [15], [14], who considers a higher index, analogous to the Novikov higher signature, that lives
naturally in theK -theory of theC*-algebraC* (M) of operators onM with finite propagation
speed. He describes a map from #etheory groupK,.(C*(M)) to the K-homology K. (v M)
of the Higson corona space which admits a dual transgressionfméapM) — HX*(M). If
the Dirac operator oM is invertible, then the image of its index K, (v M) vanishes, leading to
vanishing theorems for the index paired with coarse classes from the transgressidn &oe’s
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construction is used to show that a metric on a honcompact manifold cannot be uniformly pos-
itively curved if the Higson corona of the manifold contains an essefitiat 1)-sphere. Such
spaces are calledltraspherical manifolds

The usual Roe algebra, however, is unsuited to provide information about the existence of posi-
tive scalar curvature metrics that exist on arithmetic manifolds, in particular because the corona is
too anemic. For example, the space at infinity of a product of punctured two-dimensional tori is a
simplex and therefore contractible. As a coarse objectkittaeory of the Roe algebra associated
to this multi-product space can be identified with(C*(R%)). Yet Higson, Roe and Yu [11] have
shown that the Euclidean con® on a single simple¥” must satisfyK, (C*(cP)) = 0. Since the
Euclidean hyperoctariR? , is simply the cone on afr — 1)-simplex, we find tha#(,. (C*(RZ))
is the trivial group and hence no obstructions are detectable. Even by considering the fundamental
group of the manifold by tensoring the Roe algebra withr, (M) we find this detection process
unfruitful, since theX -theory groupK, (C* (M) ® C*m(M)) vanishes as well. What seems to be
critical is how different elements of the fundamental group at infinity can be localized to different
parts of the space at infinity.

In this article, we shall provide coarse indicial obstructions in the following noncompact mani-
folds: a finite product of punctured two-dimensional tori, a finite product of hyperbolic manifolds,
the double quotient spacd., (Z)\SL,(R)/SO,(R) of unit volume tori, and more generally the
double quotient spacB\G/K, whereG is an irreducible semisimple Lie grouf its maximal
compact subgroup and an arithmetic subgroup a¥. Note that the first two do not correspond
to irreducible quotients, but an analysis of these spaces gives us the proper insight to attack the
more general cases. A further research project will analyze this problem without the irreducibility
assumption. The key feature in these particular manifédis that they contain hypersurfac&s
that are coarsely equivalent to a prodiatck U of Euclidean spac& with some iterated circle bun-
dleU (i.e. atorus, Heisenberg group, or more generally a group of unipotent matrices). Moreover
such a hypersurface decomposes the manildlinto a coarsely excisive paifA, B) for which
AUB = M andAN B =V. Ageneralized form of the Mayer-Vietoris sequence constructed by
Higson, Roe and Yu [11] provides the following:

co— K (CEH(A)) @ K. (CH(B)) — K. (CE(M)) — K1 (CE(V)) — -+

The boundary map : K,(C5(M)) — K,._1(C&(E x U)) sends Inds(D), the index of the
spinor Dirac bundle on the universal cover lifted from that/dn to Indg. (D). To see that

these indices are indeed nonzero, we note that there is a boundariKmaC? (£ x U)) —

K. _dim (C&(R x U)), which sends index to index. We show that the index of the Dirac operator
in the latter group, however, is honzero by noting that the Gromov-Lawson-Rosenberg conjecture
is true for nilpotent groups and hence provides an appropriate nhonzero obstruction.

I would like to thank Alex Eskin, Benson Farb, Nigel Higson, Thomas Nevins, Mel Rothenberg,
John Roe, Stephan Stolz and Guoliang Yu for very useful conversations. In particular, | would like
to acknowlege the role of my advisor Shmuel Weinberger in pointing out the strength of certain
tools in the realization of these theorems.

Il. The Generalized Roe Algebra

Thecoarse categonyis defined to contain metric spaces as its objects and rhagx’, dx) —
(Y, dy ) between metric spaces as its morphisms satisfying the following expansion and properness
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conditions: (a) for eacli® > 0 there is a corresponding > 0 such that, ifdx (z1,z2) < Rin X,

thendy (f(z1), f(z2)) < S, (b) the inverse imag¢ ' (B) underf of each bounded sé& C Y is

also bounded iX. Such a function will be designatedcaarse mapand two coarse map5 g :

X — Y are said to beoarsely equivalent their mutual distance of separatialy (f (), g(x)) is
uniformly bounded inz. Naturally two metric spaces are coarsely equivalent if there exist maps
from one to the other whose compositions are coarsely equivalent to the appropriate identity maps.
Two metricsg; and g, on the same spack/ are said to be coarsely equivalent(i¥/, g;) and

(M, g2) are coarsely equivalent metric spaces.

Following Roe [14], we recall a Hilbert spadé is an M -module for a manifoldV/ if there is a
representation of’y(M) on H, that is, aC*-homomorphisnCy (M) — B(H). We will say that
an operatofl’ : H — H is locally compactf, for all ¢ € Cy(M), the operatord’p andeT are
compact or. We define thesupportof ¢ in an M -moduleH to be the smallest closed F6tC M
such that, iff € Cy(M) and fo # 0, then f|x is not identically zero. Consider the-module
H = L?(M), whereM is the universal cover o/ endowed with the appropriate metric lifted
from the base space. Let: M — M be the usual projection map and for apyy € Cy(M)
consider the collectiolt (¢, 1) of pathsy : [0,1] — M in M originating in Supfy) and ending
in Supp(vy). Denote byL[~], for v € T'(p, ¢), the maximum distance of any two points on the
projection of the curvey in M by m, i.e. L[y] = supy ycro,1 (7 0 y(z), 7 0 ¥(y)).

Definition: Let M be a manifold with universal cove¥l. We say that an operat@t on L2(J\7)
hasgeneralized finite propagatioifithere is a constank > 0 such thatpT') is identically zero in
B(H) wheneverp, i) € Cy(M) satisfies

inf L > R.
YET (0,9) 7]

The infimum of all suchR will be the generalized propagation speed the operatofl’. If G =

w1 (M) is the fundamental group a¥f, we denote byD7.(M) to be the norm closure of the*-
algebra of all locally compact/-equivariant, generalized finite propagation operatorg/on

Let M be a manifold and/ its universal cover. L&t : H — H be an operator ol = L2(M).
Consider the subsé C M x M of pairs(m,m') for which there exist functiong, s € Cy(M)
such thatp(m) # 0, ¢9(m') # 0 andpT) does not identically vanish. We will say that thepport
of T is the complement idZ x M of Q. For such two pointsn, m’ € M, lety,, : [0,1] — M
be the path of least length joining andm’ in M. We consider the projection of this path inmté
by = and take the greatest distance between two points on this projected path. Then it is easy to
see that an operatdr has generalized finite propagation, as previously defined, if

sup  sup  d(m o Yy (2), T 0 Yy (1)) < 00.
maml x7ye[071}

Definition: Consider the norm closurkof the ideal inD{, (M) generated by operatof’s whose
matrix representation, parametrized by x M, satisfies the condition thdt x 7)(SuppT’) is
bounded inM x M. Then thegeneralized Roe algebyalenoted byC, (M), is obtained as the
quotientDZ,(M)/I. Two operators irD7,(M) belong to the same classdrf. (M) if their nonzero
entries differ on at most a bounded set when viewed from the perspective of the base space.
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Examples:

(1) LetT : L?(R) — L?(R) be operator or.2-functions on the real line given bi’g)(z) =
g(z+1)forallg € L?(R) andz € R. Then for anyp, ¢ € Cy(R), (¢T4)g(z) = p(x+1)g(z +
1)y (x). If ¢ is supported atn = 1 and+ is supported aitn’ = 0, then(pT4))g is nonzero for any
g supported at: = 1. Hence(0,1) € SuppT'. ltis easy to see thain,m’) € SuppT if and only
if m' —m = 1. The propagation speed @fis 1. If we write T' as a matrix parametrized #/x R,
all the nonzero entries will lie at distance one from the diagonal.

(2) Let M be the cylindeiS' x R with its universal covef = R?. An operator in the algebra
D¢, (M) will be someT : H — H on L?(R?), which is of finite propagation speed (in the usual
sense) in the direction projecting down to the noncompact directidf,ibut has no such condition
in the orthogonal direction corresponding to the compact directidd olin this direction, however,
the operator is controlled by the condition that itbequivariant. It is apparent that the operator,
when restricted to individual fibers, has finite propagation speed, although there is no requirement
that the speed to be uniformly bounded across all fibers.

(3) Let M = RP™, n > 3, the once-punctured real projective space, expressible as the quotient
(8"~ x R)/Z,. Certainly M is coarsely equivalent to the rag, co) and is covered by the space

M = S™! x R, where the pointgs,r) and (—s, —r) are identified by the projection map to
M. LetT : L2(M) — L2(M) be given by the reflectiofT’f)(s,r) = f(s,—r). Consider
i, i € Co(M) compactly supported af*~! x [—i — 1, —i] andS"~! x [i,i+ 1], respectively.
Notice thatpT'y) will never be identically zero, and yet the lengtk] -y ] associated tg; and;

will always be at least. Hence the operatdf is not of generalized finite propagation speed and

therefore not an element of the generalized Roe algépra/).

The notion of a generalized elliptic operator is available in [14], [15] and [16], but we include
its definition here for completeness.

Definition: Let M be a space and Idi be anM-module. If D is an unbounded self-adjoint
operator ond, then we say thab is ageneralized elliptic operatoon H if

(a) there is a constant > 0 such that, for alt € R, the unitary operatoe’** has bounded
propagation or{ and and its propagation bound is less thgh and
(b) there isn > 0 such that1 + D?)~" is locally traceable.

Lemma 1: Let D a generalized elliptic operator it¥ (M, S). Suppose thab is the lifted operator
on M. If & : R — R is compactly supported, theh(D) lies in the generalized Roe algebra
Cg(M).

Proof: (cf. [14], [6]) Suppose thab has compactly supported Fourier transform and denoté by
the Fourier transform ob. We may write

~ 1 o L~

®(D) = — / D(t) P dt.
2 J_ s

It is known thate?*? has finite propagation speed, and sifcis compactly supported, the integral

is defined and has a generalized propagation bound. Moreover, by constrﬁbiis)m(M)-

equivariant. Sab(D) is 7 (M )-equivariant as well. Therefore & is compactly supported, then

& (D) lies in D{.(M) and passes to an element of the quoti€h{ /). However, functions with
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compactly supported Fourier transform form a dense s€4{fR) and the functional calculus map
f — f(D) is continuous, so the result holds for @lle C(R). O

Let x : R — R be achopping functioron R, i.e. an odd continuous function with the property
thatx(z) — £1 asz — +oo. In addition, denote by35 (M) the multiplier algebraof C¢ (M),
that is, the collection of all operatofssuch thatST and7'S belong toC¢ (M) forall T' € CF(M).
Then B, (M) containsCf.(M) as an ideal. IfD is a generalized elliptic operator o and
D its lift to M, then x(D) belongs toB%(M). In addition, sincex®> — 1 € Cy(R), we have
x(D)2-1¢ Cg(M). Moreover, since thé,-grading renders the decompositions

=5, )= (6 ),

it follows thate (D) + x(D)e = 0. By the discussion in [14], it follows thaF = y(D) is

a Fredholm operator and admits an index & Ky (C&(M)). In addition, any two chopping
functions x; and x, differ by an element of’y(R). By the lemma above, we havg (lN)) —

x2(D) € Ct(M), so they define the same elementsiditheory. The common value for Irfd

is denoted IndD) and called thgeneralized coarse indext D. We write C,(M) and Ind(D)

instead ofC}‘;(J\Ai ) and Ind(D) to indicate that the construction is initiated by a generalized Dirac
operator on the base space. The following statements are standard results of index theory; one may
consult [14] and [15] for the essentially identical proof in the nonequivariant case.

Proposition 1: Let D be a generalized elliptic operator Ir? (M, S). If 0 does not belong to the
spectrum ofD, then the generalized coarse index Indianishes inkKo(Cg (M)).

Proposition 2: Let D the lift of a ggneralized elliptic operator E?(M, S). In the ungraded case,
if there is a gap in the spectrum 6f, then the index Ind vanishes ink; (Cf(M)).

Corollary: Let M be a complete spin manifold. ¥/ has a metric of uniformly positive scalar
curvature in some coarse class, then the generalized coarse index of the spinor Dirac operator
vanishes.

We now embark on the task of computing tRetheory of this algebra and of coarse indices.
Let (M, d) be a proper metric space. For any suliset M andR > 0, we denote by P&/, R)
the open neighborhood &f consisting of points: € M for whichd(z,U) < R. Let A andB be
closed subspaces &f with M = AU B. We then say that the decompositiof, B) is acoarsely
excisive paiiif for eachR > 0 there is anS > 0 such that

Per(4, R) nPenB,R) C PeAN B, S).
We wish to analyze this decomposition in the following context.

Given generatC*-algebrasA, B and M for which M = A + B, we have the Mayer-Vietoris
sequence

o — Kj1 (M) — K;(ANB) — Kj(A)® K;(B) — Kj(M) — -

The standard proof for the existence of such a sequence is developed from the isomorphism
K.(T) & K._1(M), whereT is the suspension of1. A short discussion of this construction
is given in [11]. We are in particular interested in exploiting the boundary éhag<;( M) —
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K;_1(ANB) to transfer information about the index of the Dirac operator on a complete noncom-
pact manifoldM to information about that on some hypersurf&teFor our purposes, we wish to
setM to be the generalized Roe algeld’a (M) on M, while A andB represent analogous oper-

ator algebras on closed subsdtand B, where(A, B) form a coarsely excisive decomposition of

M. To construct the boundary map in question, we require a few technical lemmas and notion of
equivariant operators with generalized finite propagation on a sub3ddt dthe proof of the first
lemma follows the same argument as that in [11] and is stated without proof.

Definition: Let A be a closed subspace of a proper metric sgdceDenote byD7.(A, M) the
C*-algebra of all operator$ in D, (M) such that Sup@ C Per{r1(A), R) x Per{r~1(A), R),
for someR > 0. Let Cf.(A, M) be the quotienD}, (A, M) /1.

Lemma 2: Let (A, B) be a decomposition a¥/. Then
(1) C&(A, M) + Cg (B, M) = Cg(M).
(2) CL(A, M)NCE(B, M) = CL(ANB, M) ifin addition we assume th&t, B) is coarsely
excisive.

Lemma 3: Suppose that the inclusidii C M induces an injectiorr; (V) — 71 (M) on the level
of fundamental groups. There is an isomorphiBI(Cy (V) = K. (C(V, M)).

Proof: Letr : M — M be the projection map. Consider thé-algebraC* (Per{r =1 (V), n), m (M)
given by the quotient by of the C*-algebra of locally compacty; (M )-equivariant operators on
then-neighborhood penumbra Rerv!(V'),n). Then

CL(V,M) = li_r}nC’*(Per(w_l(V),n),m(M)).

The inclusion map : 7~ '(V) — Per(r (V),n) is a coarse equivalence. Since by the con-
struction the generalized Roe algebra its operators are defined up to their bounded parts,ithe map
induces a series of isomorphisms

K (C*(n=N(V),m(M))) K. (C*(Per(z=!(V),n), 1 (M))
K, (limC*(Per(r—Y(V),n), m (M))

K. (C5(V, M)).

111 11

Sincen; (V) = m (M) is an injection, the inverse image (V) C M is a disjoint union
of isomorphic copies oV, parametrized by the coset spacg M) /71 (V). Therefore, there
is a one-to-one correspondence betwee(\/)-equivariant operators on!(V) and 7 (V)-
equivariant operators oii. HenceC* (7~ (V'), my (M) Ct(V). We then havel, (Cf(V)) =
K. (C{(V,M)), as desired. O

Let (A, B) be a coarsely excisive decompositionidfsuch thatl” = AN B satisfiesr; (V) —
m(M). The boundary operatay : K;(C&(A, M) + CL(B,M)) — K;j_1(C&(A, M) N
Ct(B, M)) arising from the coarse Mayer-Vietoris sequence is by the previous lemmas truly a
map

0: K. (C&L(M)) = K1 (CH(V)).

Theorem: (Boundary of Dirac is Dirac) Consider a coarsely excisive decompositioh B) of
M andletV = ANB. If 0 : K.(CiL(M)) = K._1(C,(V)) is the boundary map from the
Mayer-Vietoris sequence derived above, then we ligind,; (D)) = Indy (D).
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Remark: Here Indy (D) and Ind (D) represent the generalized coarse indices of the spinor
Dirac operators on/ andV, respectively. We will continue to use a subscript if the space to
which the index is related is ambiguous. The “boundary of Dirac is Dirac” principle is essentially
equivalent to Bott periodicity in topologicak -theory. In all cases considered here, there are
commutative diagrams relating topological boundary to the boundary operator arising/f the
theory of C*-algebras, and, on the topological side, a consideration of symbols suffices. See [16],
[10], [15] and [21].

Theorem 1: Then-fold productM of punctured two-dimensional tori does not have a metric of
uniform positive scalar curvature in the same coarse equivalence class as the positive hyperoctant
with its standard Euclidean metric.

Proof: Consider the projection mgp: M — RZ, from the productM = T x --- x T to the
positive hyperoctant, where each compongris the quasi-isometric projection of the punctured
torus onto the positive reals numbers. Take a hypersuface RZ, sufficiently far from the
origin so that the inverse image of every point $1is ann-torus, and so the spadéis coarsely
equivalent to thg2n — 1)-dimensional noncompact manifoR* ' x 7". The complement of
the hypersurfacé” consists of two noncompact components. Defin® be the closure of the
component containing the inverse image!(0) of the origin inR%,. Take B the closure of
M\ A°. Then the pair(A4, B) forms a coarsely excisive decomposition of the spatavhose
intersection isANB =V.

FIGURE 1. The hypersurfac# in R3p-

Consider the generalized coarse index @) € K,(C;(M)) of the lifted classical Dirac
operator on the pullback spinor bundle of the universal cader Note thatm (M) is the n-
fold productF, x --- x Fy of free groups, and that; (V) = = (R*~! x T™) = Z". Hence
there is an injectionr; (V') — w1 (M) and theK -theoretic Mayer-Vietoris sequence applies. The
boundary ma@ of this sequence satisfiéq Indy; (D)) = Indy (D) € K,.(C:(V)). However,V
is coarsely equivalent to the hypersurf&®e ! x 7™, so the index Ingt(D) can be taken to live in
K._1(CL(R"! x T™)). Note thatn will be taken to be at leagt There is yet another boundary
mapK._1(CL(R™! x T™)) = K, n41(C%(R x T™)) by peeling offn — 2 copies of the real
line. This boundary map (or compositionf- 2 boundary maps) preserves index.

Recall thatD7 (M) is the norm closure of th€'*-algebra of all locally compacty (M )-

equivariant, generalized finite propagation operatorsLHde), andl C D{(M) is the closure
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of the ideal of such operatofB that satisfies the condition th&t x 7)(SuppT’) is bounded in
M x M. The short exact sequente— I — D},(R x T") — C5(R x T™) — 0 gives rise
to the six-term exact sequencehfittheory:

Ko(I) Ko(Dg(R x T™)) — Ko(Cg(R x T™))

| |

Ky (C5(R x T7)) <— Ky (Dg(R x T) K\ (1)

Notice that the magi, (/) — K.(D§(R x T™)) induced by the inclusion is the zero map by
an Eilenberg swindle argument. Hence both maAp$D; (R x T")) — K. (CL(R x T™)) are
injections.

If n is even, the generalized coarse index gpg- (D) of the Dirac operatorD resides in
K (Dg(RxT™)). Certainly the image of this index under the boundary WapD, (RxT")) —
Ko(Dg(T™)) is the index Ingw (D) of D on then-torus. SinceI™ does not have a metric
of positive scalar curvature at all, the obstructie(i™, f) € K.(C*(Z")), wheref : T" —
BZ™ is the classifying map, is nonvanishing. This “index” is constructed by Rosenberg in [17].
This special case of the Gromov-Lawson-Rosenberg conjecture holds for theZjtdGp This
index maps to our generalized coarse index d under the isomorphisnik’, (C*(Z™)) =
K.(Dg(T™)). Hence the index oD in K (D} (R x T™)) is nonzero, and its projection onto
the groupK (C¢ (R x T™)) is nonzero as well. This argument gives us the necessary index ob-
struction.

If » is odd, we apply the same argument as above with respect to th&piay, (R x 7)) —
Ko(CL(R x T™)). O

The extension of this method to multifold products of hyperbolic manifolds involves the Mar-
gulis lemma, which states that in such a space there exists a small positive canstant such
that the subgroup', (V,v) C m(V,v) generated by loops of length less than or equal lmsed
atv € V is almost nilpotent, i.e. it contains a nilpotent subgroup of finite index. It can be shown
that there exist such cusps, or submanifatis. V' with compact convex boundary containing
such thatC' is diffeomorphic to the produ@C x R, , wheredC is diffeomorphic to ar{n — 1)-
dimensional nilmanifold with fundamental group containingV, v). Here a nilmanifold signifies
a quotientN/I" of a nilpotent Lie group by a cocompact lattife The nilmanifolds that arise in
this context as boundaries of pseudospheres will have a naturally flat structure.

Theorem 2: An n-fold product of hyperbolic manifolds has no uniform positive scalar curvature
metric coarsely equivalent to the usual Euclidean metric on the positive Euclidean hyperoctant.

Proof: Without loss of generality, it suffices to consider the case in which the noncompact hy-
perbolic spaces have only one cusp. kebe the dimension of this product manifold. As in the
multifold product of tori, there is a positivie € R such that on each hyperbolic spake the in-

verse image of each poiat > b under the projectiort{; — R is by Margulis’ lemma a flat
compact connected Riemannian manifold of finite dimension. Consider the inverselinuager

the induced product map: H; x --- x H,, — RZ, of the same hypersurface as described in the
previous theorem. By Bieberbach’s theorem, every flat compact connected Riemannian manifold
admits a normal Riemannian covering by a flat torus of the same dimension. Heésa®vered

by some product of Euclidean space and a higher-dimensional torus. Any metric of positive scalar
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curvature orl would certainly lift to such a metric in this covering space. Using the same induc-
tion argument as before, we show that such a metric is obstructed by the presence of a nonzero
Dirac class. O

Ill. Noncompact Quotients of Symmetric Spaces: A Special Case

We wish to apply the above techniques to the irreducible 8as¢7)\SL,,(R)/SO,,(R). This
space is not locally symmetric becau$k,, (Z) does not act freely o8L,,(R)/SO(R), so the
guotient is not a Riemannian manifold. LEt be any finite-sheeted branched cover of the double
quotientSL,, (Z)\SL,(R)/SO,(R), i.e. a manifold corresponding to a subgroup of finite index in
SL,(Z).

The Iwasawa decomposition gives a unique way of expressing the §loy(®R) as a prod-
uct SL,(R) = NAK, whereN is the subgroup of standard unipotent matrices (upper trian-
gular matrices with all diagonal entries equal ifp A the subgroup ofL,(R) consisting of
diagonal matrices with positive entries, ahdthe orthogonal subgroupO,,(R). The quotient
X = SL,(Z)\SL,(R) /SO, (R) can then be trivially seen to ha@é";—l) compact directions aris-
ing from N, an additionak — 1 noncompact directions from, and an'n —2)-dimensional simplex
as its boundary. In short, the bordified spatés coarsely arin. — 1)-simplex.

Theorem 3: Letn > 3 and letSL,,(Z)* be a torsion-free subgroup 8L.,,(Z) of finite index. Then
the manifoldX* = SL,,(Z)*\SL,(R)/SO,(R) lacks a uniform positive scalar curvature metric
that is coarsely equivalent to the natural one inherited f8am(RR).

Proof: To build the appropriate hypersurface X, consider first the orbifoldX, which by the
above discussion can be expresse@e¥ AK /K, wherel' = SL,,(Z) and K = SO,,(R). Con-
sider the Weyl chamber corresponding to the subsetc A of positive diagonal matrices with
decreasing entries, i.e.

e 0 0
0 €2 ... 0
At = ) . ) ) DAL >a9> .. > Ap_1 > Ay
0 0 ... ein
Herea, = —(a1 + a2 + -+ 4+ ap—1). The coordinates, as, ..., a,—1 parametrize the, — 1

noncompact directions of .

The closure of this Weyl chamber correspondingta> as > --- > a, is a simplex with one
boundary face at infinity. One can construct a closed, convex sﬂtj;sei AT with the following
properties (see Figure 1): the seg is bounded away from the boundary faegs= a;,1 and the
quotientF = I'\N A}, K/K of the resulting Siegel se¥ A}, K has a boundary¥ = dF which
is coarsely equivalent to an iterated circle bundle gwer 2)-dimensional Euclidean space. More
precisely, there is a coarse equivalefie— R”~2 such that the fiber over each point is a compact
arithmetic quotient of the group of unipotent matrices. (Notice that in general arithmetic subgroups
are not unipotent, but we create this hypersurficefor the explicit purpose of exploiting the
unipotent parts oX.) The reader may wish to consider the= 3 case and construct the subset
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A}, C AT given by
1
Ag:{k(l,b,—l—b):ogbgg, kZL},

whereL is sufficiently large. Refer to the following section for a discussion about the actibn of
onW.

SinceX ™ is a finite-sheeted branch cover &f there is a natural projection map X* — X.
The setp (W) c X* will be a disjoint union of copies of¥. Let W* be just one connected
component. This noncompact spad®é partitions the spac& * into a coarsely excisive pair whose
closures(Y, Z) satisfy the equalitiey” U Z = M* andY N Z = W*. If Ind x-(D) denotes the
generalized coarse index of the classical spinor Dirac operat@rothen the Mayer-Vietoris map
0 : K.(CL(X¥)) = K._1(CkL(W™)) defined in the previous chapter satisfie§indx« (D)) =
Indyy - (D) = Indgn—2,m (D), whereU™ is the compact fiber of the iterated circle bundle of
dimensionm = @ Applying the same argument as before, we need only to show that the
index of the Dirac operator ik, (Df,(U™)) is nonzero. However, the compact spdc# is
a quotient of a nilpotent group by a cocompact lattice, and hence by Gromov and Lawson [9]
has no metric of positive scalar curvature at all. As with the theorem for punctured tori, there
is a nonvanishing Rosenberg indexU™) € K,(C;(n)), wherer = 7 (U™), which maps to
the generalized coarse index#,(Dg(U™)), as desired. Here the Gromov-Lawson-Rosenberg
conjecture is true sincE™ is a nilmanifold. 0

Remark:One can avoid the detailed construction/Bfby accepting the coarse simplicial picture

of SL,,(Z)\SL, (R) /SO, (R). To define an appropriate hypersurface that stays a bounded distance
from the simplicial faces, except for the face at infinity, one can merely take the open cone on
an (n — 3)-dimensional sphere in the interior of the boundary face, and close this cone under the
action of N/(N NT).

IV. The General Noncompact Arithmetic Case

Let G be an affine algebraic group defined o@r We say thalG is semisimpléf its radical
(i.e. its greatest connected normal solvable subgroup) is trivial. For sG&hwe denote its real
locusG(R) by G, which is a semisimple Lie group with finitely many connected components. It
is well known that the spherical Tits buildinfp(G) associated wittG over Q is a connected
infinite simplicial complex if ranly(G) > 1. The simplices ofAg(G) correspond bijectively
to the proper rational parabolic subgroups®f If ' C G(Q) is an arithmetic subgroup of
G(Q), then there are only finitely mariy~conjugacy classes of rational parabolic subgroups, so the
quotientI™\ Ag(G) is a finite simplicial complex, called thEts comple)of I'\G/ K and denoted
A(I'\G/K). HereK is a maximal compact subgroup 6f See [13] for details.

Such a real semisimple Lie grodphas a decompositioR K whereP is a parabolic subgroup
of G and K is maximal compact. This parabolie satisfies the relatio® = Cs(A)N, where
A C P is a connected maximal split torus with centralizét(A) and N is the unipotent radical
of P. The Langlands decomposition of a parabdligivesP = NAM, whereM A = C(A), the
quotientM /Z (M) is semisimple and (M) is compact. Of course this decomposition depends on
P and the pointsg € G fixed by K.

Recall that a subgroup of G is anarithmetic latticeif there exist
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(1) aclosed subgrou@’ of some Sk(R) such thaiG’ is defined ovef),
(2) compact normal subgrougé < G andK' < G’, and
(3) anisomorphismy : G/K — G'/K'

such thaw(T') is commensurable with?,, wherel' andG?, are the images df andG%, in G/K
andG’'/K', respectively.

The effect of an arithmetic latticE on the components of the Langlands decomposition is as
follows. LetP = N AM be a minimal paraboli@-subgroup, and I€f' be a maximal)-split torus
of G. ThenM satisfies the equalit¢';(T') = T M. SinceT is maximal, the subgroup/ contains
no Q-split tori. By definition, we have rankMyz = 0. Hence, the arithmetic subgroups &f
are cocompact id/. Since the intersection @¥;, with M is an arithmetic subgroup d#/, every
guotient of M by an arithmetic subgroup @ yields a compact quotient. A similar argument holds
for the subgroupV of G.

To understand the coarse typeldfG/ K, we appeal to Ji and MacPherson [13] in their proof
of a conjecture of Siegel. In particular, 18 = G,Py,...,P, be representatives of thHe
conjugacy classes of rational parabolic subgroup&ofFor eachi, let P; = Np, Mp, Ap, be
the Langlands decomposition &f;. Then there exists boundeg C Np,Mp, and Siegel sets
wj; X APi,t C NpiMpi X Api such that

(1) each Siegel set; x Ap,; is mapped injectively inté\G/K;

(2) the image otv; in (I' N ;)\ Np, Mp, is compact;

(3) if we identify w; x Ap, ¢ with its image in['\G// K, thenI'\G/K can be decomposed in
the following disjoint union

n
T\G/K =[] wi x Ap, ;.
=0

Here the subsetp, ; = {a € Ap, : a;(loga) > t, i = 1,...,r} is a shift of the positive chamber
Alﬁi = {a € Ap, : a;(loga) >0, 7 =1,...,r}, where thea; are the associated set of simple
roots and is sufficiently large. Using this so-called precise reduction theory and identi#ng
with a cone in the Lie algebra;, one can endow it with the simplicial metrits defined by
the Killing form through the exponential map. Thédp, ;,ds) is a metric cone over the open
simplex Af; (oo) in the Tits buildingAg(G) associated withP;, when Af, (o) is endowed with

a suitable simplicial metric. We can glue these metric cquis, ;, ds) to form a local distance
functionls on[ [}, Ap, . If dinq is the distance function on the subsp§gg , Ap, ; induced by
I'\G/K, then it is not hard to show that the tangent cahe(] [, Ap, +, dind) at infinity exists
and is equal td] [, Ap, +,!s). The tangent con@&,, (I'\G/K) therefore exists and is equal to a
metric cone over the Tits compleX(I"\G/K) [13]. The resulting fact that the Gromov-Hausdorff
distance betweeR\G/K and (][]}, Ap, 1, ls) is finite allows us to build a map : T\G/K —
(LT~ Ap, 1, Is) whose properties are captured in the following description.

Picture from Reduction Theory: Let M = I'\G/K. There is a compact polyhedrap and a
Lipschitz mapr : M — ¢, wherecQ is the open cone o so that (1) every point inverse deform
retracts to an arithmetic manifold, (2)respects the radial direction, and (3) all point inverses have
uniformly bounded size.
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Again, the polyhedron) is the geometric realization of the category of profeparabolic
subgroups of7, modulo the action of. The inverse image ~!(*) of the barycenter of a simplex
is the arithmetic symmetric space associated to that parabolic. Concretely,féf St SL, (R),
the space) is ann — 2 simplex, the parabolics correspond to flags, and the associated arithmetic
groups have a unipotent normal subgroup with quotient equal to a product,{%), where the
m; are sizes of the blocks occurring in the flag. As one goes to infinity, the unipotent directions
shrink in diameter and are responsible for the finite volume property of the lattice quotient, while
the other parabolic directions remain of bounded size. Alternatively, for any choice of basepoint
in the homogeneous space, there are const@rasd D that satisfy the following condition: i
is a given point and), is the largest parabolic subgroup associated with a simplex whose cone
containsz within its C-neighborhood, then the orbit afunder@),. has diameter less thdn. Note
the empty simplex means that there is a compact core which is stabilized by the whole group. In
addition to the proof in [13], this picture can be ascertained from [4], [18]; the facTth@y K
has finite Gromov-Hausdorff distance fratf) is first asserted in [8].

As a guide the reader should consider the picture suggested by a product of hyperbolic man-
ifolds. In the compact case, each hyperbolic manifold contributeg)ta point. In the case of
cusps, it contributes the open cone on a finite set of points. Thissa join of some number of
finite sets. Using this model, we find that the inverse image of any point in the interior of any
simplex is exactly a product of closed hyperbolic manifolds, cores of hyperbolic manifolds, and
flat manifolds.

To build an appropriate hypersurfacelifG/ K, we require a key estimate of Eskin [7] about
the “coarse isotropy” of our space (see also [3] and [13]). Some details are provided as follows.
Let P = NAM be a minimal paraboli€)-subgroup ofG and writeG = NAM K. Consider
the chamber decomposition efthe Lie algebra ofA. The corresponding Weyl groufy” acts on
these chambers via the hyperplanesG It [[, . BwB is the Bruhat decomposition @, let
v € BwB for somew € W. If ¢ = nak, we writeyg = n'a’k’. Denote by> " the set of positive
roots ofa* andY_ "~ the set of negative roots. L& = 3.~ Nw Y. " be the set of roots that are
positive but are negated under the actionwof For some positive reals constamrts Abels and
Margulis [1] provide the following equation:

(%) a =wa— Z coe(a) + o(1),

aER
wherea anda’ are viewed as elements of the Lie algehraThe implications of this equation
are as follows. Consider an elemenin the positive Weyl chambef(a). Then the intersection
I'(a) N C(a) of the orbitI’(a) of a underI’ and the Weyl chambelt(a) containinga has a bounded
diameter, uniformly inz. In other words, ify(a) stays in the same positive Weyl chamber, then
is the identity andR is empty. Hence' = a + o(1), implying thata’ can be found at a uniformly
bounded distance froma itself. In this event, the action ef corresponds to a translation efto
(possibly) the compact fiber direction BYG/ K. Itis also a general fact that the image of a vertex
of any subsector under the actionpfe T is the vertex of an analogous subsector. With this
machinery, we are able to prove the following.



COARSE OBSTRUCTIONS TO POSITIVE SCALAR CURVATURE IN NONCOMPACT ARITHMETIC MANIFOLDS 13

Theorem 4: Let G be a semisimple irreducible Lie grouf, its maximal compact subgroup and
I' an arithmetic lattice with rankl” > 2. If I'* is any torsion-free subgroup ®f of finite index,
then the manifoldX* = I'*\ G/ K lacks a uniform positive scalar curvature metric that is coarsely
equivalent to the natural one inherited fra@m

Proof: Let G = PK, whereP = NM A is a minimal parabolid)-subgroup ofG. The pre-

cise reduction theory provides a compact polyhedpoand a Lipschitz map : X* — ¢@Q from

X* to an open cone® on Q. Consider one maximal simplex @@ corresponding to some Weyl
chamberC™, and construct a hypersurfacedn as in Figure 1 (this hypersurface is coarsely a
cone on a spher§, whereS lies in the interior of the simplicial face at infinity). This subdét

can be oriented so that the distance frémto any hyperplanex = 0 will exceed the quantity
sup,ec+ diam(I'*(a) NCT), which is finite by ¢). LetW = 7~ 1(H) be the corresponding hyper-
surface inX*; this W induces a coarsely excisive decompositiéf)Z) of X*. The fundamental
groupm (W) = NM NT'* injects intorr; (X*) = T'*, so the hypothesis of Lemma 3 is satisfied. In
the most general case, the sp&ds coarsely equivalent to a bundle over Euclidean space whose
fiber consists of two components: a nilmanifditt and (possibly) a compact homogeneous man-
ifold M*. If M* is trivial, the argument follows exactly as in Theorem 3. In the presence of a
compact homogeneous manifold, we may pass to the coarse index of the Dirac opeRatab/to

and use the usual Rosenberg obstruction/thas in Theorem 1 to obtain our desired result. The
proof that the Gromov-Lawson conjecture holds for compact, locally symmetric manifolds is found
in[?]. O
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